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Learning Ensembles 

• Learn multiple classifiers separately 

• Combine decisions (e.g. using weighted voting) 

• When combing multiple decisions, random errors 
cancel each other out, correct decisions are 
reinforced. 

 
Training Data 

Data1 Data m Data2          

Learner1 Learner2 Learner m          

Model1 Model2 Model m          

Model Combiner  Final 

Model 



Homogenous Ensembles 

• Use a single, arbitrary learning algorithm 
but manipulate training data to make it 
learn multiple models. 
 Data1  Data2  …  Data m 

 Learner1 = Learner2 = … = Learner m 

• Methods for changing training data: 
 Bagging: Resample training data 

 Boosting: Reweight training data 

 DECORATE: Add additional artificial training data 

Training Data 

Data1 Data m Data2          

Learner1 Learner2 Learner m          
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Bagging 

• Create ensembles by repeatedly randomly resampling 
the training data (Brieman, 1996). 

• Given a training set of size n, create m sample sets 
 Each bootstrap sample set will on average contain 63.2% of 

the unique training examples, the rest are replicates. 

• Combine the m resulting models using majority vote.  

 

• Decreases error by decreasing the variance in the 
results due to unstable learners, algorithms (like 
decision trees) whose output can change dramatically 
when the training data is slightly changed. 



Random Forests 

• Introduce two sources of randomness: “Bagging” 

and “Random input vectors” 

 Each tree is grown using a bootstrap sample of 

training data 

 At each node, best split is chosen from random 

sample of m variables instead of all variables  M. 

• m is held constant during the forest growing 

• Each tree is grown to the largest extent possible 

• Bagging using decision trees is a special case of random 

forests when m=M  

 

 



Random Forests 



Random Forest Algorithm 

• Good accuracy without over-fitting 

• Fast algorithm (can be faster than growing/pruning a 

single tree); easily parallelized 

• Handle high dimensional data without much problem 



Boosting:   AdaBoost 

Yoav Freund and Robert E. Schapire. A decision-

theoretic generalization of on-line 

learning and an application to boosting. Journal of 

Computer and System Sciences, 

55(1):119–139, August 1997. 

 Simple with theoretical foundation 
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Adaboost - Adaptive Boosting 

• Use training set re-weighting 
 Each training sample uses a weight to determine the 

probability of being selected for a training set. 

 

• AdaBoost is an algorithm for constructing a 
“strong” classifier as linear combination of 
“simple” “weak” classifier  

 

 

• Final classification based on weighted sum of weak 
classifiers 
 



AdaBoost: An Easy Flow 

Data set 1 Data set 2 Data set T 

Learner1 Learner2 LearnerT 
… ... 

… ... 

… ... 

training instances that are wrongly 
predicted by Learner1 will be weighted 
more for Learner2 

weighted 
combination 

Original training set 
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Adaboost Terminology 

• ht(x) … “weak” or basis classifier  

•                              … “strong” or final classifier 

 

• Weak Classifier: < 50% error over any distribution 

 

• Strong Classifier: thresholded linear combination 

of weak classifier outputs 



And in a Picture 

training case 
correctly 

classified 

training case 

has large weight

in this round 

this DT has  

a strong vote.



• Given training set X={(x1,y1),…,(xm,ym)} 

• yi{-1,+1} correct label of instance xiX 

• Initialize distribution D1(i)=1/m; ( weight of training cases) 

• for t = 1,…,T: 

• Find a weak classifier (“rule of thumb”) 

       ht : X  {-1,+1} 

  with small error t on Dt: 

• Update distribution Dt on {1,…,m} 

 

 

• output final hypothesis  

  

 

AdaBoost.M1 
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Find the hardest case 

according to the last-

round hypothesis 

Weighted voting for the 

final decision-making 

yi * ht(xi) > 0, if correct 

yi * ht(xi) < 0, if wrong 

Each training sample has a weight, which 

determines the probability of being selected 

for training the component classifier 
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Reweighting  

 

y * h(x) = -1 

y * h(x) = 1 



Toy Example 



Round 1 

Weak classifier:   if h1 <0.2   1   else -1 



Round 2 

Weak classifier:  if  h2 <0.8   1 else -1 



Round 3 

Weak classifier:  if  h3 >0.7   1 else -1 



Final Combination 

if h1 <0.2   1  else -1 

if  h3 >0.7   1 else -1 

if  h2 <0.8   1 else -1 
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Pros and cons of AdaBoost 

Advantages 

 Very simple to implement 

 Does feature selection resulting in relatively simple 
classifier 

 Fairly good generalization 

Disadvantages 

 Suboptimal solution 

 Sensitive to noisy data and outliers 
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 Therefore, training error is: 
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     Finally: 

AdaBoost: Training Error Analysis 
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Equivalent  

 

{i: H(xi)≠yi} is a vector which  

i-th element is [H(xi) ≠ yi]. 

|{i: H(xi)≠yi}| is the sum of all the 

element in the vector 



 According to  
 

 Therefore, we choose 

 Let 

 

 

 The right term is minimized when    

 

AdaBoost: How to choose  
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Minimize the error 

bound could be done 

by greedily minimizing 

Zt each round. 

 

This equation is obvious 

if we treat ui as a binary-

valued variable. 

By setting dz/dα=0 , and 

considering ∑D(i)=1, we can 

easily get this solution. 

Actually AdaBoost can just minimize the 

training error. 
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