
1

Boolean and Vector Space

Retrieval Models

• CS 290N

•Some of slides from R. Mooney (UTexas), J.

Ghosh (UT ECE), D. Lee (USTHK).

Table of Content

Which results satisfy the query constraint?

• Boolean model

• Statistical vector space model

3

Retrieval Models

• A retrieval model specifies the
details of:

 Document representation

 Query representation

 Retrieval function: how to find relevant
results

• Determines a notion of relevance.

Notion of relevance can be binary
or continuous

4

Classes of Retrieval Models

• Boolean models (set theoretic)

 Extended Boolean

• Vector space models

(statistical/algebraic)

 Generalized VS

 Latent Semantic Indexing

• Probabilistic models

5

Retrieval Tasks

• Ad hoc retrieval: Fixed document corpus, varied

queries.

• Filtering: Fixed query, continuous document

stream.

 User Profile: A model of relative static preferences.

 Binary decision of relevant/not-relevant.

• Routing: Same as filtering but continuously supply

ranked lists rather than binary filtering.

News stream user

6

Common Document

Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML tags,
punctuation, numbers, etc.).

• Break into tokens (keywords) on whitespace.

• Possibly use stemming and remove common
stopwords (e.g. a, the, it, etc.).

• Detect common phrases (possibly using a domain
specific dictionary).

• Build inverted index (keyword list of docs containing
it).

7

Boolean Model

• A document is represented as a set of

keywords.
• Queries are Boolean expressions of keywords,

connected by AND, OR, and NOT, including the use

of brackets to indicate scope.

 [[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton

• Output: Document is relevant or not. No partial

matches or ranking.

• Popular retrieval model because:

 Easy to understand for simple queries.

 Clean formalism.

• Boolean models can be extended to include ranking.

8

Query example: Shakespeare plays

• Which plays of Shakespeare contain the words

Brutus AND Caesar but NOT Calpurnia?

• Could grep all of Shakespeare’s plays for Brutus

and Caesar, then strip out lines containing

Calpurnia?

 Slow (for large corpora)

 NOT Calpurnia is non-trivial

 Other operations (e.g., find the phrase Romans and

countrymen) not feasible

9

Term-document incidence

1 if play contains

word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

10

Incidence vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus,

Caesar and Calpurnia (complemented) bitwise

AND.

• 110100 AND 110111 AND 101111 = 100100.

11

Inverted index

• For each term T, must store a list of all documents

that contain T.

12

Inverted index

• Linked lists generally preferred to arrays

 Dynamic space allocation

 Insertion of terms into documents easy

 Space overhead of pointers

Dictionary Postings

13

Inverted index construction

Friends Romans Countrymen

friend roman countryman

Friends, Romans, countrymen.

14

Discussions

• Which terms in a doc do we index?

 All words or only “important” ones?

• Stopword list: terms that are so common

 they MAY BE ignored for indexing.

 e.g., the, a, an, of, to …

 language-specific.

 May have to be included for general web search

• How do we process a query?

 What kinds of queries can we process?

15

Query processing

• Consider processing the query:

Brutus AND Caesar

 Locate Brutus in the Dictionary;

– Retrieve its postings.

 Locate Caesar in the Dictionary;

– Retrieve its postings.

 “Merge” the two postings:

16

The merge

• Walk through the two postings simultaneously, in

time linear in the total number of postings entries

17

Example: WestLaw http://www.westlaw.com/

• Largest commercial (paying subscribers) legal

search service (started 1975; ranking added 1992)

• Majority of users still use boolean queries

• Example query:

 What is the statute of limitations in cases involving

the federal tort claims act?

 LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT

/3 CLAIM

• Long, precise queries; proximity operators;

incrementally developed; not like web search

 Professional searchers (e.g., Lawyers) still like

Boolean queries:

 You know exactly what you’re getting.

18

More general merges

• Exercise: Adapt the merge for the

queries:

 Brutus AND NOT Caesar

 Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

19

Boolean Models Problems

• Very rigid: AND means all; OR means any.

• Difficult to express complex user requests.

• Difficult to control the number of documents

retrieved.

 All matched documents will be returned.

• Difficult to rank output.

 All matched documents logically satisfy the query.

• Difficult to perform relevance feedback.

 If a document is identified by the user as relevant or

irrelevant, how should the query be modified?

20

Statistical Retrieval Models

• A document is typically represented by a bag of
words (unordered words with frequencies).

• Bag = set that allows multiple occurrences of the
same element.

• User specifies a set of desired terms with optional
weights:

 Weighted query terms:

 Q = < database 0.5; text 0.8; information 0.2 >

 Unweighted query terms:

 Q = < database; text; information >

 No Boolean conditions specified in the query.

21

Statistical Retrieval

• Retrieval based on similarity between

query and documents.

• Output documents are ranked

according to similarity to query.

• Similarity based on occurrence

frequencies of keywords in query and

document.
• Automatic relevance feedback can be supported:

 Relevant documents “added” to query.

