Boolean and Vector Space Retrieval Models

• CS 290N
• Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK).
Which results satisfy the query constraint?

• Boolean model
• Statistical vector space model
Retrieval Models

• A retrieval model specifies the details of:
 - Document representation
 - Query representation
 - Retrieval function: how to find relevant results

• Determines a notion of relevance.
 - Notion of relevance can be binary or continuous
Classes of Retrieval Models

• Boolean models (set theoretic)
 ▪ Extended Boolean

• Vector space models (statistical/algebraic)
 ▪ Generalized VS
 ▪ Latent Semantic Indexing

• Probabilistic models
Retrieval Tasks

- **Ad hoc retrieval**: Fixed document corpus, varied queries.
- **Filtering**: Fixed query, continuous document stream.
 - User Profile: A model of relative static preferences.
 - Binary decision of relevant/not-relevant.
- **Routing**: Same as filtering but continuously supply ranked lists rather than binary filtering.
Common Document Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML tags, punctuation, numbers, etc.).
• Break into tokens (keywords) on whitespace.
• Possibly use stemming and remove common stopwords (e.g. a, the, it, etc.).
• Detect common phrases (possibly using a domain specific dictionary).
• Build inverted index (keyword → list of docs containing it).
Boolean Model

• A document is represented as a set of keywords.
• Queries are Boolean expressions of keywords, connected by AND, OR, and NOT, including the use of brackets to indicate scope.
 ▪ [[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton
• Output: Document is relevant or not. No partial matches or ranking.
• Popular retrieval model because:
 ▪ Easy to understand for simple queries.
 ▪ Clean formalism.
• Boolean models can be extended to include ranking.
Query example: Shakespeare plays

• Which plays of Shakespeare contain the words *Brutus AND Caesar* but *NOT Calpurnia*?

• Could **grep** all of Shakespeare’s plays for *Brutus* and *Caesar*, then strip out lines containing *Calpurnia*?
 - Slow (for large corpora)
 - **NOT Calpurnia** is non-trivial
 - Other operations (e.g., find the phrase *Romans and countrymen*) not feasible
Term-document incidence

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1 if play contains word, 0 otherwise
Incidence vectors

- So we have a 0/1 vector for each term.
- To answer query: take the vectors for Brutus, Caesar and Calpurnia (complemented) \Rightarrow bitwise AND.
- $110100 \text{ AND } 110111 \text{ AND } 101111 = 100100$.
Inverted index

- For each term \(T \), must store a list of all documents that contain \(T \).
Inverted index

• Linked lists generally preferred to arrays
 ▪ Dynamic space allocation
 ▪ Insertion of terms into documents easy
 ▪ Space overhead of pointers
Inverted index construction

Documents to be indexed.

Token stream.

Modified tokens.

Inverted index.

Friends, Romans, countrymen.

Linguistic modules

Tokenizer

Indexer

More on these later.
Discussions

• Which terms in a doc do we index?
 ▪ All words or only “important” ones?
• Stopword list: terms that are so common
 ▪ they MAY BE ignored for indexing.
 ▪ e.g., the, a, an, of, to …
 ▪ language-specific.
 ▪ May have to be included for general web search
• How do we process a query?
 ▪ What kinds of queries can we process?
• Consider processing the query:

\textit{Brutus AND Caesar}

\begin{itemize}
 \item Locate \textit{Brutus} in the Dictionary;
 \begin{itemize}
 \item Retrieve its postings.
 \end{itemize}
 \item Locate \textit{Caesar} in the Dictionary;
 \begin{itemize}
 \item Retrieve its postings.
 \end{itemize}
 \item “Merge” the two postings:
\end{itemize}
The merge

- Walk through the two postings simultaneously, in time linear in the total number of postings entries

If the list lengths are \(m \) and \(n \), the merge takes \(O(m+n) \) operations.
Crucial: postings sorted by docID.
Example: WestLaw http://www.westlaw.com/

