
 Learning Ensembles

290N UCSB, 2015

.

Outlines

• Learning Assembles

• Random Forest

• Adaboost

3

Learning Ensembles

• Learn multiple classifiers separately

• Combine decisions (e.g. using weighted voting)

• When combing multiple decisions, random errors
cancel each other out, correct decisions are
reinforced.

Training Data

Data1 Data m Data2

Learner1 Learner2 Learner m

Model1 Model2 Model m

Model Combiner Final

Model

Homogenous Ensembles

• Use a single, arbitrary learning algorithm
but manipulate training data to make it
learn multiple models.
 Data1 Data2 … Data m

 Learner1 = Learner2 = … = Learner m

• Methods for changing training data:
 Bagging: Resample training data

 Boosting: Reweight training data

 DECORATE: Add additional artificial training data

Training Data

Data1 Data m Data2

Learner1 Learner2 Learner m

5

Bagging

• Create ensembles by repeatedly randomly resampling
the training data (Brieman, 1996).

• Given a training set of size n, create m sample sets
 Each bootstrap sample set will on average contain 63.2% of

the unique training examples, the rest are replicates.

• Combine the m resulting models using majority vote.

• Decreases error by decreasing the variance in the
results due to unstable learners, algorithms (like
decision trees) whose output can change dramatically
when the training data is slightly changed.

Random Forests

• Introduce two sources of randomness: “Bagging”

and “Random input vectors”

 Each tree is grown using a bootstrap sample of

training data

 At each node, best split is chosen from random

sample of m variables instead of all variables M.

• m is held constant during the forest growing

• Each tree is grown to the largest extent possible

• Bagging using decision trees is a special case of random

forests when m=M

Random Forests

Random Forest Algorithm

• Good accuracy without over-fitting

• Fast algorithm (can be faster than growing/pruning a

single tree); easily parallelized

• Handle high dimensional data without much problem

Boosting: AdaBoost

Yoav Freund and Robert E. Schapire. A decision-

theoretic generalization of on-line

learning and an application to boosting. Journal of

Computer and System Sciences,

55(1):119–139, August 1997.

 Simple with theoretical foundation

10

Adaboost - Adaptive Boosting

• Use training set re-weighting
 Each training sample uses a weight to determine the

probability of being selected for a training set.

• AdaBoost is an algorithm for constructing a
“strong” classifier as linear combination of
“simple” “weak” classifier

• Final classification based on weighted sum of weak
classifiers

AdaBoost: An Easy Flow

Data set 1 Data set 2 Data set T

Learner1 Learner2 LearnerT
… ...

… ...

… ...

training instances that are wrongly
predicted by Learner1 will be weighted
more for Learner2

weighted
combination

Original training set

12

Adaboost Terminology

• ht(x) … “weak” or basis classifier

• … “strong” or final classifier

• Weak Classifier: < 50% error over any distribution

• Strong Classifier: thresholded linear combination

of weak classifier outputs

And in a Picture

training case
correctly

classified

training case

has large weight

in this round

this DT has

a strong vote.

• Given training set X={(x1,y1),…,(xm,ym)}

• yi{-1,+1} correct label of instance xiX

• Initialize distribution D1(i)=1/m; (weight of training cases)

• for t = 1,…,T:

• Find a weak classifier (“rule of thumb”)

 ht : X {-1,+1}

 with small error t on Dt:

• Update distribution Dt on {1,…,m}

• output final hypothesis

AdaBoost.M1

T

t tt xhsignxH
1

))(()(

log(1 /)t t t -

Find the hardest case

according to the last-

round hypothesis

Weighted voting for the

final decision-making

yi * ht(xi) > 0, if correct

yi * ht(xi) < 0, if wrong

Each training sample has a weight, which

determines the probability of being selected

for training the component classifier

15

Reweighting

y * h(x) = -1

y * h(x) = 1

Toy Example

Round 1

Weak classifier: if h1 <0.2 1 else -1

Round 2

Weak classifier: if h2 <0.8 1 else -1

Round 3

Weak classifier: if h3 >0.7 1 else -1

Final Combination

if h1 <0.2 1 else -1

if h3 >0.7 1 else -1

if h2 <0.8 1 else -1

21

Pros and cons of AdaBoost

Advantages

 Very simple to implement

 Does feature selection resulting in relatively simple
classifier

 Fairly good generalization

Disadvantages

 Suboptimal solution

 Sensitive to noisy data and outliers

22

References

• Duda, Hart, ect – Pattern Classification

• Freund – “An adaptive version of the boost by majority algorithm”

• Freund – “Experiments with a new boosting algorithm”

• Freund, Schapire – “A decision-theoretic generalization of on-line learning and an application to boosting”

• Friedman, Hastie, etc – “Additive Logistic Regression: A Statistical View of Boosting”

• Jin, Liu, etc (CMU) – “A New Boosting Algorithm Using Input-Dependent Regularizer”

• Li, Zhang, etc – “Floatboost Learning for Classification”

• Opitz, Maclin – “Popular Ensemble Methods: An Empirical Study”

• Ratsch, Warmuth – “Efficient Margin Maximization with Boosting”

• Schapire, Freund, etc – “Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods”

• Schapire, Singer – “Improved Boosting Algorithms Using Confidence-Weighted Predictions”

• Schapire – “The Boosting Approach to Machine Learning: An overview”

• Zhang, Li, etc – “Multi-view Face Detection with Floatboost”

 Suppose

 Therefore, training error is:

 As:

 Considering

 Finally:

AdaBoost: Training Error Analysis

T

t

tii zyxHi
m 1

})(:{
1

1

1
() 1, exp(())T i i tt

i i

D i y f x Z
m

+ -

Equivalent

{i: H(xi)≠yi} is a vector which

i-th element is [H(xi) ≠ yi].

|{i: H(xi)≠yi}| is the sum of all the

element in the vector

 According to

 Therefore, we choose

 Let

 The right term is minimized when

AdaBoost: How to choose

()* arg min arg min () t i t i

t t

y h x

t t t

i

Z D i e

 -

T

t

tii zyxHi
m 1

})(:{
1

t

titii xhyu),(

Minimize the error

bound could be done

by greedily minimizing

Zt each round.

This equation is obvious

if we treat ui as a binary-

valued variable.

By setting dz/dα=0 , and

considering ∑D(i)=1, we can

easily get this solution.

Actually AdaBoost can just minimize the

training error.

1 () ()
1

, let (), we have
2

() ()

t t

h y h y

t

h y

t t

h y h y

D i D i
r

D i

r D i D i

 +

-

 -

