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Classification 

• Given: 

– A description of an instance, xX, where X is 

the instance space. 

– A fixed set of categories (classes):                           

C={c1, c2,…cn} 

• Determine: 

– The category of x: c(x)C, where c(x) is a 

categorization function 
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Learning for Classification 

• A training example is an instance x, paired 

with its correct category c(x):         <x, c(x)> 

for an unknown categorization function, c.  

• Given a set of training examples, D. 

• Find a hypothesized categorization function, 

h(x), such that: 

)()(: )(, xcxhDxcx 
Consistency 
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Sample  Learning Problem 

• Instance space: <size, color, shape> 

– size  {small, medium, large} 

– color  {red, blue, green} 

– shape  {square, circle, triangle} 

• C = {positive, negative} 

• D: Example Size Color Shape Category 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 
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General Learning Issues 

• Many hypotheses are usually consistent with the 
training data. 

• Bias 

– Any criteria other than consistency with the training 
data that is used to select a hypothesis. 

• Classification accuracy (% of instances classified 
correctly). 

– Measured on independent test data. 

• Training time (efficiency of training algorithm). 

• Testing time (efficiency of subsequent 
classification). 
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Text Categorization/Classification 

• Assigning documents to a fixed set of categories. 

• Applications: 
– Web pages  

• Recommending/ranking 

• category classification 

– Newsgroup Messages  

• Recommending 

• spam filtering 

– News articles  

• Personalized newspaper 

– Email messages  

• Routing 

• Prioritizing  

• Folderizing 

• spam filtering 
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Learning for Classification 

• Manual development of text classification 

functions is difficult. 

• Learning Algorithms: 
– Bayesian (naïve) 

– Neural network 

– Rocchio 

– Rule based (Ripper) 

– Nearest Neighbor (case based) 

– Support Vector Machines (SVM) 

– Decision trees 

– Boosting algorithms 
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Illustration of Rocchio method 
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Rocchio Algorithm 

Assume the set of categories is {c1, c2,…cn} 

Training: 

Each doc vector is the frequency normalized TF/IDF term vector. 

For i from 1 to n  

    Sum all the document vectors in ci to get prototype vector  pi 

 

Testing:  Given document x 

   Compute the cosine similarity of x with each prototype vector. 

   Select one with the highest similarity value and return its category 
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Rocchio Anomoly    

• Prototype models have problems with 

polymorphic (disjunctive) categories. 
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Nearest-Neighbor Learning Algorithm 

• Learning is just storing the representations of the 
training examples in D. 

• Testing instance x: 

– Compute similarity between x and all examples in D. 

– Assign x the category of the most similar example in D. 

• Does not explicitly compute a generalization or 
category prototypes. 

• Also called: 

– Case-based 

– Memory-based 

– Lazy learning 
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K Nearest-Neighbor 

• Using only the closest example to determine 
categorization is subject to errors due to: 

– A single atypical example.  

– Noise (i.e. error) in the category label of a 
single training example. 

• More robust alternative is to find the k 
most-similar examples and return the 
majority category of these k examples. 

• Value of k is typically odd to avoid ties, 3 
and 5 are most common. 



14 

Similarity Metrics 

• Nearest neighbor method depends on a 
similarity (or distance) metric. 

• Simplest for continuous m-dimensional 
instance space is Euclidian distance. 

• Simplest for m-dimensional binary instance 
space is Hamming distance (number of 
feature values that differ). 

• For text, cosine similarity of TF-IDF 
weighted vectors is typically most effective. 
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3 Nearest Neighbor Illustration 
(Euclidian Distance) 
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K Nearest Neighbor for Text 

Training: 

For each each training example <x, c(x)>  D 

      Compute the corresponding TF-IDF vector, dx, for document x 

 

Test instance y: 

Compute TF-IDF vector d for document y 

For each <x, c(x)>  D 

     Let sx = cosSim(d, dx) 

Sort examples, x, in D by decreasing value of sx 

Let N be the first k examples in D.     (get most similar neighbors) 

Return the majority class of examples in N 
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Illustration of 3 Nearest Neighbor for Text 
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Rocchio Anomoly    

• Prototype models have problems with 

polymorphic (disjunctive) categories. 
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3 Nearest Neighbor Comparison 

• Nearest Neighbor tends to handle 

polymorphic categories better.  
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Bayesian Methods 

• Learning and classification methods based 
on probability theory. 

• Bayes theorem plays a critical role in 
probabilistic learning and classification. 

• Uses prior probability of each category 
given no information about an item. 

• Categorization produces a posterior 
probability distribution over the possible 
categories given a description of an item. 
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Basic Probability Theory 

• All probabilities between 0 and 1 

 

• True proposition has probability 1, false has 

probability 0.  

