Boolean and Vector Space Retrieval Models

- CS 290N
-Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK).

Table of Content

Which results satisfy the query constraint?

- Boolean model
- Statistical vector space model

Retrieval Models

- A retrieval model specifies the details of:
- Document representation
- Query representation
- Retrieval function: how to find relevant results
- Determines a notion of relevance.
- Notion of relevance can be binary or continuous

Classes of Retrieval Models

- Boolean models (set theoretic)
- Extended Boolean
- Vector space models
(statistical/algebraic)
- Generalized VS
- Latent Semantic Indexing
- Probabilistic models

Retrieval Tasks

- Ad hoc retrieval: Fixed document corpus, varied queries.
- Filtering: Fixed query, continuous document stream.
- User Profile: A model of relative static preferences.
- Binary decision of relevant/not-relevant.

- Routing: Same as filtering but continuously supply ranked lists rather than binary filtering.

Common Document

Preprocessing Steps

- Strip unwanted characters/markup (e.g. HTML tags, punctuation, numbers, etc.).
- Break into tokens (keywords) on whitespace.
- Possibly use stemming and remove common stopwords (e.g. a, the, it, etc.).
- Detect common phrases (possibly using a domain specific dictionary).
- Build inverted index (keyword \rightarrow list of docs containing it).

Boolean Model

- A document is represented as a set of keywords.
- Queries are Boolean expressions of keywords, connected by AND, OR, and NOT, including the use of brackets to indicate scope.
- [[Rio \& Brazil] | [Hilo \& Hawaii]] \& hotel \& !Hilton
- Output: Document is relevant or not. No partial matches or ranking.
- Popular retrieval model because:
- Easy to understand for simple queries.
- Clean formalism.
- Boolean models can be extended to include ranking.

Query example: Shakespeare plays

- Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?
- Could grep all of Shakespeare's plays for Brutus and Caesar, then strip out lines containing Calpurnia?
- Slow (for large corpora)
- NOT Calpurnia is non-trivial
- Other operations (e.g., find the phrase Romans and countrymen) not feasible

Term-document incidence

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1		1	1	1	1
worser	1		1	1	1	0

Incidence vectors

- So we have a $0 / 1$ vector for each term.
- To answer query: take the vectors for Brutus, Caesar and Calpurnia (complemented) \rightarrow bitwise AND.
- 110100 AND 110111 AND 101111 = 100100.

Inverted index

- For each term T, must store a list of all documents that contain T.

Calpurnia \longrightarrow| 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Caesar

What happens if the word Caesar is added to document 14 ?

Inverted index

- Linked lists generally preferred to arrays
- Dynamic space allocation
- Insertion of terms into documents easy
- Space overhead of pointers

Sorted by docID (more later on why).

Inverted index construction

Discussions

- Which terms in a doc do we index?
- All words or only "important" ones?
- Stopword list: terms that are so common
- they MAY BE ignored for indexing.
- e.g., the, a, an, of, to ...
- language-specific.
- May have to be included for general web search
- How do we process a query?
- What kinds of queries can we process?

Query processing

- Consider processing the query:

Brutus AND Caesar

- Locate Brutus in the Dictionary;
- Retrieve its postings.
- Locate Caesar in the Dictionary;
- Retrieve its postings.
- "Merge" the two postings:

The merge

- Walk through the two postings simultaneously, in time linear in the total number of postings entries

If the list lengths are m and n, the merge takes $O(m+n)$ operations.
Crucial: postings sorted by docID.

Example: WestLaw http://www.westlaw.com/

- Largest commercial (paying subscribers) legal search service (started 1975; ranking added 1992)
- Majority of users still use boolean queries
- Example query:
- What is the statute of limitations in cases involving the federal tort claims act?
- LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
- Long, precise queries; proximity operators; incrementally developed; not like web search
- Professional searchers (e.g., Lawyers) still like Boolean queries:
- You know exactly what you're getting.

More general merges

- Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar Brutus OR NOT Caesar

Can we still run through the merge in time $\mathrm{O}(m+n)$?

Boolean Models - Problems

- Very rigid: AND means all; OR means any.
- Difficult to express complex user requests.
- Difficult to control the number of documents retrieved.
- All matched documents will be returned.
- Difficult to rank output.
- All matched documents logically satisfy the query.
- Difficult to perform relevance feedback.
- If a document is identified by the user as relevant or irrelevant, how should the query be modified?

