
1

Open-Source Search Engines and
Lucene/Solr

UCSB 293S, 2017. Tao Yang

Slides are based on Y. Seeley,
S. Das, C. Hostetter

2

Open Source Search Engines

• Why?
§ Low cost: No licensing fees
§ Source code available for customization
§ Good for modest or even large data sizes

• Challenges:
§ Performance, Scalability
§ Maintenance

3

Open Source Search Engines: Examples
• Lucene

§ A full-text search library with core indexing
and search services

§ Competitive in engine performance, relevancy,
and code maintenance

• Solr
§ based on the Lucene Java search library

with XML/HTTP APIs
§ caching, replication, and a web

administration interface.
• Lemur/Indri

§ C++ search engine from U. Mass/CMU

A Comparison of Open Source Search
Engines

• Middleton/Baeza-Yates 2010 (Modern Information Retrieval. Text book)

A Comparison of Open Source Search
Engines for 1.69M Pages

• Middleton/Baeza-Yates 2010 (Modern Information Retrieval)

A Comparison of Open Source Search
Engines

• July 2009, Vik’s blog (http://zooie.wordpress.com/2009/07/06/a-
comparison-of-open-source-search-engines-and-indexing-twitter/)

A Comparison of Open Source Search
Engines

• Vik’s blog(http://zooie.wordpress.com/2009/07/06/a-comparison-of-open-source-search-engines-and-indexing-twitter/)

Lucene

• Developed by Doug Cutting initially
– Java-based. Created in 1999, Donated to Apache in 2001

• Features
§ No crawler, No document parsing, No “PageRank”

• Powered by Lucene
– IBM Omnifind Y! Edition, Technorati
– Wikipedia, Internet Archive, LinkedIn, monster.com

• Add documents to an index via IndexWriter
§ A document is a collection of fields
§ Flexible text analysis – tokenizers, filters

• Search for documents via IndexSearcher
Hits = search(Query,Filter,Sort,topN)

• Ranking based on tf * idf similarity with normalization

Lucene’s input content for indexing

9

Document

Document

Document

Field
Field
Field
Field Field

Name Value

• Logical structure
§ Documents are a collection of fields

– Stored – Stored verbatim for retrieval with results
– Indexed – Tokenized and made searchable

§ Indexed terms stored in inverted index
• Physical structure of inverted index

§ Multiple documents stored in segments
• IndexWriter is interface object for entire

index

Example of Inverted Indexing

aardvark

hood

red

little

riding
robin

women
zoo

Little Red Riding Hood

Robin Hood

Little Women

0 1

0 2

0
0

2

1

0

1

2

11

Faceted Search/Browsing Example

LexCorp BFG-9000

LexCorp BFG-9000

BFG 9000Lex Corp

LexCorp

bfg 9000lex corp

lexcorp

WhitespaceTokenizer

WordDelimiterFilter catenateWords=1

LowercaseFilter

Indexing Flow

Analyzers specify how the text in a field is to be
indexed

§ Options in Lucene
– WhitespaceAnalyzer

§ divides text at whitespace
– SimpleAnalyzer

§ divides text at non-letters
§ convert to lower case

– StopAnalyzer
§ SimpleAnalyzer
§ removes stop words

– StandardAnalyzer
§ good for most European Languages
§ removes stop words
§ convert to lower case

– Create you own Analyzers

13

Lucene Index Files: Field infos file (.fnm)

14

Format: FieldsCount,	<FieldName,	FieldBits>
FieldsCount the	number	of	fields	in	the	index
FieldName the	name	of	the	field	in	a	string
FieldBits a	byte	and	an	int	where	the	lowest	

bit	of	the	byte	shows	whether	the	
field	is	indexed,	and	the	int	is	the	id	
of	the	term

1, <content, 0x01>

http://lucene.apache.org/core/3_6_2/fileformats.html

Lucene Index Files: Term Dictionary file (.tis)

15

Format: TermCount,	TermInfos
TermInfos <Term,	DocFreq>
Term <PrefixLength,	Suffix,	FieldNum>

This	file	is	sorted	by	Term.	Terms	are	ordered	first	lexicographically	by	
the	term's	field	name,	and	within	that	lexicographically	by	the	term's	
text
TermCount the	number	of	terms	in	the	documents
Term Term	text	prefixes	are	shared.	The	PrefixLength	is	the	

number	of	initial	characters	from	the	previous	term	
which	must	be	pre-pended	to	a	term's	suffix	in	order	to	
form	the	term's	text.	Thus,	if	the	previous	term's	text	
was	"bone"	and	the	term	is	"boy",	the	PrefixLength	is	
two	and	the	suffix	is	"y".

