Ranking and Learning

290N UCSB, Tao Yang, 2013 Partially based on Manning, Raghavan, and Schütze's text book.

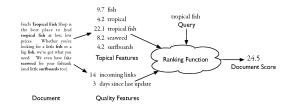
Table of Content

- · Weighted scoring for ranking
- · Learning to rank: A simple example
- · Learning to ranking as classification

Scoring

- · Similarity-based approach
 - Similarity of query features with document features
- Weighted approach: Scoring with weighted features
 - return in order the documents most likely to be useful to the searcher
 - Consider each document has subscores in each feature or in each subarea.

Simple Model of Ranking with Similarity



Similarity ranking: example

$$R(Q,D) = \sum_i g_i(Q) f_i(D) \qquad \begin{array}{ll} f_i \text{ is a document feature function} \\ g_i \text{ is a query feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i(Q) f_i(D) \qquad \qquad f_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a query feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a query feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \end{array}$$

$$\begin{array}{ll} g_i \text{ is a document feature function} \\ \text{ 4.2 tropical fine function} \\ \text{ 4.2 tropical fine function} \\ \text{ 2.2 tropical fine function} \\ \text{ 2.2 tropical fine function} \\ \text{ 2.2 tropical fine function} \\ \text{ 3.2 tropical fine function} \\ \text{ 3.2 tropical fine function} \\ \text{ 4.2 tropical fine function}$$

Weighted scoring with linear combination

- A simple weighted scoring method: use a linear combination of subscores:
 - E.g.,

Score = 0.6*< Title score> + 0.3*<Abstract score> + 0.1*<Body score>

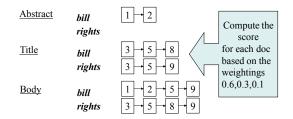
The overall score is in [0,1].

Example with binary subscores

Query term appears in title and body only Document score: $(0.6 \cdot 1) + (0.1 \cdot 1) = 0.7$.

Example

On the query "bill rights" suppose that we retrieve the following docs from the various zone indexes:



How to determine weights automatically: Motivation

- Modern systems especially on the Web use a great number of features:
 - Arbitrary useful features not a single unified model
 - · Log frequency of query word in anchor text?
 - Query word highlighted on page? Span of query words on page
- # of (out) links on page?
- PageRank of page?
- URL length?
- URL contains "~"?
- Page edit recency?
- · Page length?
- · Major web search engines use "hundreds" of such features - and they keep changing

Sec. 15

Machine learning for computing weights

How do we combine these signals into a good ranker?

- "machine-learned relevance" or "learning to rank"
- · Learning from examples
 - These examples are called training data

Learning weights: Methodology

- •Given a set of training examples,
 - •each contains (query q, document d, relevance score r(d,q)).
 - •r(d,q) is relevance judgment for d on q
 - Simplest scheme
 - relevant (1) or nonrelevant (0)
 - •More sophisticated: graded relevance judgments
 - 1 (bad), 2 (Fair), 3 (Good), 4 (Excellent), 5 (Perfect)
- Learn weights from these examples, so that the learned scores approximate the relevance judgments in the training examples

Simple example

- · Each doc has two zones, Title and Body
- For a chosen w∈[0,1], score for doc d on query q

$$score(d, q) = w \cdot s_T(d, q) + (1 - w)s_B(d, q)$$
 where:

- $s_T(d, q) \in \{0,1\}$ is a Boolean denoting whether q matches the <u>Title</u> and
- $s_B(d, q) \in \{0,1\}$ is a Boolean denoting whether q matches the Body

Learning w from training examples

Example	DocID	Query	s_T	s_B	Judgment
Φ1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

From these 7 examples, learn the best value of w.

How?