• Largest commercial (paying subscribers) legal search service (started 1975; ranking added 1992)
• Majority of users *still* use boolean queries
• Example query:
 ▪ What is the statute of limitations in cases involving the federal tort claims act?
 ▪ LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
• Long, precise queries; proximity operators; incrementally developed; not like web search
 ▪ Professional searchers (e.g., Lawyers) still like Boolean queries:
 ▪ You know exactly what you’re getting.
More general merges

• **Exercise**: Adapt the merge for the queries:

 Brutus AND NOT Caesar
 Brutus OR NOT Caesar

Can we still run through the merge in time $O(m+n)$?
Boolean Models – Problems

- Very rigid: AND means all; OR means any.
- Difficult to express complex user requests.
- Difficult to control the number of documents retrieved.
 - All matched documents will be returned.
- Difficult to rank output.
 - All matched documents logically satisfy the query.
- Difficult to perform relevance feedback.
 - If a document is identified by the user as relevant or irrelevant, how should the query be modified?
A document is typically represented by a *bag of words* (unordered words with frequencies).

Bag = set that allows multiple occurrences of the same element.

User specifies a set of desired terms with optional weights:

- Weighted query terms:
 \[Q = \langle \text{database} \ 0.5; \ \text{text} \ 0.8; \ \text{information} \ 0.2 \rangle \]

- Unweighted query terms:
 \[Q = \langle \text{database}; \ \text{text}; \ \text{information} \rangle \]

No Boolean conditions specified in the query.
Statistical Retrieval

- Retrieval based on *similarity* between query and documents.
- Output documents are ranked according to similarity to query.
- Similarity based on occurrence *frequencies* of keywords in query and document.
- Automatic relevance feedback can be supported:
 - Relevant documents “added” to query.
 - Irrelevant documents “subtracted” from query.
The Vector-Space Model

• Assume \(t \) distinct terms remain after preprocessing; call them index terms or the vocabulary.
• These “orthogonal” terms form a vector space.

 Dimension = \(t = |\text{vocabulary}| \)
• Each term, \(i \), in a document or query, \(j \), is given a real-valued weight, \(w_{ij} \).
• Both documents and queries are expressed as \(t \)-dimensional vectors:

 \[d_j = (w_{1j}, w_{2j}, \ldots, w_{tj}) \]
A collection of n documents can be represented in the vector space model by a term-document matrix.

An entry in the matrix corresponds to the "weight" of a term in the document; zero means the term has no significance in the document or it simply doesn't exist in the document.
Example:
\[D_1 = 2T_1 + 3T_2 + 5T_3 \]
\[D_2 = 3T_1 + 7T_2 + T_3 \]
\[Q = 0T_1 + 0T_2 + 2T_3 \]

- Is \(D_1 \) or \(D_2 \) more similar to \(Q \)?
- How to measure the degree of similarity? Distance? Angle? Projection?
Issues for Vector Space Model

• How to determine important words in a document?
 ▪ Word n-grams (and phrases, idioms,…) → terms

• How to determine the degree of importance of a term within a document and within the entire collection?

• How to determine the degree of similarity between a document and the query?

• In the case of the web, what is a collection and what are the effects of links, formatting information, etc.?
Term Weights: Term Frequency

- More frequent terms in a document are more important, i.e. more indicative of the topic.
 \[f_{ij} = \text{frequency of term } i \text{ in document } j \]

- May want to normalize \textit{term frequency} (\textit{tf}) across the entire corpus:
 \[tf_{ij} = \frac{f_{ij}}{\max\{f_{ij}\}} \]
Term Weights: Inverse Document Frequency

• Terms that appear in many different documents are less indicative of overall topic.

\[df_i = \text{document frequency of term } i \]
\[= \text{number of documents containing term } i \]

\[idf_i = \text{inverse document frequency of term } i, \]
\[= \log_2 \left(\frac{N}{df_i} \right) \]

(N: total number of documents)

• An indication of a term’s discrimination power.
• Log used to dampen the effect relative to \(tf \).
A typical combined term importance indicator is **tf-idf weighting**:

\[w_{ij} = \text{tf}_{ij} \times \text{idf}_i = \text{tf}_{ij} \log_2 \left(\frac{N}{\text{df}_i} \right) \]