FieldNumber the	term's	field,	whose	name	is	stored	in	the	.fnm	file

4,<<0,football,1>,2> <<0,penn,1>, 1> <<1,layers,1>,1> <<0,state,1>,2>

Document Frequency can be obtained from this file.

Lucene Index Files: Term Info index (.tii)

16

Format: IndexTermCount, IndexInterval, TermIndices
TermIndices <TermInfo, IndexDelta>

This contains every IndexInterval th entry from the .tis file, along with its
location in the "tis" file. This is designed to be read entirely into memory
and used to provide random access to the "tis" file.
IndexDelta determines the position of this term's TermInfo within

the .tis file. In particular, it is the difference between the
position of this term's entry in that file and the position
of the previous term's entry.

4,<football,1> <penn,3><layers,2> <state,1>

Lucene Index Files: Frequency file (.frq)

17

Format: <TermFreqs>

TermFreqs TermFreq
TermFreq DocDelta, Freq?

TermFreqs are ordered by term (the term is implicit, from the .tis file).
TermFreq entries are ordered by increasing document number.
DocDelta determines both the document number and the frequency. In

particular, DocDelta/2 is the difference between this
document number and the previous document number (or
zero when this is the first document in a TermFreqs). When
DocDelta is odd, the frequency is one. When DocDelta is
even, the frequency is read as the next Int.

For example, the TermFreqs for a term which occurs once in
document seven and three times in document eleven would
be the following sequence of Ints: 15, 8, 3

[7, 1] [11, 3] à [DocIDDelta = 7, Freq = 1] [DocIDDelta = 4 (11-7), Freq = 3]
à(7 << 1) | 1 = 15 and (4 << 1) | 0 = 8
à[DocDelta = 15] [DocDelta = 8, Freq = 3]
http://hackerlabs.org/blog/2011/10/01/hacking-lucene-the-index-format/

Lucene Index Files: Position file (.prx)

18

Format: <TermPositions>
TermPositions <Positions>
Positions <PositionDelta >

TermPositions are ordered by term (the term is implicit, from the .tis file).
Positions entries are ordered by increasing document number (the document
number is implicit from the .frq file).
PositionDelta the difference between the position of the current occurrence

in the document and the previous occurrence (or zero, if this
is the first occurrence in this document).

For example, the TermPositions for a term which occurs as
the fourth term in one document, and as the fifth and ninth
term in a subsequent document, would be the following
sequence of Ints: 4, 5, 4

Query Syntax and Examples

• Terms with fields and phrases
§ Title:right and text: go
§ Title:right and go (go appears in default field

“text”)
§ Title: “the right way” and go

• Proximity
– “quick fox”~4

• Wildcard
– pla?e (plate or place or plane)
– practic* (practice or practical or practically)

• Fuzzy (edit distance as similarity)
– planting~0.75 (granting or planning)
– roam~ (default is 0.5)

Query Syntax and Examples

• Range
– date:[05072007 TO 05232007] (inclusive)
– author: {king TO mason} (exclusive)

• Ranking weight boosting ^
§ title:“Bell” author:“Hemmingway”^3.0
§ Default boost value 1. May be <1 (e.g 0.2)

• Boolean operators: AND, "+", OR, NOT and "-"
§ “Linux OS” AND system
§ Linux OR system, Linux system
§ +Linux system
§ +Linux –system

• Grouping
§ Title: (+linux +”operating system”)

• http://lucene.apache.org/core/2_9_4/queryparsersy
ntax.html

Searching: Example
• Document analysis Query analysis

LexCorp BFG-9000

LexCorp BFG-9000

BFG 9000Lex Corp

LexCorp

bfg 9000lex corp

lexcorp

WhitespaceTokenizer

WordDelimiterFilter catenateWords=1

LowercaseFilter

Lex corp bfg9000

Lex bfg9000

bfg 9000Lex corp

bfg 9000lex corp

WhitespaceTokenizer

WordDelimiterFilter catenateWords=0

LowercaseFilter

A Match!

