2

Boolean and Vector Space
Retrieval Models

* CS 290N

*Some of slides from R. Mooney (UTexas), J.
Ghosh (UT ECE), D. Lee (USTHK).

' Table of Content

Which results satisfy the query constraint?
 Boolean model
« Statistical vector space model

' Retrieval Models

* A retrieval model specifies the
detalils of:

= Document representation
= Query representation

= Retrieval function: how to find relevant
results

e Determines a notion of relevance.

= Notion of relevance can be binary
or continuous

' Classes of Retrieval Models

 Boolean models (set theoretic)
= Extended Boolean

* Vector space models
(statistical/algebraic)

= Generalized VS
= Latent Semantic Indexing

* Probabilistic models

' Retrieval Tasks

 Ad hoc retrieval: Fixed document corpus, varied

gueries.

« Filtering: Fixed query, continuous document

stream.

= User Profile: A model of relative static preferences.
= Binary decision of relevant/not-relevant.

News stream

> Cuser

* Routing: Same as filtering but continuously supply
ranked lists rather than binary filtering.

' Common Document

Preprocessing Steps

« Strip unwanted characters/markup (e.g. HTML tags,
punctuation, numbers, etc.).

« Break into tokens (keywords) on whitespace.

* Possibly use stemming and remove common
stopwords (e.g. a, the, it, etc.).

« Detect common phrases (possibly using a domain
specific dictionary).

« Build inverted index (keyword - list of docs containing

it).

' Boolean Model

« A document is represented as a set of
keywords.

 Queries are Boolean expressions of keywords,
connected by AND, OR, and NOT, including the use
of brackets to indicate scope.

* [[Rio & Brazil] | [Hilo & Hawalii]] & hotel & !Hilton

* Qutput: Document is relevant or not. No partial
matches or ranking.

« Popular retrieval model because:
= Easy to understand for simple queries.
= Clean formalism.
« Boolean models can be extended to include ranking.

7

' Query example: Shakespeare plays

 Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

« Could grep all of Shakespeare’s plays for Brutus

and Caesar, then strip out lines containing
Calpurnia?

= Slow (for large corpora)
= NOT Calpurnia is non-trivial

= Other operations (e.g., find the phrase Romans and
countrymen) not feasible

Term-document incidence

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
word, O otherwise

' Incidence vectors

« So we have a 0/1 vector for each term.

« To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented) = bitwise
AND.

« 110100 AND 110111 AND 101111 =100100.

10

' Inverted index

« For each term T, must store a list of all documents

that contain T.

Brutus| ©T——>[2 | 4 16! 32| 64/128
Calpurnia™——>[_ 1 [2 518 1131 21 34
Caesar| ""—>[13716

What happens if the word Caesar
is added to document 14?

11

' Inverted index

 Linked lists generally preferred to arrays
= Dynamic space allocation
= |nsertion of terms into documents easy
= Space overhead of pointers

" [Brutus| we—>|2|~14 8 16/~32/~ 64— 128
Calpurniam——— |1~ 2~3~5 813 21~ 34

Caesar| W——> |13 16

N !
—

Dictionary Postings
Sorted by doclD (more later on why).

Inverted index construction

Documents to

Friends, Romans, countrymen.

be indexed. S
Tokenizer}
Token strea J_|7 Friends || Romans | | Countrymen
More on fLinguistic
these later. 1modu|es
Modified tokens. l friend | |roman| |countryman
[Indexer} friend m—— > 24—
Inverted index. ﬂ roman > |12~
countrymdﬂ:> 13 —d6

' Discussions

 Which terms in adoc do we index?

= All words or only “important” ones?
« Stopword list: terms that are so common

= they MAY BE ignored for indexing.

= e.g., the, a, an, of, to ...

= language-specific.

= May have to be included for general web search
« How do we process a query?

= What kinds of queries can we process?

14

' Query processing

« Consider processing the query:
Brutus AND Caesar

= Locate Brutus in the Dictionary;
— Retrieve its postings.

