Classification Algorithms

UCSB 290N, 2015. T. Yang Slides based on R. Mooney (UT Austin)

Table of Content

- Problem Definition
- Rocchio
- K-nearest neighbor (case based)
- Bayesian algorithm
- Decision trees

Classification

- Given:
- A description of an instance, $x \in X$, where X is the instance space.
- A fixed set of categories (classes):

$$
C=\left\{c_{1}, c_{2}, \ldots c_{n}\right\}
$$

- Determine:
- The category of $x: c(x) \in C$, where $c(x)$ is a categorization function

Learning for Classification

- A training example is an instance x, paired with its correct category $c(x): \quad<x, c(x)>$ for an unknown categorization function, c.
- Given a set of training examples, D.
- Find a hypothesized categorization function, $h(x)$, such that:

$$
\begin{gathered}
\forall<x, c(x)>\in D: h(x)=c(x) \\
\text { Consistency }
\end{gathered}
$$

Sample Learning Problem

- Instance space: <size, color, shape>
- size \in \{small, medium, large\}
- color $\in\{$ red, blue, green $\}$
- shape \in \{square, circle, triangle $\}$
- $C=\{$ positive, negative $\}$
- D :

Example	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Bias
- Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy (\% of instances classified correctly).
- Measured on independent test data.
- Training time (efficiency of training algorithm).
- Testing time (efficiency of subsequent classification).

Text Categorization/Classification

- Assigning documents to a fixed set of categories.
- Applications:
- Web pages
- Recommending/ranking
- category classification
- Newsgroup Messages
- Recommending
- spam filtering
- News articles
- Personalized newspaper
- Email messages
- Routing
- Prioritizing
- Folderizing
- spam filtering

Learning for Classification

- Manual development of text classification functions is difficult.
- Learning Algorithms:
- Bayesian (naïve)
- Neural network
- Rocchio
- Rule based (Ripper)
- Nearest Neighbor (case based)
- Support Vector Machines (SVM)
- Decision trees
- Boosting algorithms

$$
\Sigma
$$

Rocchio Algorithm

Assume the set of categories is $\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
Training:
Each doc vector is the frequency normalized TF/IDF term vector.
For i from 1 to n
Sum all the document vectors in c_{i} to get prototype vector \mathbf{p}_{i}

Testing: Given document x
Compute the cosine similarity of x with each prototype vector. Select one with the highest similarity value and return its category

Rocchio Anomoly

- Prototype models have problems with polymorphic (disjunctive) categories.

Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x :
- Compute similarity between x and all examples in D.
- Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
- Case-based
- Memory-based
- Lazy learning

K Nearest-Neighbor

- Using only the closest example to determine categorization is subject to errors due to:
- A single atypical example.
- Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the k most-similar examples and return the majority category of these k examples.
- Value of k is typically odd to avoid ties, 3 and 5 are most common.

Similarity Metrics

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous m-dimensional instance space is Euclidian distance.
- Simplest for m-dimensional binary instance space is Hamming distance (number of feature values that differ).
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective.

3 Nearest Neighbor Illustration (Euclidian Distance)

K Nearest Neighbor for Text

Training:

For each each training example $\langle x, c(x)\rangle \in D$
Compute the corresponding TF-IDF vector, \mathbf{d}_{x}, for document x
Test instance \boldsymbol{y} :
Compute TF-IDF vector \mathbf{d} for document y
For each $\langle x, c(x)\rangle \in D$

$$
\text { Let } s_{x}=\cos \operatorname{Sim}\left(\mathbf{d}, \mathbf{d}_{x}\right)
$$

Sort examples, x, in D by decreasing value of s_{x}
Let N be the first k examples in D. (get most similar neighbors)
Return the majority class of examples in N

Illustration of 3 Nearest Neighbor for Text

Rocchio Anomoly

- Prototype models have problems with polymorphic (disjunctive) categories.

3 Nearest Neighbor Comparison

- Nearest Neighbor tends to handle polymorphic categories better.

