
1

Classification Algorithms

UCSB 290N, 2015. T. Yang

Slides based on R. Mooney (UT Austin)

2

Table of Content

• Problem Definition

• Rocchio

• K-nearest neighbor (case based)

• Bayesian algorithm

• Decision trees

3

Classification

• Given:

– A description of an instance, xX, where X is

the instance space.

– A fixed set of categories (classes):

C={c1, c2,…cn}

• Determine:

– The category of x: c(x)C, where c(x) is a

categorization function

4

Learning for Classification

• A training example is an instance x, paired

with its correct category c(x): <x, c(x)>

for an unknown categorization function, c.

• Given a set of training examples, D.

• Find a hypothesized categorization function,

h(x), such that:

)()(:)(, xcxhDxcx
Consistency

5

Sample Learning Problem

• Instance space: <size, color, shape>

– size {small, medium, large}

– color {red, blue, green}

– shape {square, circle, triangle}

• C = {positive, negative}

• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

6

General Learning Issues

• Many hypotheses are usually consistent with the
training data.

• Bias

– Any criteria other than consistency with the training
data that is used to select a hypothesis.

• Classification accuracy (% of instances classified
correctly).

– Measured on independent test data.

• Training time (efficiency of training algorithm).

• Testing time (efficiency of subsequent
classification).

7

Text Categorization/Classification

• Assigning documents to a fixed set of categories.

• Applications:
– Web pages

• Recommending/ranking

• category classification

– Newsgroup Messages

• Recommending

• spam filtering

– News articles

• Personalized newspaper

– Email messages

• Routing

• Prioritizing

• Folderizing

• spam filtering

8

Learning for Classification

• Manual development of text classification

functions is difficult.

• Learning Algorithms:
– Bayesian (naïve)

– Neural network

– Rocchio

– Rule based (Ripper)

– Nearest Neighbor (case based)

– Support Vector Machines (SVM)

– Decision trees

– Boosting algorithms

9

Illustration of Rocchio method

10

Rocchio Algorithm

Assume the set of categories is {c1, c2,…cn}

Training:

Each doc vector is the frequency normalized TF/IDF term vector.

For i from 1 to n

 Sum all the document vectors in ci to get prototype vector pi

Testing: Given document x

 Compute the cosine similarity of x with each prototype vector.

 Select one with the highest similarity value and return its category

11

Rocchio Anomoly

• Prototype models have problems with

polymorphic (disjunctive) categories.

12

Nearest-Neighbor Learning Algorithm

• Learning is just storing the representations of the
training examples in D.

• Testing instance x:

– Compute similarity between x and all examples in D.

– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or
category prototypes.

• Also called:

– Case-based

– Memory-based

– Lazy learning

13

K Nearest-Neighbor

• Using only the closest example to determine
categorization is subject to errors due to:

– A single atypical example.

– Noise (i.e. error) in the category label of a
single training example.

• More robust alternative is to find the k
most-similar examples and return the
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3
and 5 are most common.

14

Similarity Metrics

• Nearest neighbor method depends on a
similarity (or distance) metric.

• Simplest for continuous m-dimensional
instance space is Euclidian distance.

• Simplest for m-dimensional binary instance
space is Hamming distance (number of
feature values that differ).

• For text, cosine similarity of TF-IDF
weighted vectors is typically most effective.

15

3 Nearest Neighbor Illustration
(Euclidian Distance)

.

.
.

.

. .
. .

. . .

16

K Nearest Neighbor for Text

Training:

For each each training example <x, c(x)> D

 Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:

Compute TF-IDF vector d for document y

For each <x, c(x)> D

 Let sx = cosSim(d, dx)

Sort examples, x, in D by decreasing value of sx

Let N be the first k examples in D. (get most similar neighbors)

Return the majority class of examples in N

17

Illustration of 3 Nearest Neighbor for Text

18

Rocchio Anomoly

• Prototype models have problems with

polymorphic (disjunctive) categories.

19

3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle

polymorphic categories better.

20

Bayesian Methods

• Learning and classification methods based
on probability theory.

• Bayes theorem plays a critical role in
probabilistic learning and classification.

• Uses prior probability of each category
given no information about an item.

• Categorization produces a posterior
probability distribution over the possible
categories given a description of an item.

21

Basic Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has

probability 0.

 P(true) = 1 P(false) = 0.

