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Boolean and Vector Space  

Retrieval Models 

• CS 290N 

•Some of slides from R. Mooney (UTexas), J. 

Ghosh (UT ECE),  D. Lee (USTHK). 



Table of Content 

Which results satisfy the query constraint? 

• Boolean model  

• Statistical vector space model 



3 

Retrieval Models 

• A retrieval model specifies the 
details of: 

 Document representation 

 Query representation 

 Retrieval function: how to find relevant 
results 

• Determines a notion of relevance. 

Notion of relevance can be binary 
or continuous  
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Classes of Retrieval Models 

• Boolean models (set theoretic) 

 Extended Boolean 

• Vector space models 

(statistical/algebraic)  

 Generalized VS 

 Latent Semantic Indexing 

• Probabilistic models 
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Retrieval Tasks 

• Ad hoc retrieval: Fixed document corpus, varied 

queries. 

• Filtering: Fixed query, continuous document 

stream. 

 User Profile: A model of relative static preferences. 

 Binary decision of relevant/not-relevant. 

 

 

• Routing: Same as filtering but continuously supply 

ranked lists rather than binary filtering. 

News stream user 
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Common Document 

Preprocessing Steps 

• Strip unwanted characters/markup  (e.g. HTML tags, 
punctuation, numbers, etc.). 

• Break into tokens (keywords) on whitespace. 

• Possibly use stemming and  remove common 
stopwords (e.g. a, the, it, etc.). 

• Detect common phrases (possibly using a domain 
specific dictionary). 

• Build inverted index (keyword  list of docs containing 
it). 
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Boolean Model 

• A document is represented as a set of 

keywords. 
• Queries are Boolean expressions of keywords, 

connected by AND, OR, and NOT, including the use 

of brackets to indicate scope. 

 [[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton 

• Output: Document is relevant or not. No partial 

matches or ranking. 

• Popular retrieval model because: 

 Easy to understand for simple queries. 

 Clean formalism. 

• Boolean models can be extended to include ranking. 
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Query example:  Shakespeare plays 

• Which plays of Shakespeare contain the words 

Brutus AND Caesar but NOT Calpurnia? 

• Could grep all of Shakespeare’s plays for Brutus 

and Caesar, then strip out lines containing 

Calpurnia? 

 Slow (for large corpora) 

 NOT Calpurnia is non-trivial 

 Other operations (e.g., find the phrase Romans and 

countrymen) not feasible 
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Term-document incidence 

1 if play contains 

word, 0 otherwise 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0
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Incidence vectors 

• So we have a 0/1 vector for each term. 

• To answer query: take the vectors for Brutus, 

Caesar and Calpurnia (complemented)  bitwise 

AND. 

• 110100 AND 110111 AND 101111 = 100100.  



11 

Inverted index 

• For each term T, must store a list of all documents 

that contain T. 
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Inverted index 

• Linked lists generally preferred to arrays 

 Dynamic space allocation 

 Insertion of terms into documents easy 

 Space overhead of pointers 

Dictionary Postings 
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Inverted index construction 

Friends Romans Countrymen 

friend roman countryman 

Friends, Romans, countrymen. 
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Discussions 

• Which terms in a doc do we index? 

 All words or only “important” ones? 

• Stopword list: terms that are so common  

 they MAY BE ignored for indexing. 

 e.g., the, a, an, of, to … 

 language-specific. 

 May have to be included for general web search 

• How do we process a query? 

 What kinds of queries can we process? 
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Query processing 

• Consider processing the query: 

Brutus AND Caesar 

 Locate Brutus in the Dictionary; 

– Retrieve its postings. 

 Locate Caesar in the Dictionary; 

– Retrieve its postings. 

 “Merge” the two postings: 
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The merge 

• Walk through the two postings simultaneously, in 

time linear in the total number of postings entries 
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Example: WestLaw   http://www.westlaw.com/ 

• Largest commercial (paying subscribers) legal 

search service (started 1975; ranking added 1992) 

• Majority of users still use boolean queries 

• Example query: 

 What is the statute of limitations in cases involving 

the federal tort claims act? 

 LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT 

/3 CLAIM 

• Long, precise queries; proximity operators; 

incrementally developed; not like web search 

 Professional searchers (e.g., Lawyers) still like 

Boolean queries: 

 You know exactly what you’re getting. 
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More general merges 

• Exercise: Adapt the merge for the 

queries: 

 Brutus AND NOT Caesar 

 Brutus OR NOT Caesar 

 
Can we still run through the merge in time O(m+n)? 
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Boolean Models  Problems 

• Very rigid: AND means all; OR means any. 

• Difficult to express complex user requests. 

• Difficult to control the number of documents 

retrieved. 

 All matched documents will be returned. 

• Difficult to rank output. 

 All matched documents logically satisfy the query. 

• Difficult to perform relevance feedback. 

 If a document is identified by the user as relevant or 

irrelevant, how should the query be modified? 
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Statistical Retrieval Models 

• A document is typically represented by a bag of 
words (unordered words with frequencies). 

• Bag = set that allows multiple occurrences of the 
same element. 

• User specifies a set of desired terms with optional 
weights: 

 Weighted query terms:  

    Q =  < database 0.5; text 0.8; information 0.2 > 

 Unweighted query terms:  

    Q  =  < database; text; information > 

 No Boolean conditions specified in the query. 
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Statistical Retrieval  

• Retrieval based on similarity between 

query and documents. 

• Output documents are ranked 

according to similarity to query. 

• Similarity based on occurrence 

frequencies of keywords in query and 

document. 
• Automatic relevance feedback can be supported: 

 Relevant documents “added” to query. 

 Irrelevant documents “subtracted” from query. 
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The Vector-Space Model 

• Assume t distinct terms remain after 

preprocessing; call them index terms or the 

vocabulary. 

• These “orthogonal” terms form a vector space. 

          Dimension = t = |vocabulary|  

• Each term, i,  in a document or query, j, is given a 

real-valued weight, wij. 

• Both documents and queries are expressed as       

t-dimensional vectors: 

          dj = (w1j, w2j, …, wtj) 
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Document Collection 

• A collection of n documents can be represented 
in the vector space model by a term-document 
matrix. 

• An entry in the matrix corresponds to the 
“weight” of a term in the document; zero means 
the term has no significance in the document or it 
simply doesn’t exist in the document. 

        T1   T2    ….      Tt 

D1    w11  w21   …      wt1 

D2    w12  w22   …      wt2 

 :       :      :               : 

 :       :      :               : 

Dn    w1n  w2n   …      wtn 
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Graphic Representation 

Example: 

D1 = 2T1 + 3T2 + 5T3 

D2 = 3T1 + 7T2 +   T3 

Q = 0T1 + 0T2 +  2T3 

T3 

T1 

T2 

D1 = 2T1+ 3T2 + 5T3 

D2 = 3T1 + 7T2 +  T3 

Q = 0T1 + 0T2 + 2T3 

7 

3 2 

5 

• Is D1 or D2 more similar to Q? 

• How to measure the degree of 

similarity? Distance? Angle? 

Projection? 
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Issues for Vector Space 

Model 

• How to determine important words in a document? 

 Word n-grams (and phrases, idioms,…)   terms 

• How to determine the degree of importance of a 
term within a document and within the entire 
collection? 

• How to determine the degree of similarity between 
a document and the query? 

• In the case of the web, what is a collection and 
what are the effects of links, formatting 
information, etc.? 
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Term Weights: Term 
Frequency 

• More frequent terms in a document are more 

important, i.e. more indicative of the topic. 

        fij = frequency of term i in document j  

 

• May want to normalize term frequency (tf) across 

the entire corpus: 

        tfij   = fij   / max{fij} 
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Term Weights: Inverse Document 

Frequency 
• Terms that appear in many different documents are 

less indicative of overall topic. 

     df i = document frequency of term i   

           = number of documents containing term i  

     idfi = inverse document frequency of term i,   

           = log2 (N/ df i)   

             (N: total number of documents) 

• An indication of a term’s discrimination power. 

