
1

Boolean and Vector Space

Retrieval Models

• CS 290N

•Some of slides from R. Mooney (UTexas), J.

Ghosh (UT ECE), D. Lee (USTHK).

Table of Content

Which results satisfy the query constraint?

• Boolean model

• Statistical vector space model

3

Retrieval Models

• A retrieval model specifies the
details of:

 Document representation

 Query representation

 Retrieval function: how to find relevant
results

• Determines a notion of relevance.

Notion of relevance can be binary
or continuous

4

Classes of Retrieval Models

• Boolean models (set theoretic)

 Extended Boolean

• Vector space models

(statistical/algebraic)

 Generalized VS

 Latent Semantic Indexing

• Probabilistic models

5

Retrieval Tasks

• Ad hoc retrieval: Fixed document corpus, varied

queries.

• Filtering: Fixed query, continuous document

stream.

 User Profile: A model of relative static preferences.

 Binary decision of relevant/not-relevant.

• Routing: Same as filtering but continuously supply

ranked lists rather than binary filtering.

News stream user

6

Common Document

Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML tags,
punctuation, numbers, etc.).

• Break into tokens (keywords) on whitespace.

• Possibly use stemming and remove common
stopwords (e.g. a, the, it, etc.).

• Detect common phrases (possibly using a domain
specific dictionary).

• Build inverted index (keyword  list of docs containing
it).

7

Boolean Model

• A document is represented as a set of

keywords.
• Queries are Boolean expressions of keywords,

connected by AND, OR, and NOT, including the use

of brackets to indicate scope.

 [[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton

• Output: Document is relevant or not. No partial

matches or ranking.

• Popular retrieval model because:

 Easy to understand for simple queries.

 Clean formalism.

• Boolean models can be extended to include ranking.

8

Query example: Shakespeare plays

• Which plays of Shakespeare contain the words

Brutus AND Caesar but NOT Calpurnia?

• Could grep all of Shakespeare’s plays for Brutus

and Caesar, then strip out lines containing

Calpurnia?

 Slow (for large corpora)

 NOT Calpurnia is non-trivial

 Other operations (e.g., find the phrase Romans and

countrymen) not feasible

9

Term-document incidence

1 if play contains

word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

10

Incidence vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus,

Caesar and Calpurnia (complemented)  bitwise

AND.

• 110100 AND 110111 AND 101111 = 100100.

11

Inverted index

• For each term T, must store a list of all documents

that contain T.

12

Inverted index

• Linked lists generally preferred to arrays

 Dynamic space allocation

 Insertion of terms into documents easy

 Space overhead of pointers

Dictionary Postings

13

Inverted index construction

Friends Romans Countrymen

friend roman countryman

Friends, Romans, countrymen.

14

Discussions

• Which terms in a doc do we index?

 All words or only “important” ones?

• Stopword list: terms that are so common

 they MAY BE ignored for indexing.

 e.g., the, a, an, of, to …

 language-specific.

 May have to be included for general web search

• How do we process a query?

 What kinds of queries can we process?

15

Query processing

• Consider processing the query:

Brutus AND Caesar

 Locate Brutus in the Dictionary;

– Retrieve its postings.

 Locate Caesar in the Dictionary;

– Retrieve its postings.

 “Merge” the two postings:

16

The merge

• Walk through the two postings simultaneously, in

time linear in the total number of postings entries

17

Example: WestLaw http://www.westlaw.com/

• Largest commercial (paying subscribers) legal

search service (started 1975; ranking added 1992)

• Majority of users still use boolean queries

• Example query:

 What is the statute of limitations in cases involving

the federal tort claims act?

 LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT

/3 CLAIM

• Long, precise queries; proximity operators;

incrementally developed; not like web search

 Professional searchers (e.g., Lawyers) still like

Boolean queries:

 You know exactly what you’re getting.

18

More general merges

• Exercise: Adapt the merge for the

queries:

 Brutus AND NOT Caesar

 Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

19

Boolean Models  Problems

• Very rigid: AND means all; OR means any.

• Difficult to express complex user requests.

• Difficult to control the number of documents

retrieved.

 All matched documents will be returned.

• Difficult to rank output.

 All matched documents logically satisfy the query.

• Difficult to perform relevance feedback.

 If a document is identified by the user as relevant or

irrelevant, how should the query be modified?

20

Statistical Retrieval Models

• A document is typically represented by a bag of
words (unordered words with frequencies).

• Bag = set that allows multiple occurrences of the
same element.

• User specifies a set of desired terms with optional
weights:

 Weighted query terms:

 Q = < database 0.5; text 0.8; information 0.2 >

 Unweighted query terms:

 Q = < database; text; information >

 No Boolean conditions specified in the query.

21

Statistical Retrieval

• Retrieval based on similarity between

query and documents.

• Output documents are ranked

according to similarity to query.

• Similarity based on occurrence

frequencies of keywords in query and

document.
• Automatic relevance feedback can be supported:

 Relevant documents “added” to query.