Statistical Retrieval Models

- A document is typically represented by a bag of words (unordered words with frequencies).
- Bag = set that allows multiple occurrences of the same element.
- User specifies a set of desired terms with optional weights:
- Weighted query terms:
$\mathrm{Q}=$ < database 0.5 ; text 0.8; information 0.2 >
- Unweighted query terms:

Q = < database; text; information >

- No Boolean conditions specified in the query.

Statistical Retrieval

- Retrieval based on similarity between query and documents.
- Output documents are ranked according to similarity to query.
- Similarity based on occurrence frequencies of keywords in query and document.
- Automatic relevance feedback can be supported:
- Relevant documents "added" to query.
- Irrelevant documents "subtracted" from query.

The Vector-Space Model

- Assume t distinct terms remain after preprocessing; call them index terms or the vocabulary.
- These "orthogonal" terms form a vector space.

$$
\text { Dimension = } t=\mid \text { vocabulary } \mid
$$

- Each term, i, in a document or query, j, is given a real-valued weight, $w_{i j \text {. }}$
- Both documents and queries are expressed as t-dimensional vectors:

$$
d_{j}=\left(w_{1 j}, w_{2 j}, \ldots, w_{t j}\right)
$$

Document Collection

- A collection of \boldsymbol{n} documents can be represented in the vector space model by a term-document matrix.
- An entry in the matrix corresponds to the "weight" of a term in the document; zero means the term has no significance in the document or it simply doesn't exist in the document.

$$
\left.\begin{array}{ccccc}
& \mathrm{T}_{1} & \mathrm{~T}_{2} & \cdots & \mathrm{~T}_{\mathrm{t}} \\
\mathrm{D}_{1} & \mathrm{w}_{11} & \mathrm{w}_{21} & \cdots & \mathrm{w}_{\mathrm{t} 1} \\
\mathrm{D}_{2} & \mathrm{w}_{12} & \mathrm{w}_{22} & \cdots & \mathrm{w}_{\mathrm{t} 2} \\
: & : & : & & : \\
: & \vdots & : & & : \\
\mathrm{D}_{\mathrm{n}} & \mathrm{w}_{1 \mathrm{n}} & \mathrm{w}_{2 \mathrm{n}} & \cdots & \mathrm{w}_{\mathrm{tn}}
\end{array}\right)
$$

Graphic Representation

Example:

$$
\begin{aligned}
& D_{1}=2 T_{1}+3 T_{2}+5 T_{3} \\
& D_{2}=3 T_{1}+7 T_{2}+T_{3} \\
& Q=0 T_{1}+0 T_{2}+2 T_{3}
\end{aligned}
$$

$$
\mathrm{D}_{1}=2 \mathrm{~T}_{1}+3 \mathrm{~T}_{2}+5 \mathrm{~T}_{3}
$$

Issues for Vector Space

Model

- How to determine important words in a document?
- Word n-grams (and phrases, idioms,...) \rightarrow terms
- How to determine the degree of importance of a term within a document and within the entire collection?
- How to determine the degree of similarity between a document and the query?
- In the case of the web, what is a collection and what are the effects of links, formatting information, etc.?

Term Weights: Term

Frequency

- More frequent terms in a document are more important, i.e. more indicative of the topic. $f_{i j}=$ frequency of term i in document j
- May want to normalize term frequency (tf) across the entire corpus:

$$
t f_{i j}=f_{i j} / \max \left\{f_{i j}\right\}
$$

Term Weights: Inverse Document

Frequency

- Terms that appear in many different documents are less indicative of overall topic. $d f_{i}=$ document frequency of term i
$=$ number of documents containing term i $i d f_{i}=$ inverse document frequency of term i,
$=\log _{2}\left(N / d f_{j}\right)$
(N : total number of documents)
- An indication of a term's discrimination power.
- Log used to dampen the effect relative to tf.

TF-IDF Weighting

- A typical combined term importance indicator is tf-idf weighting:

$$
w_{i j}=t f_{i j} i d f_{i}=t f_{i j} \log _{2}\left(N / d f_{i}\right)
$$

- A term occurring frequently in the document but rarely in the rest of the collection is given high weight.
- Many other ways of determining term weights have been proposed.
- Experimentally, tf-idf has been found to work well.