= Locate Caesar in the Dictionary;
— Retrieve its postings.

= “Merge” the two postings:

24— 8 16— 32— 64— 128 Brutus

- 1— 23~ 5813~ 21H{34| Caesar

15

' The merge

« Walk through the two postings simultaneously, in
time linear in the total number of postings entries

24816~ 32—164— 128 Brutus
2 -
8 1235813 b 21 34| Caesar

If the list lengths are m and n, the merge takes O(m+n)
operations.
Crucial: postings sorted by doclID.

16

' Example: WestLaw http://www.westlaw.com/

Largest commercial (paying subscribers) legal
search service (started 1975; ranking added 1992)

Majority of users still use boolean queries
Example query:
= What is the statute of limitations in cases involving
the federal tort claims act?

= LIMIT!/3 STATUTE ACTION /S FEDERAL /2 TORT
/3 CLAIM
Long, precise queries; proximity operators;
iIncrementally developed; not like web search

= Professional searchers (e.g., Lawyers) still like
Boolean gueries:

= You know exactly what you're getting.

17

' More general merges

* Exercise: Adapt the merge for the
gueries:

Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

18

' Boolean Models — Problems

 Very rigid: AND means all; OR means any.
» Difficult to express complex user requests.

 Difficult to control the number of documents
retrieved.

= All matched documents will be returned.
« Difficult to rank output.

= All matched documents logically satisfy the query.
 Difficult to perform relevance feedback.

= |f a document is identified by the user as relevant or
irrelevant, how should the query be modified?

19

' Statistical Retrieval Models

« A document is typically represented by a bag of
words (unordered words with frequencies).

« Bag = set that allows multiple occurrences of the
same element.

« User specifies a set of desired terms with optional
weights:

= Weighted query terms:

Q = < database 0.5; text 0.8; information 0.2 >
= Unweighted query terms:

Q = < database; text; information >
= No Boolean conditions specified in the query.

20

' Statistical Retrieval

* Retrieval based on similarity between
guery and documents.

* Output documents are ranked
according to similarity to query.

« Similarity based on occurrence
frequencies of keywords in query and

document.
« Automatic relevance feedback can be supported:
= Relevant documents “added” to query.
* |rrelevant documents “subtracted” from query.

21

The Vector-Space Model

Assume t distinct terms remain after
preprocessing; call them index terms or the
vocabulary.

These “orthogonal” terms form a vector space.
Dimension =t = |vocabulary|

Each term, i, in adocument or query, |, IS given a
real-valued weight, w;;

Both documents and queries are expressed as
t-dimensional vectors:

dj = (le, Wy, .. Wtj)

22

Document Collection

A collection of n documents can be represented
In the vector space model by aterm-document

matrix.

* An entry in the matrix corresponds to the
“weight” of a term in the document; zero means
the term has no significance in the document or it
simply doesn’t exist in the document.

I, T,
W11 Woi
Wi Wy

Wln

T,
Wi
Wi

23

Graphic Representation

Example:

D, =2T, + 3T, + 5T,
D,=3T;+7T,+ T,
Q=0T,+0T, + 2T,

D, = 2T+ 3T, + 5T,

D,=3T, + 7T, + T,

-
-
.
-
-
/’\' -
1

Q=0T, +0T, + 2T,

: z »
py) 74 »
-
- Pie
4 -
4 -
4 -
4 -
4 -
4 -
-

« Is D, or D, more similar to Q?
- * How to measure the degree of
similarity? Distance? Angle?

Projection?

24

' Issues for Vector Space

Model

« How to determine important words in a document?
= Word n-grams (and phrases, idioms,...) - terms

« How to determine the degree of importance of a
term within a document and within the entire
collection?

« How to determine the degree of similarity between
a document and the query?

 |n the case of the web, what is a collection and
what are the effects of links, formatting
Information, etc.?