 Irrelevant documents “subtracted” from query.

22

The Vector-Space Model

• Assume t distinct terms remain after

preprocessing; call them index terms or the

vocabulary.

• These “orthogonal” terms form a vector space.

 Dimension = t = |vocabulary|

• Each term, i, in a document or query, j, is given a

real-valued weight, wij.

• Both documents and queries are expressed as

t-dimensional vectors:

 dj = (w1j, w2j, …, wtj)

23

Document Collection

• A collection of n documents can be represented
in the vector space model by a term-document
matrix.

• An entry in the matrix corresponds to the
“weight” of a term in the document; zero means
the term has no significance in the document or it
simply doesn’t exist in the document.

 T1 T2 …. Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

 : : : :

 : : : :

Dn w1n w2n … wtn

24

Graphic Representation

Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

3 2

5

• Is D1 or D2 more similar to Q?

• How to measure the degree of

similarity? Distance? Angle?

Projection?

25

Issues for Vector Space

Model

• How to determine important words in a document?

 Word n-grams (and phrases, idioms,…)  terms

• How to determine the degree of importance of a
term within a document and within the entire
collection?

• How to determine the degree of similarity between
a document and the query?

• In the case of the web, what is a collection and
what are the effects of links, formatting
information, etc.?

26

Term Weights: Term
Frequency

• More frequent terms in a document are more

important, i.e. more indicative of the topic.

 fij = frequency of term i in document j

• May want to normalize term frequency (tf) across

the entire corpus:

 tfij = fij / max{fij}

27

Term Weights: Inverse Document

Frequency
• Terms that appear in many different documents are

less indicative of overall topic.

 df i = document frequency of term i

 = number of documents containing term i

 idfi = inverse document frequency of term i,

 = log2 (N/ df i)

 (N: total number of documents)

• An indication of a term’s discrimination power.

• Log used to dampen the effect relative to tf.

28

TF-IDF Weighting

• A typical combined term importance indicator is
tf-idf weighting:

wij = tfij idfi = tfij log2 (N/ dfi)

• A term occurring frequently in the document but
rarely in the rest of the collection is given high
weight.

• Many other ways of determining term weights
have been proposed.

• Experimentally, tf-idf has been found to work
well.

29

Computing TF-IDF -- An Example

Given a document with term frequencies:

 A(3), B(2), C(1)

Assume collection contains 10,000 documents and

document frequencies of these terms are:

 A(50), B(1300), C(250)

Then:

A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3

B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3

C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

30

Similarity Measure

• A similarity measure is a function that computes

the degree of similarity between two vectors.

• Using a similarity measure between the query and

each document:

 It is possible to rank the retrieved documents in the

order of presumed relevance.

 It is possible to enforce a certain threshold so that

the size of the retrieved set can be controlled.

31

Similarity Measure - Inner Product

• Similarity between vectors for the document di and
query q can be computed as the vector inner
product:

 sim(dj,q) = dj•q = wij · wiq

 where wij is the weight of term i in document j and wiq is the
weight of term i in the query

• For binary vectors, the inner product is the
number of matched query terms in the document
(size of intersection).

• For weighted term vectors, it is the sum of the
products of the weights of the matched terms.




t

i 1

32

Properties of Inner Product

• The inner product is unbounded.

• Favors long documents with a large number of

unique terms.

• Measures how many terms matched but not how

many terms are not matched.

33

Inner Product -- Examples

Binary:

 D = 1, 1, 1, 0, 1, 1, 0

 Q = 1, 0 , 1, 0, 0, 1, 1

sim(D, Q) = 3

Weighted:
 D1 = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3

 Q = 0T1 + 0T2 + 2T3

 sim(D1 , Q) = 2*0 + 3*0 + 5*2 = 10

 sim(D2 , Q) = 3*0 + 7*0 + 1*2 = 2

34

Cosine Similarity Measure

• Cosine similarity measures the
cosine of the angle between two
vectors.

• Inner product normalized by the
vector lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81

D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / (9+49+1)(0+0+4) = 0.13

 Q = 0T1 + 0T2 + 2T3

2

t3

t1

t2

D1

D2

Q

1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using

inner product.

 



 











t

i

t

i

t

i

ww

ww

qd

qd

iqij

iqij

j

j

1 1

22

1

)(




CosSim(dj, q) =

35

Comments on Vector Space

Models
• Simple, mathematically based approach.

• Considers both local (tf) and global (idf) word

occurrence frequencies.

• Provides partial matching and ranked results.

• Tends to work quite well in practice despite

obvious weaknesses.

• Allows efficient implementation for large

document collections.

36

Problems with Vector Space

Model
• Missing semantic information (e.g. word sense).

• Missing syntactic information (e.g. phrase

structure, word order, proximity information).

• Assumption of term independence (e.g. ignores

synonomy).

• Lacks the control of a Boolean model (e.g.,

requiring a term to appear in a document).

 Given a two-term query “A B”, may prefer a

document containing A frequently but not B, over a

document that contains both A and B, but both less

frequently.