        P(true) = 1        P(false) = 0. 

• The probability of  disjunction is: 

1)(0  AP

)()()()( BAPBPAPBAP 

A B BA
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Conditional Probability  

• P(A | B) is the probability of A given B 

• Assumes that B is all and only information 

known. 

• Defined by: 

)(

)(
)|(

BP

BAP
BAP




A B BA
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Independence 

• A and B are independent iff: 

 

 

• Therefore, if A and B are independent: 

)()|( APBAP 

)()|( BPABP 

)(
)(

)(
)|( AP

BP

BAP
BAP 




)()()( BPAPBAP 

These two constraints are logically equivalent 
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Joint Distribution 

• Joint probability distribution for X1,…,Xn gives the probability of every 

combination of values: P(X1,…,Xn) 

– All values must sum to 1. 

 

 

 

 

 

• Probability for assignments of values to some subset of variables can 

be calculated by summing the appropriate subset 

 

 

• Conditional probabilities can also be calculated. 

Color\shape circle square 

red 0.20 0.02 

blue 0.02 0.01 

circle square 

red 0.05 0.30 

blue 0.20 0.20 
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Computing probability from a training 

dataset 

Probability Y=positive negative 

P(Y) 0.5 0.5 

P(small | Y) 0.5 0.5 

P(medium | Y) 0.0 0.0 

P(large | Y) 0.5 0.5 

P(red | Y) 1.0 0.5 

P(blue | Y) 0.0 0.5 

P(green | Y) 0.0 0.0 

P(square | Y) 0.0 0.0 

P(triangle | Y) 0.0 0.5 

P(circle | Y) 1.0 0.5 

Ex Size Color Shape Category 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negitive 

4 large blue circle negitive 

Test Instance X: 

<medium, red, circle> 
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Probabilistic Classification 

• Let Y be class variable which takes values {y1,y2,…ym}. 

• Let X describe an instance consisting of n features <X1,X2…Xn>, 
let xk be a possible value for X and xij a possible value for Xi. 

• Given a feature vector xk , classification computes P(Y=yi | X=xk) 
for i=1…m 

• This requires a table giving the probability of each category for 
each possible instance. 

– Assuming Y and all  features Xi are binary, we need 2n entries to specify   

 

    P(Y=pos | X=xk) for each of the 2n possible xk’s  since                                     

P(Y=neg | X=xk) = 1 – P(Y=pos | X=xk)  

 

 

– How to express prediction concisely? 
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Bayes Theorem 

 

 

Simple proof from definition of conditional probability: 
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Bayesian Categorization 

• Determine category of xk by determining for each yi 

 

 

• P(X=xk) estimation is not needed in the algorithm to 

choose a classification decision via comparison. 

• . 
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Bayesian Categorization (cont.) 

• Need to know: 

– Priors: P(Y=yi)  

– Conditionals: P(X=xk | Y=yi) 

• P(Y=yi) are easily estimated from data.  

– If ni of the examples in training data D are in yi then 

P(Y=yi) =  ni / |D| 

• Too many possible instances (e.g. 2n for binary 

features) to estimate all P(X=xk | Y=yi) in advance. 
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Naïve Bayesian Categorization 

• If we assume features of an instance are 
independent given the category (conditionally 
independent). 

 

 

• Therefore, we then only need to know P(Xi | Y) for 
each possible pair of a feature-value and a 
category. 

– ni of the examples in training data D are in yi 

–  nijof the examples in D with category  yi  

–  P(xij |Y=yi) =  ni j/ ni  
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Computing probability from a training 

dataset 

Probability Y=positive negative 

P(Y) 0.5 0.5 

P(small | Y) 0.5 0.5 

P(medium | Y) 0.0 0.0 

P(large | Y) 0.5 0.5 

P(red | Y) 1.0 0.5 

P(blue | Y) 0.0 0.5 

P(green | Y) 0.0 0.0 

P(square | Y) 0.0 0.0 

P(triangle | Y) 0.0 0.5 

P(circle | Y) 1.0 0.5 

Ex Size Color Shape Category 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negitive 

4 large blue circle negitive 

Test Instance X: 

<medium, red, circle> 
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Naïve Bayes Example 

Probability  Y=positive Y=negative 

P(Y) 0.5 0.5 

P(small | Y) 0.4 0.4 

P(medium | Y) 0.1 0.2 

P(large | Y) 0.5 0.4 

P(red | Y) 0.9 0.3 

P(blue | Y) 0.05 0.3 

P(green | Y) 0.05 0.4 

P(square | Y) 0.05 0.4 

P(triangle | Y) 0.05 0.3 

P(circle | Y) 0.9 0.3 

Test Instance: 