- A term occurring frequently in the document but rarely in the rest of the collection is given high weight.
- Many other ways of determining term weights have been proposed.
- Experimentally, **tf-idf** has been found to work well.
Computing TF-IDF -- An Example

Given a document with term frequencies:

A(3), B(2), C(1)

Assume collection contains 10,000 documents and document frequencies of these terms are:

A(50), B(1300), C(250)

Then:

A: \(tf = \frac{3}{3}; \; idf = \log(10000/50) = 5.3; \; tf-idf = 5.3 \)

B: \(tf = \frac{2}{3}; \; idf = \log(10000/1300) = 2.0; \; tf-idf = 1.3 \)

C: \(tf = \frac{1}{3}; \; idf = \log(10000/250) = 3.7; \; tf-idf = 1.2 \)
Similarity Measure

• A similarity measure is a function that computes the degree of similarity between two vectors.

• Using a similarity measure between the query and each document:
 ▪ It is possible to rank the retrieved documents in the order of presumed relevance.
 ▪ It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled.
Similarity Measure - Inner Product

• Similarity between vectors for the document d_i and query q can be computed as the vector inner product:

$$\text{sim}(d_j, q) = d_j \cdot q = \sum_{i=1}^{t} w_{ij} \cdot w_{iq}$$

where w_{ij} is the weight of term i in document j and w_{iq} is the weight of term i in the query.

• For binary vectors, the inner product is the number of matched query terms in the document (size of intersection).

• For weighted term vectors, it is the sum of the products of the weights of the matched terms.
Properties of Inner Product

- The inner product is unbounded.
- Favors long documents with a large number of unique terms.
- Measures how many terms matched but not how many terms are not matched.
Inner Product -- Examples

Binary:
- D = 1, 1, 1, 0, 1, 1, 0
- Q = 1, 0, 1, 0, 0, 1, 1

\[\text{sim}(D, Q) = 3 \]

Weighted:
- \(D_1 = 2T_1 + 3T_2 + 5T_3 \)
- \(D_2 = 3T_1 + 7T_2 + 1T_3 \)
- \(Q = 0T_1 + 0T_2 + 2T_3 \)

\[\text{sim}(D_1, Q) = 2*0 + 3*0 + 5*2 = 10 \]
\[\text{sim}(D_2, Q) = 3*0 + 7*0 + 1*2 = 2 \]
Cosine Similarity Measure

• Cosine similarity measures the cosine of the angle between two vectors.
• Inner product normalized by the vector lengths.

\[
\text{CosSim}(d_j, q) = \frac{\vec{d}_j \cdot \vec{q}}{|\vec{d}_j| \cdot |\vec{q}|} = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w_{ij}^2} \cdot \sqrt{\sum_{i=1}^{t} w_{iq}^2}}
\]

\(D_1 = 2T_1 + 3T_2 + 5T_3\) \quad \text{CosSim}(D_1, Q) = 10 / \sqrt{(4+9+25)(0+0+4)} = 0.81

\(D_2 = 3T_1 + 7T_2 + 1T_3\) \quad \text{CosSim}(D_2, Q) = 2 / \sqrt{(9+49+1)(0+0+4)} = 0.13

\(Q = 0T_1 + 0T_2 + 2T_3\)

\(D_1\) is 6 times better than \(D_2\) using cosine similarity but only 5 times better using inner product.
Comments on Vector Space Models

• Simple, mathematically based approach.
• Considers both local (tf) and global (idf) word occurrence frequencies.
• Provides partial matching and ranked results.
• Tends to work quite well in practice despite obvious weaknesses.
• Allows efficient implementation for large document collections.
Problems with Vector Space Model

- Missing semantic information (e.g. word sense).
- Missing syntactic information (e.g. phrase structure, word order, proximity information).
- Assumption of term independence (e.g. ignores synonymy).
- Lacks the control of a Boolean model (e.g., requiring a term to appear in a document).
 - Given a two-term query “A B”, may prefer a document containing A frequently but not B, over a document that contains both A and B, but both less frequently.