Search Evaluation

Tao Yang

CS290N

Slides partially based on text book [CMS] [MRS]

Table of Content

- Search Engine Evaluation
- Metrics for relevancy
 - Precision/recall
 - F-measure
 - MAP
 - NDCG

Difficulties in Evaluating IR Systems

- Effectiveness is related to the relevancy of retrieved items.
- Relevancy is not typically binary but continuous. Not easy to judge
- Relevancy, from a human standpoint, is:
 - Subjective/cognitive: Depends upon user's judgment, human perception and behavior
 - Situational and dynamic:
 - Relates to user's current needs. Change over time.
 - E.g.
 - CMU. US Open. Etrade.
 - Red wine or white wine

Measuring user happiness

- Issue: who is the user we are trying to make happy?
- Web engine: user finds what they want and return to the engine
 - Can measure rate of return users
- <u>eCommerce site</u>: user finds what they want and make a purchase
 - Is it the end-user, or the eCommerce site, whose happiness we measure?
 - Measure time to purchase, or fraction of searchers who become buyers?

Aspects of Search Quality

- Relevancy
- Freshness& coverage
 - Latency from creation of a document to time in the online index. (Speed of discovery and indexing)
 - Size of database in covering data coverage
- User effort and result presentation
 - Work required from the user in formulating queries, conducting the search
 - Expressiveness of query language
 - Influence of search output format on the user's ability to utilize the retrieved materials.

System Aspects of Evaluation

Response time:

- Time interval between receipt of a user query and the presentation of system responses.
- Average response time
 - at different traffic levels (queries/second)
 - When # of machines changes
 - When the size of database changes
 - When there is a failure of machines

Throughputs

- Maximum number of queries/second that can be handled
 - without dropping user queries
 - Or meet Service Level Agreement (SLA)
 - For example, 99% of queries need to be completed within a second.
- How does it vary when the size of database changes

System Aspects of Evaluation

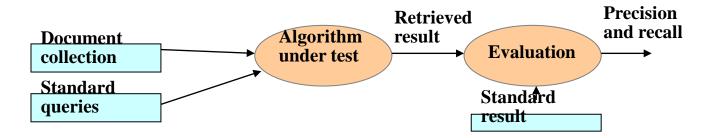
Others

- Time from crawling to online serving.
- Percentage of results served from cache
- Stability: number of abnormal response spikes per day or per week.
- Fault tolerance: number of failures that can be handled.
- Cost: number of machines needed to handle
 - different traffic levels
 - host a DB with different sizes

Relevance benchmarks

Relevant measurement requires 3 elements:

- 1. A benchmark document collection
- 2. A benchmark suite of queries
- 3. Editorial assessment of query-doc pairs
 - Relevant vs. non-relevant
 - Multi-level: Perfect, excellent, good, fair, poor, bad



Public benchmarks

- TREC: http://trec.nist.gov/
- Microsoft/Yahoo published learning benchmarks

Unranked retrieval evaluation: Precision and Recall

 Precision: fraction of retrieved docs that are relevant = P(relevant|retrieved)

Recall: fraction of relevant docs that are retrieved =

P(retrieved|relevant)

	Relevant	Not Relevant
Retrieved	tp (True positive)	fp
Not Retrieved	fn	tn

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

Precision and Recall: Another View



relevant irrelevant

retrieved & irrelevant	Not retrieved & irrelevant
retrieved & relevant	not retrieved but relevant
retrieved	not retrieved

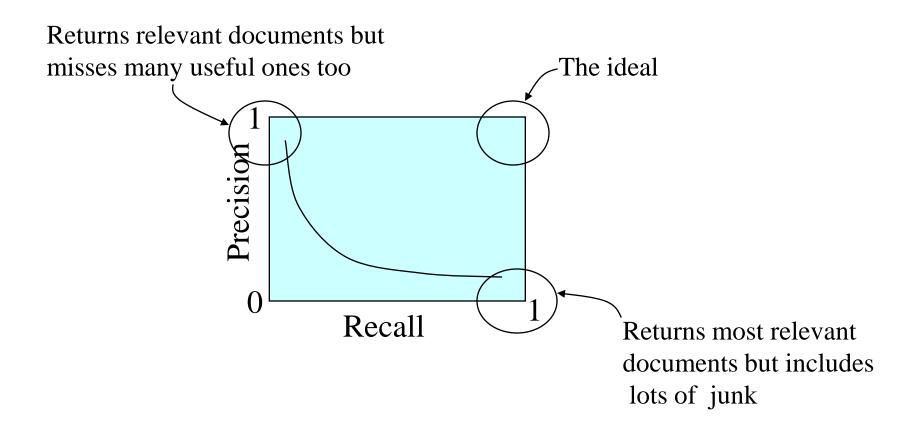
 $recall = \frac{Number\ of\ relevant\ documents\ retrieved}{Total\ number\ of\ relevant\ documents}$

 $precision = \frac{Number\ of\ relevant\ documents\ retrieved}{Total\ number\ of\ documents\ retrieved}$

Determining Recall is Difficult

- Total number of relevant items is sometimes not available:
 - Use queries that only identify few rare documents known to be relevant

Trade-off between Recall and Precision



F-Measure

- One measure of performance that takes into account both recall and precision.
- Harmonic mean of recall and precision:

$$F = \frac{2PR}{P+R} = \frac{2}{\frac{1}{R} + \frac{1}{P}}$$

E Measure (parameterized F Measure)

 A variant of F measure that allows weighting emphasis on precision over recall:

$$E = \frac{(1+\beta^2)PR}{\beta^2 P + R} = \frac{(1+\beta^2)}{\frac{\beta^2}{R} + \frac{1}{P}}$$

- Value of β controls trade-off:
 - β = 1: Equally weight precision and recall (E=F).
 - β > 1: Weight precision more.
 - β < 1: Weight recall more.