corp

Searching

• Concurrent search query handling:
§ Multiple searchers at once
§ Thread safe

• Additions or deletions to index are not reflected in
already open searchers
§ Must be closed and reopened

• Use commit or optimize on indexWriter

Query Processing

23

Query

Term Dictionary
(Random file access)

Term Info Index
(in Memory)

Frequency File
(Random file

access)

Co
ns

ta
nt

 ti
m

e

Position File
(Random file

access)

Field info
(in Memory)

Factors involved in Lucene's scoring
• tf = term frequency in document = measure of how often a term

appears in the document
• idf = inverse document frequency = measure of how often the

term appears across the index
• coord = number of terms in the query that were found in the

document
• lengthNorm = measure of the importance of a term according to

the total number of terms in the field
• queryNorm = normalization factor so that queries can be

compared
• boost (index) = boost of the field at index-time
• boost (query) = boost of the field at query-time
• http://lucene.apache.org/core/3_6_2/scoring.html
http://www.lucenetutorial.com/advanced-topics/scoring.html

Scoring Function is specified in schema.xml

• Similarity
score(Q,D) = coord(Q,D) · queryNorm(Q)

· ∑ t in Q (tf(t in D) · idf(t)2 · t.getBoost() · norm(D))
• term-based factors

– tf(t in D) : term frequency of term t in document d
§ default

– idf(t): inverse document frequency of term t in the entire
corpus
§ default

25

Default Scoring Functions for query Q in
matching document D

26

• coord(Q,D) = overlap between Q and D / maximum overlap
Maximum overlap is the maximum possible length of overlap between

Q and D

• queryNorm(Q) = 1/sum of square weight½
sum of square weight = q.getBoost()2 · ∑ t in Q (idf(t) · t.getBoost())2

If t.getBoost() = 1, and q.getBoost() = 1
Then, sum of square weight = ∑ t in Q (idf(t))2

thus, queryNorm(Q) = 1/(∑ t in Q (idf(t))2) ½

• norm(D) = 1/number of terms½ (This is the normalization by the
total number of terms in a document. Number of terms is the total number of
terms appeared in a document D.)

Example:
• D1: hello, please say hello to him.
• D2: say goodbye
• Q: you say hello

§ coord(Q, D) = overlap between Q and D / maximum overlap
– coord(Q, D1) = 2/3, coord(Q, D2) = 1/2,

§ queryNorm(Q) = 1/sum of square weight½
– sum of square weight = q.getBoost()2 · ∑ t in Q (idf(t) · t.getBoost())2
– t.getBoost() = 1, q.getBoost() = 1
– sum of square weight = ∑ t in Q (idf(t))2
– queryNorm(Q) = 1/(0.59452+12) ½ =0.8596

§ tf(t in d) = frequency½
– tf(you,D1) = 0, tf(say,D1) = 1, tf(hello,D1) = 2½ =1.4142
– tf(you,D2) = 0, tf(say,D2) = 1, tf(hello,D2) = 0

§ idf(t) = ln (N/(nj+1)) + 1
– idf(you) = 0, idf(say) = ln(2/(2+1)) + 1 = 0.5945, idf(hello) = ln(2/(1+1))

+1 = 1
§ norm(D) = 1/number of terms½

– norm(D1) = 1/6½ =0.4082, norm(D2) = 1/2½ =0.7071
§ Score(Q, D1) = 2/3*0.8596*(1*0.59452+1.4142*12)*0.4082=0.4135
§ Score(Q, D2) = 1/2*0.8596*(1*0.59452)*0.7071=0.1074

27

score(Q,D) = coord(Q,D) · queryNorm(Q)
· ∑ t in Q (tf(t in D) · idf(t)2 · t.getBoost() · norm(D))

Lucene Sub-projects or Related

• Nutch
§ Web crawler with document parsing

• Hadoop
§ Distributed file systems and data processing
§ Implements MapReduce

• Solr
• Zookeeper

§ Centralized service (directory) with distributed
synchronization

Solr

� Developed by Yonik Seeley at CNET. Donated to Apache
in 2006

� Features
◦ Servlet, Web Administration Interface
◦ XML/HTTP, JSON Interfaces
◦ Faceting, Schema to define types and fields
◦ Highlighting, Caching, Index Replication (Master / Slaves)
◦ Pluggable. Java