Bayesian Methods

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

Basic Probability Theory

- All probabilities between 0 and 1

$$
0 \leq P(A) \leq 1
$$

- True proposition has probability 1 , false has probability 0 .

$$
\mathrm{P}(\text { true })=1 \quad \mathrm{P}(\text { false })=0 .
$$

- The probability of disjunction is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Conditional Probability

- $\mathrm{P}(A \mid B)$ is the probability of A given B
- Assumes that B is all and only information known.
- Defined by:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Independence

- A and B are independent iff:

$$
\begin{aligned}
& P(A \mid B)=P(A) \quad \text { These two constraints are logically equivalent } \\
& P(B \mid A)=P(B)
\end{aligned}
$$

- Therefore, if A and B are independent:
$P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A)$
$P(A \wedge B)=P(A) P(B)$

Joint Distribution

- Joint probability distribution for $X_{1}, \ldots, X_{\mathrm{n}}$ gives the probability of every combination of values: $\mathrm{P}\left(X_{1}, \ldots, X_{\mathrm{n}}\right)$
- All values must sum to 1 .

Category=positive	
Colorlshape circle square red 0.20 0.02 blue 0.02 0.01\quad red 0.05	

- Probability for assignments of values to some subset of variables can be calculated by summing the appropriate subset

$$
\begin{gathered}
P(\text { red } \wedge \text { circle })=0.20+0.05=0.25 \\
P(\text { red })=0.20+0.02+0.05+0.3=0.57
\end{gathered}
$$

- Conditional probabilities can also be calculated.
$P($ positive $\mid r e d \wedge$ circle $)=\frac{P(\text { positive } \wedge r e d ~}{\wedge \text { circle })} \underset{P(\text { red } \wedge \text { circle })}{ }=\frac{0.20}{0.25}=0.80$

Computing probability from a training dataset

Ex	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negitive
4	large	blue	circle	negitive

Probability	$\mathrm{Y}=$ positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.0	0.0
$\mathrm{P}($ large $\mid Y)$	0.5	0.5
$\mathrm{P}($ red $\mid Y)$	1.0	0.5
$\mathrm{P}($ blue $\mid Y)$	0.0	0.5
$\mathrm{P}($ green $\mid Y)$	0.0	0.0
$\mathrm{P}($ square $\mid Y)$	0.0	0.0
$\mathrm{P}($ triangle $\mid Y)$	0.0	0.5
$\mathrm{P}($ circle $\mid Y)$	1.0	0.5

Probabilistic Classification

- Let Y be class variable which takes values $\left\{y_{1}, y_{2}, \ldots y_{m}\right\}$.
- Let X describe an instance consisting of n features $\left\langle X_{1}, X_{2} \ldots X_{\mathrm{n}}\right\rangle$, let x_{k} be a possible value for X and $x_{i j}$ a possible value for X_{i}.
- Given a feature vector x_{k}, classification computes $\mathrm{P}\left(Y=y_{i} \mid X=x_{k}\right)$ for $i=1 \ldots m$
- This requires a table giving the probability of each category for each possible instance.
- Assuming Y and all features X_{i} are binary, we need 2^{n} entries to specify

$$
\begin{aligned}
& \mathrm{P}\left(Y=\operatorname{pos} \mid X=x_{k}\right) \text { for each of the } 2^{n} \text { possible } x_{\mathrm{k}} \text { 's since } \\
& \mathrm{P}\left(Y=\text { neg } \mid X=x_{k}\right)=1-\mathrm{P}\left(Y=\operatorname{pos} \mid X=x_{k}\right)
\end{aligned}
$$

- How to express prediction concisely?

Bayes Theorem

$P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
Simple proof from definition of conditional probability:

$$
\begin{gathered}
P(H \mid E)=\frac{P(H \wedge E)}{P(E)} \quad \text { (Def. cond. prob.) } \\
P(E \mid H)=\frac{P(H \wedge E)}{P(H)} \quad \text { (Def. cond. prob.) } \\
P(H \wedge E)=P(E \mid H) P(H)
\end{gathered}
$$

Thus: $P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$

Bayesian Categorization

- Determine category of x_{k} by determining for each y_{i}

$$
P\left(Y=y_{i} \mid X=x_{k}\right)=\frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{P\left(X=x_{k}\right)}
$$

- $\mathrm{P}\left(X=x_{k}\right)$ estimation is not needed in the algorithm to choose a classification decision via comparison.

$$
\begin{aligned}
& \sum_{i=1}^{m} P\left(Y=y_{i} \mid X=x_{k}\right)=\sum_{i=1}^{m} \frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{P\left(X=x_{k}\right)}=1 \\
& P\left(X=x_{k}\right)=\sum_{i=1}^{m} P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)
\end{aligned}
$$

Bayesian Categorization (cont.)