• The probability of disjunction is:

1)(0 AP

)()()()(BAPBPAPBAP

A B BA

22

Conditional Probability

• P(A | B) is the probability of A given B

• Assumes that B is all and only information

known.

• Defined by:

)(

)(
)|(

BP

BAP
BAP

A B BA

23

Independence

• A and B are independent iff:

• Therefore, if A and B are independent:

)()|(APBAP

)()|(BPABP

)(
)(

)(
)|(AP

BP

BAP
BAP

)()()(BPAPBAP

These two constraints are logically equivalent

24

Joint Distribution

• Joint probability distribution for X1,…,Xn gives the probability of every

combination of values: P(X1,…,Xn)

– All values must sum to 1.

• Probability for assignments of values to some subset of variables can

be calculated by summing the appropriate subset

• Conditional probabilities can also be calculated.

Color\shape circle square

red 0.20 0.02

blue 0.02 0.01

circle square

red 0.05 0.30

blue 0.20 0.20

Category=positive negative

25.005.020.0)(circleredP

80.0
25.0

20.0

)(

)(
)|(

circleredP

circleredpositiveP
circleredpositiveP

57.03.005.002.020.0)(redP

25

Computing probability from a training

dataset

Probability Y=positive negative

P(Y) 0.5 0.5

P(small | Y) 0.5 0.5

P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5

P(red | Y) 1.0 0.5

P(blue | Y) 0.0 0.5

P(green | Y) 0.0 0.0

P(square | Y) 0.0 0.0

P(triangle | Y) 0.0 0.5

P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:

<medium, red, circle>

26

Probabilistic Classification

• Let Y be class variable which takes values {y1,y2,…ym}.

• Let X describe an instance consisting of n features <X1,X2…Xn>,
let xk be a possible value for X and xij a possible value for Xi.

• Given a feature vector xk , classification computes P(Y=yi | X=xk)
for i=1…m

• This requires a table giving the probability of each category for
each possible instance.

– Assuming Y and all features Xi are binary, we need 2n entries to specify

 P(Y=pos | X=xk) for each of the 2n possible xk’s since

P(Y=neg | X=xk) = 1 – P(Y=pos | X=xk)

– How to express prediction concisely?

27

Bayes Theorem

Simple proof from definition of conditional probability:

)(

)()|(
)|(

EP

HPHEP
EHP

)(

)(
)|(

EP

EHP
EHP

)(

)(
)|(

HP

EHP
HEP

)()|()(HPHEPEHP

Thus:

(Def. cond. prob.)

(Def. cond. prob.)

)(

)()|(
)|(

EP

HPHEP
EHP

28

Bayesian Categorization

• Determine category of xk by determining for each yi

• P(X=xk) estimation is not needed in the algorithm to

choose a classification decision via comparison.

• .

)(

)|()(
)|(

k

iki
ki

xXP

yYxXPyYP
xXyYP

m

i k

iki
m

i

ki
xXP

yYxXPyYP
xXyYP

11

1
)(

)|()(
)|(

m

i

ikik yYxXPyYPxXP
1

)|()()(

29

Bayesian Categorization (cont.)

• Need to know:

– Priors: P(Y=yi)

– Conditionals: P(X=xk | Y=yi)

• P(Y=yi) are easily estimated from data.

– If ni of the examples in training data D are in yi then

P(Y=yi) = ni / |D|

• Too many possible instances (e.g. 2n for binary

features) to estimate all P(X=xk | Y=yi) in advance.

30

Naïve Bayesian Categorization

• If we assume features of an instance are
independent given the category (conditionally
independent).

• Therefore, we then only need to know P(Xi | Y) for
each possible pair of a feature-value and a
category.

– ni of the examples in training data D are in yi

– nijof the examples in D with category yi

– P(xij |Y=yi) = ni j/ ni

)|()|,,()|(
1

21

n

i

in YXPYXXXPYXP

31

Computing probability from a training

dataset

Probability Y=positive negative

P(Y) 0.5 0.5

P(small | Y) 0.5 0.5

P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5

P(red | Y) 1.0 0.5

P(blue | Y) 0.0 0.5

P(green | Y) 0.0 0.0

P(square | Y) 0.0 0.0

P(triangle | Y) 0.0 0.5

P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:

<medium, red, circle>

32

Naïve Bayes Example

Probability Y=positive Y=negative

P(Y) 0.5 0.5

P(small | Y) 0.4 0.4

P(medium | Y) 0.1 0.2

P(large | Y) 0.5 0.4

P(red | Y) 0.9 0.3

P(blue | Y) 0.05 0.3

P(green | Y) 0.05 0.4

P(square | Y) 0.05 0.4

P(triangle | Y) 0.05 0.3

P(circle | Y) 0.9 0.3

Test Instance:

<medium ,red, circle>

33

Naïve Bayes Example

Probability Y=positive Y=negative

P(Y) 0.5 0.5

P(medium | Y) 0.1 0.2

P(red | Y) 0.9 0.3

P(circle | Y) 0.9 0.3

P(positive | X) = P(Positive)*P(X/Positive)/P(X)

 = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)

 0.5 * 0.1 * 0.9 * 0.9

 = 0.0405 / P(X)

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)

 0.5 * 0.2 * 0.3 * 0.3

 = 0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:

<medium ,red, circle>

34

Error prone prediction with small

training data

Probability Y=positive negative

P(Y) 0.5 0.5

P(small | Y) 0.5 0.5

P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5

P(red | Y) 1.0 0.5

P(blue | Y) 0.0 0.5

P(green | Y) 0.0 0.0

P(square | Y) 0.0 0.0

P(triangle | Y) 0.0 0.5

P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:

<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 = 0

35

Smoothing

• To account for estimation from small samples,

probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that

each feature is given a prior probability, p, that is

assumed to have been previously observed in a

“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.

mn

mpn
yYxXP

k

ijk

kiji

)|(

36

Laplace Smothing Example

• Assume training set contains 10 positive examples:

– 4: small

– 0: medium

– 6: large

• Estimate parameters as follows (if m=1, p=1/3)

– P(small | positive) = (4 + 1/3) / (10 + 1) = 0.394

– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03

– P(large | positive) = (6 + 1/3) / (10 + 1) = 0.576

– P(small or medium or large | positive) = 1.0

37

Naïve Bayes for Text

• Modeled as generating a bag of words for a
document in a given category from a
vocabulary V = {w1, w2,…wm} based on the
probabilities P(wj | ci).

• Smooth probability estimates with Laplace
m-estimates assuming a uniform distribution
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in

each category exactly once.

38

nude
deal Nigeria

Bayes Training Example

spam legit

hot

$
Viagra

lottery

!!
!

win

Friday

exam

computer

May

PM

test

March

science Viagra

homework
score

!

spam

legit

spam

spam

legit

spam

legit

legit
spam

Category

Viagra

deal
hot !!

39

Naïve Bayes Classification

nude
deal Nigeria

spam legit

hot

$
Viagra

lottery

!!
!

win

Friday

exam

computer

May

PM

test

March

science Viagra

homework
score

!

spam

legit

spam

spam

legit

spam

legit

legit
spam

Category

Win lotttery $!

?? ??

40

Naïve Bayes Algorithm

(Train)

Let V be the vocabulary of all words in the documents in D

For each category ci C

 Let Di be the subset of documents in D in category ci

 P(ci) = |Di| / |D|

 Let Ti be the concatenation of all the documents in Di

 Let ni be the total number of word occurrences in Ti

 For each word wj V

 Let nij be the number of occurrences of wj in Ti

 Let P(wj | ci) = (nij + 1) / (ni + |V|)

41

Naïve Bayes Algorithm

(Test)

Given a test document X

Let n be the number of word occurrences in X

Return the category:

 where ai is the word occurring the ith position in X

)|()(argmax
1

n

i

iii
C

i
c

caPcP

42

Underflow Prevention

• Multiplying lots of probabilities, which are

between 0 and 1 by definition, can result in

floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to

perform all computations by summing logs

of probabilities rather than multiplying

probabilities.

• Class with highest final un-normalized log

probability score is still the most probable.

43

Evaluating Accuracy of Classification

• Evaluation must be done on test data that are
independent of the training data (usually a disjoint
set of instances).

• Classification accuracy: c/n where n is the total
number of test instances and c is the number of
test instances correctly classified by the system.

– Results can vary based on sampling error due to
different training and test sets.

– Average results over multiple training and test sets
(splits of the overall data) for the best results.

44

N-Fold Cross-Validation

• Ideally, test and training sets are independent on
each trial.

– But this would require too much labeled data.

• Partition data into N equal-sized disjoint segments.

– Run N trials, each time using a different segment of the
data for testing, and training on the remaining N1
segments.

– This way, at least test-sets are independent.

– Report average classification accuracy over the N trials.

• Typically, N = 10.