 Irrelevant documents “subtracted” from query.

22

The Vector-Space Model

• Assume t distinct terms remain after

preprocessing; call them index terms or the

vocabulary.

• These “orthogonal” terms form a vector space.

 Dimension = t = |vocabulary|

• Each term, i, in a document or query, j, is given a

real-valued weight, wij.

• Both documents and queries are expressed as

t-dimensional vectors:

 dj = (w1j, w2j, …, wtj)

23

Document Collection

• A collection of n documents can be represented
in the vector space model by a term-document
matrix.

• An entry in the matrix corresponds to the
“weight” of a term in the document; zero means
the term has no significance in the document or it
simply doesn’t exist in the document.

 T1 T2 …. Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

 : : : :

 : : : :

Dn w1n w2n … wtn

24

Graphic Representation

Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

3 2

5

• Is D1 or D2 more similar to Q?

• How to measure the degree of

similarity? Distance? Angle?

Projection?

25

Issues for Vector Space

Model

• How to determine important words in a document?

 Word n-grams (and phrases, idioms,…) terms

• How to determine the degree of importance of a
term within a document and within the entire
collection?

• How to determine the degree of similarity between
a document and the query?

• In the case of the web, what is a collection and
what are the effects of links, formatting
information, etc.?

26

Term Weights: Term
Frequency

• More frequent terms in a document are more

important, i.e. more indicative of the topic.

 fij = frequency of term i in document j

• May want to normalize term frequency (tf) across

the entire corpus:

 tfij = fij / max{fij}

27

Term Weights: Inverse Document

Frequency
• Terms that appear in many different documents are

less indicative of overall topic.

 df i = document frequency of term i

 = number of documents containing term i

 idfi = inverse document frequency of term i,

 = log2 (N/ df i)

 (N: total number of documents)

• An indication of a term’s discrimination power.

• Log used to dampen the effect relative to tf.

28

TF-IDF Weighting

• A typical combined term importance indicator is
tf-idf weighting:

wij = tfij idfi = tfij log2 (N/ dfi)

• A term occurring frequently in the document but
rarely in the rest of the collection is given high
weight.

• Many other ways of determining term weights
have been proposed.

• Experimentally, tf-idf has been found to work
well.

29

Computing TF-IDF -- An Example

Given a document with term frequencies:

 A(3), B(2), C(1)

Assume collection contains 10,000 documents and

document frequencies of these terms are:

 A(50), B(1300), C(250)

Then:

A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3

B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3

C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

30

Similarity Measure

• A similarity measure is a function that computes

the degree of similarity between two vectors.

• Using a similarity measure between the query and

each document:

 It is possible to rank the retrieved documents in the

order of presumed relevance.

 It is possible to enforce a certain threshold so that

the size of the retrieved set can be controlled.

31

Similarity Measure - Inner Product

• Similarity between vectors for the document di and
query q can be computed as the vector inner
product:

 sim(dj,q) = dj•q = wij · wiq

 where wij is the weight of term i in document j and wiq is the
weight of term i in the query

• For binary vectors, the inner product is the
number of matched query terms in the document
(size of intersection).

• For weighted term vectors, it is the sum of the
products of the weights of the matched terms.

t

i 1

32

Properties of Inner Product

• The inner product is unbounded.

• Favors long documents with a large number of

unique terms.

• Measures how many terms matched but not how

many terms are not matched.

33

Inner Product -- Examples

Binary:

 D = 1, 1, 1, 0, 1, 1, 0

 Q = 1, 0 , 1, 0, 0, 1, 1

sim(D, Q) = 3

Weighted:
 D1 = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3

 Q = 0T1 + 0T2 + 2T3

 sim(D1 , Q) = 2*0 + 3*0 + 5*2 = 10

 sim(D2 , Q) = 3*0 + 7*0 + 1*2 = 2

34

Cosine Similarity Measure

• Cosine similarity measures the
cosine of the angle between two
vectors.

• Inner product normalized by the
vector lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81

D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / (9+49+1)(0+0+4) = 0.13

 Q = 0T1 + 0T2 + 2T3

2

t3

t1

t2

D1

D2

Q

1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using

inner product.

t

i

t

i

t

i

ww

ww

qd

qd

iqij

iqij

j

j

1 1

22

1

)(

CosSim(dj, q) =

35

Comments on Vector Space

Models
• Simple, mathematically based approach.

• Considers both local (tf) and global (idf) word

occurrence frequencies.

• Provides partial matching and ranked results.

• Tends to work quite well in practice despite

obvious weaknesses.

• Allows efficient implementation for large

document collections.

36

Problems with Vector Space

Model
• Missing semantic information (e.g. word sense).

• Missing syntactic information (e.g. phrase

structure, word order, proximity information).

• Assumption of term independence (e.g. ignores

synonomy).

• Lacks the control of a Boolean model (e.g.,

requiring a term to appear in a document).

 Given a two-term query “A B”, may prefer a

document containing A frequently but not B, over a

document that contains both A and B, but both less

frequently.