- Need to know:
- Priors: $\mathrm{P}\left(Y=y_{i}\right)$
- Conditionals: $\mathrm{P}\left(X=x_{k} \mid Y=y_{i}\right)$
- $\mathrm{P}\left(Y=y_{i}\right)$ are easily estimated from data.
- If n_{i} of the examples in training data D are in y_{i} then $\mathrm{P}\left(Y=y_{i}\right)=n_{i} /|D|$
- Too many possible instances (e.g. 2^{n} for binary features) to estimate all $\mathrm{P}\left(X=x_{k} \mid Y=y_{i}\right)$ in advance.

Naïve Bayesian Categorization

- If we assume features of an instance are independent given the category (conditionally independent).

$$
P(X \mid Y)=P\left(X_{1}, X_{2}, \cdots X_{n} \mid Y\right)=\prod_{i=1}^{n} P\left(X_{i} \mid Y\right)
$$

- Therefore, we then only need to know $\mathrm{P}\left(X_{i} \mid Y\right)$ for each possible pair of a feature-value and a category.
$-n_{i}$ of the examples in training data D are in y_{i}
- $n_{i j}$ of the examples in D with category y_{i}
$-\mathrm{P}\left(x_{i j} \mid Y=y_{i}\right)=n_{i j} / n_{i}$

Computing probability from a training dataset

Ex	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negitive
4	large	blue	circle	negitive

Probability	$\mathrm{Y}=$ positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.0	0.0
$\mathrm{P}($ large $\mid Y)$	0.5	0.5
$\mathrm{P}($ red $\mid Y)$	1.0	0.5
$\mathrm{P}($ blue $\mid Y)$	0.0	0.5
$\mathrm{P}($ green $\mid Y)$	0.0	0.0
$\mathrm{P}($ square $\mid Y)$	0.0	0.0
P (triangle $\mid Y)$	0.0	0.5
$\mathrm{P}($ circle $\mid Y)$	1.0	0.5

Naïve Bayes Example

Probability	Y=positive	Y=negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.4	0.4
$\mathrm{P}($ medium $\mid Y)$	0.1	0.2
$\mathrm{P}($ large $\mid Y)$	0.5	0.4
$\mathrm{P}($ red $\mid Y)$	0.9	0.3
$\mathrm{P}($ blue $\mid Y)$	0.05	0.3
$\mathrm{P}($ green $\mid Y)$	0.05	0.4
$\mathrm{P}($ square $\mid Y)$	0.05	0.4
$\mathrm{P}($ triangle $\mid Y)$	0.05	0.3
$\mathrm{P}($ circle $\mid Y)$	0.9	0.3

Test Instance:
<medium ,red, circle>

Naïve Bayes Example

Probability	$\mathrm{Y}=$ positive	$\mathrm{Y}=$ negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.1	0.2
$\mathrm{P}($ red $\mid Y)$	0.9	0.3
$\mathrm{P}($ circle $\mid Y)$	0.9	0.3

Test Instance:
<medium ,red, circle>
$\mathrm{P}($ positive $\mid X)=\mathrm{P}($ Positive $) * \mathrm{P}(\mathrm{X} /$ Positive $) / \mathrm{P}(\mathrm{X})$
$=\mathrm{P}($ positive $) * \mathrm{P}($ medium \mid positive $) * \mathrm{P}($ red \mid positive $) * \mathrm{P}($ circle \mid positive $) / \mathrm{P}(X)$

$$
\begin{array}{ccccccc}
0.5 & * & 0.1 & * & 0.9 & * & 0.9 \\
= & 0.0405 & \mathrm{P}(X) & =0.0405 & & 0.0495 & = \\
0.8181 & & &
\end{array}
$$

$\mathrm{P}($ negative $\mid X)=\mathrm{P}($ negative $) * \mathrm{P}($ medium \mid negative $) * \mathrm{P}($ red \mid negative $) * \mathrm{P}($ circle \mid negative $) / \mathrm{P}(X)$

$$
\begin{array}{cccccc}
0.5 & * & 0.2 & * & 0.3 & *
\end{array}
$$

$\mathrm{P}($ positive $\mid X)+\mathrm{P}($ negative $\mid X)=0.0405 / \mathrm{P}(X)+0.009 / \mathrm{P}(X)=1$

$$
\mathrm{P}(X)=(0.0405+0.009)=0.0495
$$

Error prone prediction with small training data

Ex	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negitive
4	large	blue	circle	negitive