Computing TF-IDF -- An Example

Given a document with term frequencies:
$A(3), B(2), C(1)$
Assume collection contains 10,000 documents and document frequencies of these terms are: A(50), B(1300), C(250)

Then:

A: $\mathrm{tf}=3 / 3 ;$ idf $=\log (10000 / 50)=5.3 ; \quad$ tf-idf $=5.3$
B: $\mathrm{tf}=2 / 3 ; \mathrm{idf}=\log (10000 / 1300)=2.0 ; \mathrm{tf}$-idf $=1.3$
C: tf $=1 / 3 ;$ idf $=\log (10000 / 250)=3.7 ; \quad$ tf-idf $=1.2$

Similarity Measure

- A similarity measure is a function that computes the degree of similarity between two vectors.
- Using a similarity measure between the query and each document:
- It is possible to rank the retrieved documents in the order of presumed relevance.
- It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled.

Similarity Measure - Inner Product

- Similarity between vectors for the document d_{i} and query q can be computed as the vector inner product:

$$
\operatorname{sim}\left(d_{j}, q\right)=d_{\mathrm{j}} \bullet q=\sum_{i=1}^{t} w_{i j} \cdot w_{i q}
$$

where $w_{i j}$ is the weight of term i in document j and $w_{i q}$ is the weight of term i in the query

- For binary vectors, the inner product is the number of matched query terms in the document (size of intersection).
- For weighted term vectors, it is the sum of the products of the weights of the matched terms.

Properties of Inner Product

- The inner product is unbounded.
- Favors long documents with a large number of unique terms.
- Measures how many terms matched but not how many terms are not matched.

Inner Product -- Examples

Binary:

- $D=1,1,1,0,1,1,0$
- $\mathrm{Q}=1,0,1,0,0,1,1$
$\operatorname{sim}(D, Q)=3$

Weighted:

$$
\begin{aligned}
& \mathrm{D}_{1}=2 \mathrm{~T}_{1}+3 \mathrm{~T}_{2}+5 \mathrm{~T}_{3} \quad \mathrm{D}_{2}=3 \mathrm{~T}_{1}+7 \mathrm{~T}_{2}+1 \mathrm{~T}_{3} \\
& \mathrm{Q}=0 \mathrm{~T}_{1}+0 \mathrm{~T}_{2}+2 \mathrm{~T}_{3} \\
& \quad \operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{Q}\right)=2 * 0+3 * 0+5 * 2=10 \\
& \operatorname{sim}\left(\mathrm{D}_{2}, Q\right)=3 * 0+7 * 0+1 * 2=2
\end{aligned}
$$

Cosine Similarity Measure

- Cosine similarity measures the cosine of the angle between two vectors.
- Inner product normalized by the vector lengths.

$\mathrm{D}_{1}=2 \mathrm{~T}_{1}+3 \mathrm{~T}_{2}+5 \mathrm{~T}_{3} \quad \operatorname{CosSim}\left(\mathrm{D}_{1}, \mathrm{Q}\right)=10 / \sqrt{(4+9+25)(0+0+4)}=0.81$
$\mathrm{D}_{2}=3 \mathrm{~T}_{1}+7 \mathrm{~T}_{2}+1 \mathrm{~T}_{3} \quad \operatorname{CosSim}\left(\mathrm{D}_{2}, \mathrm{Q}\right)=2 / \sqrt{(9+49+1)(0+0+4)}=0.13$
$\mathrm{Q}=0 \mathrm{~T}_{1}+0 \mathrm{~T}_{2}+2 \mathrm{~T}_{3}$
D_{1} is 6 times better than D_{2} using cosine similarity but only 5 times better using inner product.

Comments on Vector Space

Models

- Simple, mathematically based approach.
- Considers both local (tf) and global (idf) word occurrence frequencies.
- Provides partial matching and ranked results.
- Tends to work quite well in practice despite obvious weaknesses.
- Allows efficient implementation for large document collections.

Problems with Vector Space

- Missing semantic information (e.g. word sense).
- Missing syntactic information (e.g. phrase structure, word order, proximity information).
- Assumption of term independence (e.g. ignores synonomy).
- Lacks the control of a Boolean model (e.g., requiring a term to appear in a document).
- Given a two-term query "A B", may prefer a document containing A frequently but not B , over a document that contains both A and B, but both less frequently.