- For each example Φ_t we can compute the score based or $score(d_t,q_t) = w \cdot s_T(d_t,q_t) + (1-w)s_B(d_t,q_t)$.
- · We quantify Relevant as 1 and Non-relevant as 0
- Would like the choice of w to be such that the computed scores are as close to these 1/0 judgments as possible
 - Denote by $r(d_t, q_t)$ the judgment for Φ_t
- · Then minimize total squared error

$$\sum_{\Phi_t} (r(d_t, q_t) - score(d_t, q_t))^2$$

Optimizing w

- · There are 4 kinds of training examples
- Thus only four possible values for score
 - And only 8 possible values for error
- Let n_{01r} be the number of training examples for which s₁(d, q)=0, s_B(d, q)=1, judgment = Relevant.
- Similarly define n_{00r} , n_{10r} , n_{11r} , n_{00i} , n_{01i} , n_{10i} , n_{11i}

s_T	s_B	Score	
0	0	0	Judgment=1 ⇒ Error=w
0	1	1-w	Judgment=0 ⇒ Error=1-w
1	0	w	F 12 F 12
1	1	1	Error: $[1-(1-\omega)]^2 n_{01r} + [0-(1-\omega)]^2 n_{01r}$

Total error - then calculus

Add up contributions from various cases to get total error

$$(n_{01r} + n_{10i})w^2 + (n_{10r} + n_{01i})(1 - w)^2 + n_{00r} + n_{11i}$$

 Now differentiate with respect to w to get optimal value of w as:

$$\frac{n_{10r} + n_{01i}}{n_{10r} + n_{10i} + n_{01r} + n_{01i}}.$$

Generalizing this simple example

- More (than 2) features
- · Non-Boolean features
 - What if the title contains some but not all query terms ...
 - Categorical features (query terms occur in plain, boldface, italics, etc)
- · Scores are nonlinear combinations of features
- Multilevel relevance judgments (Perfect, Good, Fair, Bad, etc)
- · Complex error functions
- Not always a unique, easily computable setting of score parameters

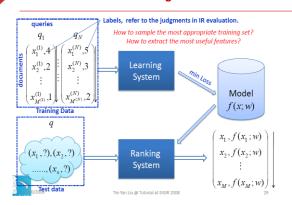
Learning-based Web Search

Given a set of features e₁,e₂,...,e_N, learn a ranking function f(e₁,e₂,...,e_N) that minimizes the loss function

$$f^* = \min_{f \in F} L(f(e_1, e_2, ..., e_N), GroundTruth)$$

- · Some related issues
 - The functional space F
 - linear/non-linear? continuous? Derivative?
 - The search strategy
 - The loss function

Framework of Learning to Rank



Sec. 15.4.1

A richer example

- Collect a training corpus of (q, d, r) triples
 - Relevance r is still binary for now
 - Document is represented by a feature vector
 - ${\bf x}$ = $(\alpha,\,\omega)$ α is cosine similarity, ω is minimum query window size
 - ω is the shortest text span that includes all query words (Query term proximity in the document)
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevani
Φ_5	1741	kernel layer	0.022	3	relevant
Φ6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevani

Sec. 15.4

Using classification for deciding relevance

· A linear score function is

 $Score(d, q) = Score(\alpha, \omega) = a\alpha + b\omega + c$

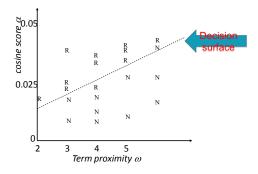
And the linear classifier is

Decide relevant if $Score(d, q) > \theta$

· ... just like when we were doing text classification

Sec. 15.4.

Using classification for deciding relevance



More complex example of using classification for search ranking

[Nallapati SIGIR 2004]

- We can generalize this to classifier functions over more features
- We can use methods we have seen previously for learning the linear classifier weights

An SVM classifier for relevance

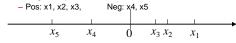
[Nallapati SIGIR 2004]

- Let $g(r|d,q) = w \cdot f(d,q) + b$
- Derive weights from the training examples:
 - want g(r|d,q) ≤ -1 for nonrelevant documents
 - $g(r|d,q) \ge 1$ for relevant documents
- · Testing:
 - decide relevant iff $g(r|d,q) \ge 0$
- · Use SVM classifier

Ranking vs. Classification

Classification

- Well studied over 30 years
- Bayesian, Neural network, Decision tree, SVM, Boosting, ...
- Training data: points



Ranking

- Less studied: only a few works published in recent years
- Training data: pairs (partial order)
 (x1, x2), (x1, x3), (x1, x4), (x1, x5)
 - (x2, x3), (x2, x4) ...