Probability	$\mathrm{Y}=$ positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.0	0.0
$\mathrm{P}($ large $\mid Y)$	0.5	0.5
$\mathrm{P}($ red $\mid Y)$	1.0	0.5
$\mathrm{P}($ blue $\mid Y)$	0.0	0.5
$\mathrm{P}($ green $\mid Y)$	0.0	0.0
$\mathrm{P}($ square $\mid Y)$	0.0	0.0
$\mathrm{P}($ triangle $\mid Y)$	0.0	0.5
$\mathrm{P}($ circle $\mid Y)$	1.0	0.5

$\mathrm{P}($ positive $\mid X)=0.5 * 0.0 * 1.0 * 1.0=0$
$\mathrm{P}($ negative $\mid X)=0.5 * 0.0 * 0.5 * 0.5=0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an m-estimate assumes that each feature is given a prior probability, p, that is assumed to have been previously observed in a
"virtual" sample of size m.

$$
P\left(X_{i}=x_{i j} \mid Y=y_{k}\right)=\frac{n_{i j k}+m p}{n_{k}+m}
$$

- For binary features, p is simply assumed to be 0.5 .

Laplace Smothing Example

- Assume training set contains 10 positive examples:
- 4: small
- 0: medium
- 6: large
- Estimate parameters as follows (if $m=1, p=1 / 3$)
$-\mathrm{P}($ small \mid positive $)=(4+1 / 3) /(10+1)=0.394$
$-\mathrm{P}($ medium \mid positive $)=(0+1 / 3) /(10+1)=0.03$
$-\mathrm{P}($ large \mid positive $)=(6+1 / 3) /(10+1)=\underline{0.576}$
$-\mathrm{P}($ small or medium or large \mid positive $)=1.0$

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category from a vocabulary $V=\left\{w_{1}, w_{2}, \ldots w_{\mathrm{m}}\right\}$ based on the probabilities $\mathrm{P}\left(w_{j} \mid c_{i}\right)$.
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words ($p=1 /|V|$) and $m=|V|$
- Equivalent to a virtual sample of seeing each word in each category exactly once.

Bayes Training Example

Naïve Bayes Classification

Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D For each category $c_{i} \in C$

Let D_{i} be the subset of documents in D in category c_{i} $\mathrm{P}\left(c_{i}\right)=\left|D_{i}\right| /|D|$
Let T_{i} be the concatenation of all the documents in D_{i}
Let n_{i} be the total number of word occurrences in T_{i}
For each word $w_{j} \in V$
Let $n_{i j}$ be the number of occurrences of w_{j} in T_{i}
Let $\mathrm{P}\left(w_{j} \mid c_{i}\right)=\left(n_{i j}+1\right) /\left(n_{i}+|V|\right)$

Naïve Bayes Algorithm (Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

$$
\underset{c_{i} \in C}{\operatorname{argmax}} P\left(c_{i}\right) \prod_{i=1}^{n} P\left(a_{i} \mid c_{i}\right)
$$

where a_{i} is the word occurring the i th position in X

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since $\log (x y)=\log (x)+\log (y)$, it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Evaluating Accuracy of Classification

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- Classification accuracy: c / n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
- Results can vary based on sampling error due to different training and test sets.
- Average results over multiple training and test sets (splits of the overall data) for the best results.

N-Fold Cross-Validation

- Ideally, test and training sets are independent on each trial.
- But this would require too much labeled data.
- Partition data into N equal-sized disjoint segments.
- Run N trials, each time using a different segment of the data for testing, and training on the remaining $N-1$ segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the N trials.
- Typically, $N=10$.

Learning Curves

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- Learning curves plot classification accuracy on independent test data (Y axis) versus number of training examples (X axis).

N-Fold Learning Curves

- Want learning curves averaged over multiple trials.
- Use N-fold cross validation to generate N full training and test sets.
- For each trial, train on increasing fractions of the training set, measuring accuracy on the test data for each point on the desired learning curve.