25

' Term Weights: Term

Frequency

 More frequent terms in adocument are more
Important, i.e. more indicative of the topic.

f; = frequency of term I in document |

« May want to normalize term frequency (tf) across
the entire corpus:

thy =1f; / max{f}

26

’ Term Weights: Inverse Document

FHegueney
« Terms that appear in many different documents are
less indicative of overall topic.
df . = document frequency of term |
= number of documents containing term |
Idf. = inverse document frequency of term I,
=log, (N/ df;)
(N: total number of documents)
* An indication of a term’s discrimination power.
 Log used to dampen the effect relative to tf.

27

' TF-IDF Weighting

« A typical combined term importance indicator is
tf-idf weighting:
« A term occurring frequently in the document but

rarely in the rest of the collection is given high
weight.

 Many other ways of determining term weights
have been proposed.

 Experimentally, tf-idf has been found to work
well.

28

' Computing TF-IDF -- An Example

Given a document with term frequencies:

A(3), B(2), C(1)
Assume collection contains 10,000 documents and
document frequencies of these terms are:

A(50), B(1300), C(250)
Then:
A: tf =3/3; 1df =1og(10000/50) =5.3; tf-idf =5.3
B: tf =2/3; idf =1og(10000/1300) = 2.0; tf-idf = 1.3
C. tf =1/3; idf =10g(10000/250) = 3.7; tf-idf =1.2

29

Similarity Measure

« A similarity measure is a function that computes
the degree of similarity between two vectors.

« Using a similarity measure between the query and
each document:

= |tis possible to rank the retrieved documents in the
order of presumed relevance.

= |tis possible to enforce a certain threshold so that
the size of the retrieved set can be controlled.

30

Similarity Measure - Inner Product

« Similarity between vectors for the document d; and

guery q can be computed as the vector inner
product:

t

=1
where w; is the weight of term i in document j and w, Is the
weight 01l term i in the query

For binary vectors, the inner product is the
number of matched query terms in the document
(size of intersection).

For weighted term vectors, it is the sum of the
products of the weights of the matched terms.

31

' Properties of Inner Product

« Theinner product is unbounded.

 Favors long documents with a large number of
unique terms.

« Measures how many terms matched but not how
many terms are not matched.

32

Inner Product -- Examples

= .
O O
1 1
= P
o r
[
o O
o r
= P
= O

sim(D, Q) =3

Weighted:

D,=2T, +3T,+5T, D,=3T,+7T,+ IT,
Q=0T, + 0T, + 2T,

s%m(D1 ,Q)=2*0+3*0+5*2 =10
sim(D,, Q)=3*0+7*0+ 1*2 = 2

33

Cosine Similarity Measure

« Cosine similarity measures the 4
cosine of the angle between two
vectors. 6,

* Inner product normalized by the D
vector lengths. t 'yQ

a’j .G B izﬂ:(Wij “Wiq) t
CosSim(d;, q) = ‘dj‘ : ‘Cﬂ \/Zt: Wij E Zt: Wiqzt
—y i=1 2

D, =2T, + 3T, + 5T, CosSim(D, , Q) =10/ V(4+9+25)(0+0+4) = 0.81
D,=3T,+ 7T, + 1T, CosSim(D,, Q)= 2 /\(9+49+1)(0+0+4)=0.13
Q=0T, + 0T, + 2T,

D, is 6 times better than D, using cosine similarity but only 5 times better using
inner product.

34

' Comments on Vector Space

Models

« Simple, mathematically based approach.

« Considers both local (tf) and global (idf) word
occurrence frequencies.

* Provides partial matching and ranked results.

« Tends to work quite well in practice despite
obvious weaknesses.

« Allows efficient implementation for large
document collections.

35

' Problems with Vector Space

« Missing seemantic Information (e.g. word sense).

« Missing syntactic information (e.g. phrase
structure, word order, proximity information).

« Assumption of term independence (e.g. ignores
synonomy).

« Lacks the control of a Boolean model (e.qg.,
requiring a term to appear in a document).

= Given a two-term query “A B”, may prefer a
document containing A frequently but not B, over a
document that contains both A and B, but both less
frequently.

36