45

Learning Curves

• In practice, labeled data is usually rare and

expensive.

• Would like to know how performance

varies with the number of training instances.

• Learning curves plot classification accuracy

on independent test data (Y axis) versus

number of training examples (X axis).

46

N-Fold Learning Curves

• Want learning curves averaged over

multiple trials.

• Use N-fold cross validation to generate N

full training and test sets.

• For each trial, train on increasing fractions

of the training set, measuring accuracy on

the test data for each point on the desired

learning curve.

47

Sample Learning Curve
(Yahoo Science Data)

Decision Trees

• Decision trees can express any function of the input attributes.

• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with one path
to leaf for each example (unless f nondeterministic in x) but it probably won't
generalize to new examples

• Prefer to find more compact decision trees: we don’t want to memorize the
data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at
a restaurant, based on the following
attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Training data: Restaurant example

• Examples described by attribute values (Boolean, discrete, continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

A decision tree to decide whether to wait
• imagine someone talking a sequence of decisions.

Decision tree learning

• If there are so many possible trees, can we

actually search this space? (solution: greedy

search).

• Aim: find a small tree consistent with the

training examples

• Idea: (recursively) choose "most significant"

attribute as root of (sub)tree.

Choosing an attribute for making a

decision

• Idea: a good attribute splits the examples

into subsets that are (ideally) "all positive"

or "all negative"

To wait or not to wait is still at 50%.

Information theory background: Entropy

• Entropy measures uncertainty

-p log (p) - (1-p) log (1-p)

Consider tossing a biased coin.

If you toss the coin VERY often,

the frequency of heads is, say, p,

and hence the frequency of tails is

1-p.

Uncertainty (entropy) is zero if p=0 or 1

and maximal if we have p=0.5.

Using information theory for binary

decisions

• Imagine we have p examples which are true

(positive) and n examples which are false

(negative).

• Our best estimate of true or false is given by:

• Hence the entropy is given by:

 (,) log log
p p pn n n

Entropy
p n p n p n p n p n p n

() /

() /

P true p p n

p false n p n

Using information theory for more than

2 states

• If there are more than two states s=1,2,..n we have

(e.g. a die):

() (1)log[(1)]

(2)log[(2)]

...

()log[()]

Entropy p p s p s

p s p s

p s n p s n

1

() 1
n

s

p s

ID3 Algorithm: Using Information

Theory to Choose an Attribute

• How much information do we gain if we disclose

the value of some attribute?

• ID3 algorithm by Ross Quinlan uses information

gained measured by maximum entropy reduction:

– IG(A) = uncertainty before – uncertainty after

– Choose an attribute with the maximum IA

Before: Entropy = - ½ log(1/2) – ½ log(1/2)=log(2) = 1 bit:

There is “1 bit of information to be discovered”.

After: for Type: If we go into branch “French” we have 1 bit, similarly for the others.

French: 1bit

Italian: 1 bit

Thai: 1 bit

Burger: 1bit

After: for Patrons: In branch “None” and “Some” entropy = 0!,

 In “Full” entropy = -1/3log(1/3)-2/3log(2/3)=0.92

So Patrons gains more information!

On average: 1 bit and gained nothing!

Information Gain: How to combine

branches

•1/6 of the time we enter “None”, so we weight“None” with 1/6.

 Similarly: “Some” has weight: 1/3 and “Full” has weight ½.

1

() (,)
n

i i i i

i i i i i

p n p n
Entropy A Entropy

p n p n p n

weight for each branch

entropy for each branch.

Choose an attribute: Restaurant Example

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Patrons has the highest IG of all attributes and so is chosen by the DTL

algorithm as the root

bits 0)]
4

2
,

4

2
(

12

4
)

4

2
,

4

2
(

12

4
)

2

1
,

2

1
(

12

2
)

2

1
,

2

1
(

12

2
[1)(

bits 0541.)]
6

4
,

6

2
(

12

6
)0,1(

12

4
)1,0(

12

2
[1)(

IIIITypeIG

IIIPatronsIG

Example: Decision tree learned

• Decision tree learned from the 12 examples:

Issues

• When there are no attributes left:

– Stop growing and use majority vote.

• Avoid over-fitting data

– Stop growing a tree earlier

– Grow first, and prune later.

• Deal with continuous-valued attributes

– Dynamically select thresholds/intervals.

• Handle missing attribute values

– Make up with common values

• Control tree size

– pruning