Sample Learning Curve (Yahoo Science Data)

Decision Trees

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
- Prefer to find more compact decision trees: we don't want to memorize the data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($\$, \$ \$, \$ \$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time ($0-10,10-30,30-60,>60$)

Training data: Restaurant example

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table:

Example	Attributes										Target Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

- Classification of examples is positive (T) or negative (F)

A decision tree to decide whether to wait

- imagine someone talking a sequence of decisions.

Decision tree learning

- If there are so many possible trees, can we actually search this space? (solution: greedy search).
- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree.

Choosing an attribute for making a decision

- Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative" 000000 -0००००

Information theory background: Entropy

- Entropy measures uncertainty

$$
-p \log (p)-(1-p) \log (1-p)
$$

Consider tossing a biased coin. If you toss the coin VERY often, the frequency of heads is, say, p, and hence the frequency of tails is 1-p.

Uncertainty (entropy) is zero if $\mathrm{p}=0$ or 1 and maximal if we have $\mathrm{p}=0.5$.

Using information theory for binary decisions

- Imagine we have p examples which are true (positive) and n examples which are false (negative).
- Our best estimate of true or false is given by:

$$
\begin{aligned}
& p(\text { true }) \approx p / p+n \\
& p(\text { false }) \approx n / p+n
\end{aligned}
$$

- Hence the entropy is given by:
$\operatorname{Entropy}\left(\frac{p}{p+n}, \frac{n}{p+n}\right) \approx-\frac{p}{p+n} \log \frac{p}{p+n}-\frac{n}{p+n} \log \frac{n}{p+n}$

Using information theory for more than 2 states

- If there are more than two states $s=1,2, . . n$ we have (e.g. a die):

$$
\begin{aligned}
\operatorname{Entropy}(p) & =-p(s=1) \log [p(s=1)] \\
& -p(s=2) \log [p(s=2)] \\
& \ldots \\
& -p(s=n) \log [p(s=n)]
\end{aligned}
$$

$$
\sum_{s=1}^{n} p(s)=1
$$

ID3 Algorithm: Using Information Theory to Choose an Attribute

- How much information do we gain if we disclose the value of some attribute?
- ID3 algorithm by Ross Quinlan uses information gained measured by maximum entropy reduction:
$-\quad \operatorname{IG}(\mathrm{A})=$ uncertainty before - uncertainty after
- Choose an attribute with the maximum IA

Before: Entropy $=-1 / 2 \log (1 / 2)-1 / 2 \log (1 / 2)=\log (2)=1$ bit:
There is " 1 bit of information to be discovered".

After: for Type: If we go into branch "French" we have 1 bit, similarly for the others.
French: 1bit
Italian: 1 bit
Thai: 1 bit On average: 1 bit and gained nothing! Burger: 1bit

After: for Patrons: In branch "None" and "Some" entropy $=0$!, In "Full" entropy $=-1 / 3 \log (1 / 3)-2 / 3 \log (2 / 3)=0.92$

So Patrons gains more information!

Information Gain: How to combine branches

- $1 / 6$ of the time we enter "None", so we weight"None" with $1 / 6$. Similarly: "Some" has weight: $1 / 3$ and "Full" has weight $1 / 2$.
$\operatorname{Entropy}(A)=\sum_{i=1}^{n} \frac{p_{i}+n_{i}}{p+n} \operatorname{Entropy}\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)$ entropy for each branch.
weight for each branch

Choose an attribute: Restaurant Example

For the training set, $p=n=6, I(6 / 12,6 / 12)=1$ bit

$$
\begin{aligned}
& I G(\text { Patrons })=1-\left[\frac{2}{12} I(0,1)+\frac{4}{12} I(1,0)+\frac{6}{12} I\left(\frac{2}{6}, \frac{4}{6}\right)\right]=.0541 \text { bits } \\
& I G(\text { Type })=1-\left[\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)\right]=0 \mathrm{bits}
\end{aligned}
$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

Example: Decision tree learned

- Decision tree learned from the 12 examples:

Issues

- When there are no attributes left:
- Stop growing and use majority vote.
- Avoid over-fitting data
- Stop growing a tree earlier
- Grow first, and prune later.
- Deal with continuous-valued attributes
- Dynamically select thresholds/intervals.
- Handle missing attribute values
- Make up with common values
- Control tree size
- pruning