-...

Learning to rank: Classification vs. regression

- Classification probably isn't the right way to think about score learning:
 - · Classification problems: Map to an unordered set of classes
 - Regression problems: Map to a real value
 - Ordinal regression problems: Map to an ordered set of classes
- · This formulation gives extra power:
 - Relations between relevance levels are modeled
 - Documents are good versus other documents for query given collection; not an absolute scale of goodness

"Learning to rank"

- Assume a number of categories C of relevance exist
 - These are totally ordered: $c_1 < c_2 < ... < c_J$
 - This is the ordinal regression setup
- Assume training data is available consisting of document-query pairs represented as feature vectors ψ, and relevance ranking ci

Modified example

- Collect a training corpus of (q, d, r) triples
 - Relevance r is here 4 values
 - Perfect, Relevant, Weak, Nonrelevant
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ1	37	linux operating system	0.032	3	Perfect
Φ_2	37	penguin logo	0.02	4	Nonrelevant
Φ_3	238	operating system	0.043	2	Relevant
Φ_4	238	runtime environment	0.004	2	Weak
Φ5	1741	kernel layer	0.022	3	Relevant
Φ_6	2094	device driver	0.03	2	Perfect
Φ_7	3191	device driver	0.027	5	Nonrelevant

"Learning to rank"

- Point-wise learning
 - Given a query-document pair, predict a score (e.g. relevancy score)
- · Pair-wise learning
 - the input is a pair of results for a query, and the class is the relevance ordering relationship between them
- List-wise learning
 - Directly optimize the ranking metric for each query

Point-wise learning: Example

· Goal is to learn a threshold to separate each rank

$y=1 \\ y=2 \\ y=3 \\ y=3$

3et. 1.

The Ranking SVM: Pairwise Learning [Herbrich et al. 1999, 2000; Joachims et al. KDD 2002]

- correctly ranked
- or incorrectly ranked
- This turns an ordinal regression problem back into a binary classification problem
- We want a ranking function f such that c_i is ranked before c_k:

$$c_i < c_k \text{ iff } f(\psi_i) > f(\psi_k)$$

· Suppose that f is a linear function

· Aim is to classify instance pairs as

$$f(\psi_i) = \mathbf{w} \cdot \psi_i$$

Thus

$$c_i < c_k$$
 iff $w(\psi_i \psi_k) > 0$

Ranking SVM

Training Set

 for each query q, we have a ranked list of documents totally ordered by a person for relevance to the query.

Features

vector of features for each document/query pair

$$\psi_j = \psi(d_j, q)$$

• feature differences for two documents d_i and d_i

$$\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$$

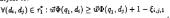
Classification

- if d_i is judged more relevant than d_i , denoted $d_i < d_i$
- then assign the vector Φ(d_i, d_j, q) the class y_{ijq}=+1; otherwise -1.

Ranking SVM

OPTIMIZATION PROBLEM 1. (RANKING SVM)

minimize:
$$V(\vec{w}, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_{i,j,k}$$
 (12) subject to:



$$\begin{array}{ccc} & \dots & & & \\ \forall (d_i,d_j) \in r_n^* : \vec{w} \Phi(q_n,d_i) \geq \vec{w} \Phi(q_n,d_j) + 1 - \xi_{i,j,n} \\ \forall i \forall j \forall k : \xi_{i,j,k} \geq 0 & & \\ \end{array} \label{eq:definition} \tag{13}$$

 optimization problem is equivalent to that of a classification SVM on pairwise difference vectors Φ(q_k, d_i) - Φ (q_k, d_i)