<medium ,red, circle> 
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Naïve Bayes Example 

Probability Y=positive Y=negative 

P(Y) 0.5 0.5 

P(medium | Y) 0.1 0.2 

P(red | Y) 0.9 0.3 

P(circle | Y) 0.9 0.3 

P(positive | X) = P(Positive)*P(X/Positive)/P(X) 

 = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X) 

                            0.5        *               0.1              *        0.9            *        0.9 

                        =  0.0405 / P(X)  

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)  

                                0.5       *              0.2               *        0.3             *     0.3 

                         =  0.009 / P(X) 

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1 

P(X) = (0.0405 + 0.009) = 0.0495  

= 0.0405 / 0.0495 = 0.8181 

= 0.009 / 0.0495 = 0.1818 

Test Instance: 

<medium ,red, circle> 
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Error prone prediction with small 

training data 

Probability Y=positive negative 

P(Y) 0.5 0.5 

P(small | Y) 0.5 0.5 

P(medium | Y) 0.0 0.0 

P(large | Y) 0.5 0.5 

P(red | Y) 1.0 0.5 

P(blue | Y) 0.0 0.5 

P(green | Y) 0.0 0.0 

P(square | Y) 0.0 0.0 

P(triangle | Y) 0.0 0.5 

P(circle | Y) 1.0 0.5 

Ex Size Color Shape Category 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negitive 

4 large blue circle negitive 

Test Instance X: 

<medium, red, circle> 

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 = 0 

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 = 0 
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Smoothing 

• To account for estimation from small samples, 

probability estimates are adjusted or smoothed. 

• Laplace smoothing using an m-estimate assumes that 

each feature is given a prior probability, p, that is 

assumed to have been previously observed in a 

“virtual” sample of size m. 

 

 

• For binary features, p is simply assumed to be 0.5. 
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Laplace Smothing Example 

• Assume training set contains 10 positive examples: 

– 4: small 

– 0: medium 

– 6: large 

•  Estimate parameters as follows (if m=1, p=1/3) 

– P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394 

– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03 

– P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576 

– P(small or medium or large | positive) =        1.0 
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Naïve Bayes for Text 

• Modeled as generating a bag of words for a 
document in a given category from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci). 

• Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V| 
– Equivalent to a virtual sample of seeing each word in 

each category exactly once. 
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Naïve Bayes Classification  
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Naïve Bayes Algorithm 

(Train) 

Let V be the vocabulary of all words in the documents in D 

For each category ci   C 

        Let Di be the subset of documents in D in category ci 

        P(ci) = |Di| / |D| 

      Let Ti be the concatenation of all the documents in Di 

         Let ni be the total number of word occurrences in Ti 

         For each word wj  V 

             Let nij be the number of occurrences of wj in Ti 

                   Let P(wj | ci) = (nij + 1) / (ni + |V|)   
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Naïve Bayes Algorithm 

(Test) 

Given a test document X 

Let n be the number of word occurrences in X 

Return the category: 

 

 

     where ai is the word occurring the ith position in X 
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Underflow Prevention 

• Multiplying lots of probabilities, which are 

between 0 and 1 by definition, can result in 

floating-point underflow. 

• Since log(xy) = log(x) + log(y), it is better to 

perform all computations by summing logs 

of probabilities rather than multiplying 

probabilities. 

• Class with highest final un-normalized log 

probability score is still the most probable. 
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Evaluating Accuracy of Classification 

• Evaluation must be done on test data that are 
independent of the training data (usually a disjoint 
set of instances). 

• Classification accuracy: c/n where n is the total 
number of test instances and c is the number of 
test instances correctly classified by the system. 

– Results can vary based on sampling error due to 
different training and test sets. 

– Average results over multiple training and test sets 
(splits of the overall data) for the best results. 
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N-Fold Cross-Validation 

• Ideally, test and training sets are independent on 
each trial. 

– But this would require too much labeled data. 

• Partition data into N equal-sized disjoint segments. 

– Run N trials, each time using a different segment of the 
data for testing, and training on the remaining N1 
segments. 

– This way, at least test-sets are independent. 

– Report average classification accuracy over the N trials. 

• Typically, N = 10. 
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Learning Curves 

• In practice, labeled data is usually rare and 

expensive. 

• Would like to know how performance 

varies with the number of training instances. 

• Learning curves plot classification accuracy 

on independent test data (Y axis) versus 

number of training examples (X axis). 
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N-Fold Learning Curves 

• Want learning curves averaged over 

multiple trials. 

• Use N-fold cross validation to generate N 

full training and test sets. 