• Log used to dampen the effect relative to tf. 
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TF-IDF Weighting 

• A typical combined term importance indicator is 
tf-idf weighting: 

wij =  tfij idfi  =  tfij log2 (N/ dfi)  

• A term occurring frequently in the document but 
rarely in the rest of the collection is given high 
weight. 

• Many other ways of determining term weights 
have been proposed. 

• Experimentally, tf-idf has been found to work 
well. 
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Computing TF-IDF -- An Example 

Given a document with term frequencies: 

    A(3), B(2), C(1) 

Assume collection contains 10,000 documents and  

document frequencies of these terms are: 

    A(50), B(1300), C(250) 

Then: 

A:  tf = 3/3;  idf = log(10000/50) = 5.3;     tf-idf = 5.3 

B:  tf = 2/3;  idf = log(10000/1300) = 2.0; tf-idf = 1.3 

C:  tf = 1/3;  idf = log(10000/250) = 3.7;   tf-idf = 1.2 
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Similarity Measure 

• A similarity measure is a function that computes 

the degree of similarity between two vectors. 

 

• Using a similarity measure between the query and 

each document: 

 It is possible to rank the retrieved documents in the 

order of presumed relevance. 

 It is possible to enforce a certain threshold so that 

the size of the retrieved set can be controlled. 
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Similarity Measure - Inner Product 

• Similarity between vectors for the document di and 
query q can be computed as the vector inner 
product: 

 

               sim(dj,q) = dj•q =      wij · wiq 
 

    where wij is the weight of term i in document j and wiq is the 
weight of term i in the query 

• For binary vectors, the inner product is the 
number of matched query terms in the document 
(size of intersection). 

• For weighted term vectors, it is the sum of the 
products of the weights of the matched terms. 
 




t
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Properties of Inner Product 

 

• The inner product is unbounded. 

 

• Favors long documents with a large number of 

unique terms. 

 

• Measures how many terms matched but not how 

many terms are not matched. 
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Inner Product -- Examples 

Binary: 

 D  =  1,    1,    1,   0,    1,    1,     0 

 Q  =  1,    0 ,   1,   0,    0,    1,     1 

 

sim(D, Q) = 3 

Weighted: 
           D1 = 2T1 + 3T2 + 5T3           D2 = 3T1 + 7T2 +  1T3       

                  Q = 0T1 + 0T2 +  2T3 

 

 sim(D1 , Q) = 2*0 + 3*0 + 5*2  = 10 

       sim(D2 , Q) = 3*0 + 7*0 + 1*2  =  2 
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Cosine Similarity Measure 

• Cosine similarity measures the 
cosine of the angle between two 
vectors. 

• Inner product normalized by the 
vector lengths. 

    

D1 = 2T1 + 3T2 + 5T3     CosSim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81 

D2 = 3T1 + 7T2 + 1T3     CosSim(D2 , Q) =  2 / (9+49+1)(0+0+4) = 0.13 

 Q = 0T1 + 0T2 + 2T3 

2 

t3 

t1 

t2 

D1 

D2 

Q 

1 

D1 is 6 times better than D2 using cosine similarity but only 5 times better using 

inner product. 
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CosSim(dj, q) = 
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Comments on Vector Space 

Models 
• Simple, mathematically based approach.  

• Considers both local (tf) and global (idf) word 

occurrence frequencies. 

• Provides partial matching and ranked results. 

• Tends to work quite well in practice despite 

obvious weaknesses. 

• Allows efficient implementation for large 

document collections. 
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Problems with Vector Space 

Model 
• Missing semantic information (e.g. word sense). 

• Missing syntactic information (e.g. phrase 

structure, word order, proximity information). 

• Assumption of term independence (e.g. ignores 

synonomy). 

• Lacks the control of a Boolean model (e.g., 

requiring a term to appear in a document). 

 Given a two-term query “A B”, may prefer a 

document containing A frequently but not B, over a 

document that contains both A and B, but both less 

frequently. 

 