• Powered by Solr
– Netflix, CNET, Smithsonian, GameSpot, AOL:sports and

music
– Drupal module

30

Solr Core

Architecture of Solr

Lucene

Admin
Interface

Standard
Request
Handler

Disjunction
Max
Request
Handler

Custom
Request
Handler

Update
Handler

Caching

XML
Update
Interface

Config

Analysis

HTTP Request Servlet

Concurrency

Update Servlet

XML
Response
Writer

Replication

Schema

Application usage of Solr: YouSeer search [PennState]

31

File
System

WWW

FS
Crawler

Crawl
(Heritrix)

PDF
HTML
DOC
TXT
…

TXT
parser

PDF
parser

HTML
parser

Solr
Docu-
ments

Stop
Analyzer

Your
Analyzer

Standard
Analyzer

indexer

indexer
Index

se
ar

ch
er

Crawling(Heritrix) Parsing Indexing/Searching(Solr)

Searching

YouSeer

32

Adding Documents in Solr

HTTP POST to /update
<add><doc boost=“2”>
<field name=“article”>05991</field>
<field name=“title”>Apache Solr</field>
<field name=“subject”>An intro...</field>
<field name=“category”>search</field>
<field name=“category”>lucene</field>
<field name=“body”>Solr is a full...</field>

</doc></add>

33

Updating/Deleting Documents

• Inserting a document with already present
uniqueKey will erase the original

• Delete by uniqueKey field (e.g Id)
<delete><id>05591</id></delete>

• Delete by Query (multiple documents)
<delete>
<query>manufacturer:microsoft</query>

</delete>

34

Commit

• <commit/> makes changes visible
§ closes IndexWriter
§ removes duplicates
§ opens new IndexSearcher

– newSearcher/firstSearcher events
– cache warming
– “register” the new IndexSearcher

• <optimize/> same as commit, merges all index
segments.

35

Default Query Syntax

Lucene Query Syntax

1. mission impossible; releaseDate desc
2. +mission +impossible –actor:cruise
3. “mission impossible” –actor:cruise
4. title:spiderman^10 description:spiderman
5. description:“spiderman movie”~10
6. +HDTV +weight:[0 TO 100]
7. Wildcard queries: te?t, te*t, test*

36

Default Parameters
Query Arguments for HTTP GET/POST to /select

param default description
q The query
start 0 Offset into the list of matches
rows 10 Number of documents to return
fl * Stored fields to return
qt standard Query type; maps to query

handler
df (schema) Default field to search

37

Search Results
http://localhost:8983/solr/select?q=video&start=0&rows=2&fl=name,price

<response><responseHeader><status>0</status>
<QTime>1</QTime></responseHeader>
<result numFound="16173" start="0">

<doc>
<str name="name">Apple 60 GB iPod with Video</str>
<float name="price">399.0</float>

</doc>
<doc>

<str name="name">ASUS Extreme N7800GTX/2DHTV</str>
<float name="price">479.95</float>

</doc>
</result>

</response>

38

Schema

• Lucene has no notion of a schema
§ Sorting - string vs. numeric
§ Ranges - val:42 included in val:[1 TO 5] ?
§ Lucene QueryParser has date-range support, but

must guess.
• Defines fields, their types, properties
• Defines unique key field, default search field,

Similarity implementation

39

Field Definitions
• Field Attributes: name, type, indexed, stored, multiValued,

omitNorms

<field name="id“ type="string" indexed="true" stored="true"/>
<field name="sku“ type="textTight” indexed="true" stored="true"/>
<field name="name“ type="text“ indexed="true" stored="true"/>
<field name=“reviews“ type="text“ indexed="true“ stored=“false"/>
<field name="category“ type="text_ws“ indexed="true" stored="true“

multiValued="true"/>
Stored means retrievable during search

• Dynamic Fields, in the spirit of Lucene!