• For each trial, train on increasing fractions 

of the training set, measuring accuracy on 

the test data for each point on the desired 

learning curve. 
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Sample Learning Curve 
(Yahoo Science Data) 



Decision Trees  

• Decision trees can express any function of the input attributes. 

• E.g., for Boolean functions, truth table row → path to leaf: 

 

 

 

 

 

 

 

 

• Trivially, there is a consistent decision tree for any training set with one path 
to leaf for each example (unless f nondeterministic in x) but it probably won't 
generalize to new examples 

 

• Prefer to find more compact decision trees: we don’t want to memorize the 
data, we want to find structure in the data! 



Decision Trees: Application Example 

Problem: decide whether to wait for a table at 
a restaurant, based on the following 
attributes: 

 
1. Alternate: is there an alternative restaurant nearby? 

2. Bar: is there a comfortable bar area to wait in? 

3. Fri/Sat: is today Friday or Saturday? 

4. Hungry: are we hungry? 

5. Patrons: number of people in the restaurant (None, Some, Full) 

6. Price: price range ($, $$, $$$) 

7. Raining: is it raining outside? 

8. Reservation: have we made a reservation? 

9. Type: kind of restaurant (French, Italian, Thai, Burger) 

10.  WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) 



Training data: Restaurant example 

• Examples described by attribute values (Boolean, discrete, continuous) 

• E.g., situations where I will/won't wait for a table: 

 

 

 

 

 

 

 

 

 

 

 

• Classification of examples is positive (T) or negative (F) 



A decision tree to decide whether to wait 
• imagine someone talking a sequence of decisions. 



Decision tree learning 

• If there are so many possible trees, can we 

actually search this space? (solution: greedy 

search). 

• Aim: find a small tree consistent with the 

training examples 

• Idea: (recursively) choose "most significant" 

attribute as root of (sub)tree. 

 

 



Choosing an attribute for making a 

decision 

• Idea: a good attribute splits the examples 

into subsets that are (ideally) "all positive" 

or "all negative" 

 

 

 

 

 

 

 

To wait or not to wait is still at 50%. 



Information theory background: Entropy 

• Entropy measures uncertainty 

-p log (p)  -  (1-p) log (1-p) 

 

 

 

 

 

 

 

 

Consider tossing a biased coin. 

If you toss the coin VERY often, 

the frequency of heads is, say, p,  

and hence the frequency of tails is  

1-p.  

 

 

Uncertainty  (entropy) is zero if p=0 or 1 

and maximal if we have p=0.5. 



Using information theory for binary 

decisions 

• Imagine we have p examples which are true 

(positive) and n examples which are false 

(negative).  

 

• Our best estimate of true or false is given by: 

 

 

• Hence the entropy is given by: 
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Using information theory for more than 

2 states 

• If there are more than two states s=1,2,..n we have 

(e.g. a die):  
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ID3 Algorithm: Using Information 

Theory to Choose an Attribute 

• How much information do we gain if we disclose 

the value of some attribute? 

• ID3 algorithm by Ross Quinlan uses information 

gained measured by maximum entropy reduction: 

–   IG(A) =  uncertainty before – uncertainty after 

–    Choose an attribute with the maximum IA 

 



Before: Entropy = - ½ log(1/2) – ½ log(1/2)=log(2) = 1 bit:  

There is “1 bit of information to be discovered”.  

 

After: for Type: If we go into branch “French” we have 1 bit, similarly for the others. 

French: 1bit 

Italian: 1 bit 

Thai: 1 bit 

Burger: 1bit 

 

After: for Patrons: In branch “None” and “Some” entropy = 0!,  

                             In “Full” entropy = -1/3log(1/3)-2/3log(2/3)=0.92 

 

So Patrons gains more information! 

On average: 1 bit and gained nothing! 



Information Gain: How to combine 

branches 

•1/6 of the time we enter “None”, so we weight“None” with 1/6.  

 Similarly: “Some” has weight: 1/3 and “Full” has weight ½.     
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Choose an attribute: Restaurant Example 

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit 

 

 

 

 

 

Patrons has the highest IG of all attributes and so is chosen by the DTL 

algorithm as the root 
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Example: Decision tree learned 

• Decision tree learned from the 12 examples: 

 

 

 

 

 

 

 

 



Issues 

• When there are no attributes left:  

– Stop growing and use majority vote. 

• Avoid over-fitting data 

– Stop growing a tree earlier 

– Grow first, and prune later. 

• Deal with continuous-valued attributes  

– Dynamically select thresholds/intervals. 

• Handle missing attribute values 

– Make up with common values 

• Control  tree size 

– pruning 