Computing Recall/Precision Points for Ranked Results

- For a given query, produce the ranked list of retrievals.
- Mark each document in the ranked list that is relevant according to the gold standard.
- Compute a recall/precision pair for each position in the ranked list that contains a relevant document.

R- Precision (at Position R)

 Precision at the R-th position in the ranking of results for a query that has R relevant documents.

n	doc#	relevant	
1	588	Х	
2	589	Х	
3	576		
4	590	X	
5	986		
6	592	Х	
7	984		
8	988		
9	578		
10	985		
11	103		
12	591		
13	772	X	
14	990		

$$R = \#$$
 of relevant docs = 6

R-Precision =
$$4/6 = 0.67$$

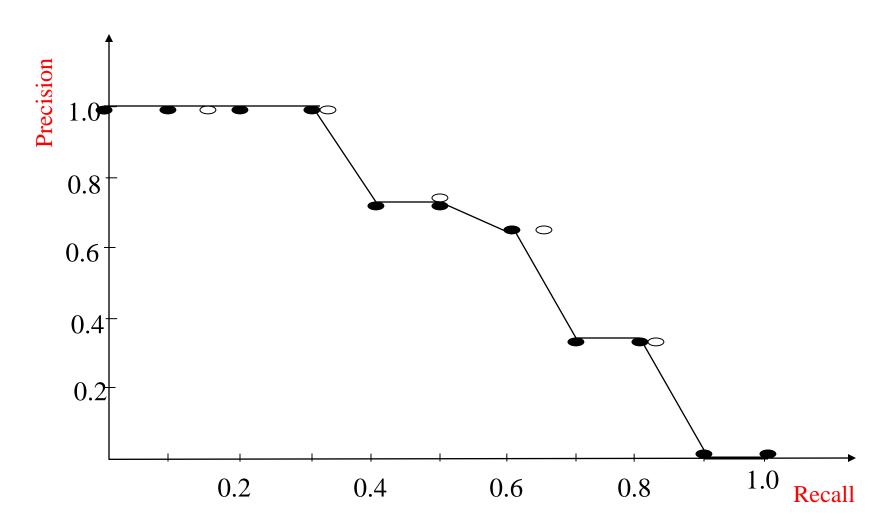
Computing Recall/Precision Points: <u>An Example</u>

n	doc#	relevant
1	588	X
2	589	X
3	576	
4	590	X
5	986	
6	592	X
7	984	
8	988	
9	578	
10	985	
11	103	
12	591	
13	772	X
14	990	

Let total # of relevant docs = 6 Check each new recall point:

Missing one relevant document.
Never reach 100% recall

Interpolating a Recall/Precision Curve: <u>An Example</u>

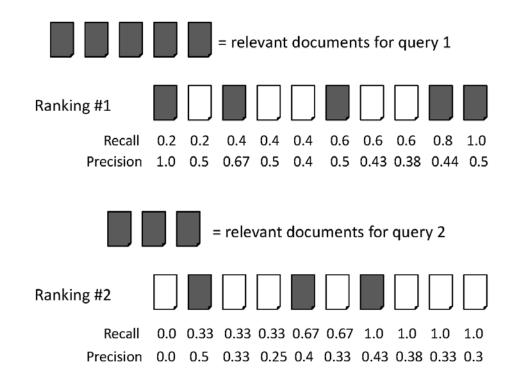


Averaging across Queries: MAP

Mean Average Precision (MAP)

- summarize rankings from multiple queries by averaging average precision
- most commonly used measure in research papers
- assumes user is interested in finding many relevant documents for each query
- requires many relevance judgments in text collection

MAP Example:



average precision query
$$1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62$$
 average precision query $2 = (0.5 + 0.4 + 0.43)/3 = 0.44$

mean average precision = (0.62 + 0.44)/2 = 0.53

Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant document
 - Support relevancy judgment with multiple levels
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined
- Gain is discounted, at lower ranks, e.g. 1/log (rank)
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

Discounted Cumulative Gain

 DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

Alternative formulation:

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log(1+i)}$$

- used by some web search companies
- emphasis on retrieving highly relevant documents

DCG Example

• 10 ranked documents judged on 0-3 relevance scale:

3, 2, 3, 0, 0, 1, 2, 2, 3, 0

discounted gain:

3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0= 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0

• DCG@1, @2, etc:

3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

Normalized DCG

- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - Example:
 - -DCG@5 = 6.89
 - Ideal DCG @5=9.75
 - NDCG @5=6.89/9.75=0.71
- NDCG numbers are averaged across a set of queries at specific rank values

NDCG Example with Normalization

Perfect ranking:

```
3, 3, 3, 2, 2, 2, 1, 0, 0, 0
```

• Ideal DCG@1, @2, ...:

```
3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10
```

- NDCG@1, @2, ...
 - normalized values (divide actual by ideal):
 - 1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88
 - NDCG ≤ 1 at any rank position