<dynamicField name="*_i" type="sint“ indexed="true" stored="true"/>
<dynamicField name="*_s" type="string“ indexed="true"

stored="true"/>
<dynamicField name="*_t" type="text“ indexed="true" stored="true"/>

Schema: Analyzers

<fieldtype name="nametext" class="solr.TextField">
<analyzer class="org.apache.lucene.analysis.WhitespaceAnalyzer"/>

</fieldtype>

<fieldtype name="text" class="solr.TextField">
<analyzer>

<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory"/>
<filter class="solr.PorterStemFilterFactory"/>

</analyzer>
</fieldtype>

<fieldtype name="myfieldtype" class="solr.TextField">
<analyzer>

<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.SnowballPorterFilterFactory"

language="German" />
</analyzer>

</fieldtype>

41

More example
<fieldtype name="text" class="solr.TextField">
<analyzer>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.SynonymFilterFactory"

synonyms="synonyms.txt“/>
<filter class="solr.StopFilterFactory“

words=“stopwords.txt”/>
<filter class="solr.EnglishPorterFilterFactory"

protected="protwords.txt"/>
</analyzer>
</fieldtype>

42

Search Relevancy

PowerShot SD 500

PowerShot SD 500

SD 500Power Shot
PowerShot

sd 500power shot
powershot

WhitespaceTokenizer

WordDelimiterFilter catenateWords=1

LowercaseFilter

power-shot sd500

power-shot sd500

sd 500power shot

sd 500power shot

WhitespaceTokenizer

WordDelimiterFilter catenateWords=0

LowercaseFilter

Query Analysis

A Match!

Document Analysis

43

copyField
• Copies one field to another at index time
• Usecase: Analyze same field different ways

§ copy into a field with a different analyzer
§ boost exact-case, exact-punctuation matches
§ language translations, thesaurus, soundex

<field name=“title” type=“text”/>
<field name=“title_exact” type=“text_exact” stored=“false”/>
<copyField source=“title” dest=“title_exact”/>

• Usecase: Index multiple fields into single
searchable field

44

Faceted Search/Browsing Example

45

Faceted Search/Browsing

DocList

Search(Query,Filter[],Sort,offset,n)

computer_type:PC

memory:[1GB TO *]
computer price asc

proc_manu:Intel

proc_manu:AMD

section of
ordered
results

DocSet

Unordered
set of all
results

price:[0 TO 500]

price:[500 TO 1000]

manu:Dell

manu:HP

manu:Lenovo

intersection
Size()

= 594

= 382

= 247

= 689

= 104

= 92

= 75

Query Response

46

High Availability

DB

HTTP search
requests

Load Balancer

Appservers

Solr Searchers

Solr Master
Updaterupdates

updates
admin queries

Index Replication

admin terminal

Dynamic
HTML
Generation

47

Distribution+Replication

48

Caching

IndexSearcher’s view of an index is fixed
§ Aggressive caching possible
§ Consistency for multi-query requests

• filterCache – unordered set of document ids matching a
query. key=Query, val=DocSet

• resultCache – ordered subset of document ids matching
a query. key=(Query,Sort,Filter), val=DocList

• documentCache – the stored fields of documents.
key=docid, val=Document

• userCaches – application specific, custom query
handlers. key=Object, val=Object

49

Warming for Speed

• Lucene IndexReader warming
§ field norms, FieldCache, tii – the term index

• Static Cache warming
§ Configurable static requests to warm new Searchers

• Smart Cache Warming (autowarming)
§ Using MRU items in the current cache to pre-

populate the new cache
• Warming in parallel with live requests

50

Smart Cache Warming

Field
Cache

Field
Norms

Warming
Requests

Request
Handler

Live
Requests

On-Deck
Solr
IndexSearcher

Filter
Cache

User
Cache

Result
Cache

Doc
Cache

Registered
Solr
IndexSearcher

Filter
Cache

User
Cache

Result
Cache

Doc
Cache

Regenerator

Autowarming –
warm n MRU
cache keys w/
new Searcher

Autowarming

1

2

3

Regenerator

Regenerator

51

Web Admin Interface
• Show Config, Schema, Distribution info
• Query Interface
• Statistics

§ Caches: lookups, hits, hitratio, inserts, evictions,
size

§ RequestHandlers: requests, errors
§ UpdateHandler: adds, deletes, commits, optimizes
§ IndexReader, open-time, index-version, numDocs,

maxDocs,
• Analysis Debugger

§ Shows tokens after each Analyzer stage
§ Shows token matches for query vs index

52

References

• http://lucene.apache.org/
• http://lucene.apache.org/core/3_6_2/gettingstarted.

html
• http://lucene.apache.org/solr/
• http://people.apache.org/~yonik/presentations/

