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Boolean and Vector Space 
Retrieval Models

• CS 293S, 2017
• Some of slides from R. Mooney (UTexas), J. 
Ghosh (UT ECE),  D. Lee (USTHK).
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Retrieval Tasks
• Ad hoc retrieval: Fixed document corpus, varied 

queries.
• Filtering: Fixed query, continuous document 

stream.
§ User Profile: A model of relative static preferences.
§ Binary decision of relevant/not-relevant.

• Routing: Same as filtering but continuously supply 
ranked lists rather than binary filtering.

News stream user
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Retrieval Models
• A retrieval model specifies the details of: 

§ 1) Document representation 
§ 2) Query representation
§ 3) Retrieval function: how to find relevant results
§ Determines a notion of relevance.

• Classical models
§ Boolean models (set theoretic)

– Extended Boolean
§ Vector space models (statistical/algebraic) 

– Generalized VS
– Latent Semantic Indexing

§ Probabilistic models
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Boolean Model
• A document is represented as a set of keywords.
• Queries are Boolean expressions of keywords, 

connected by AND, OR, and NOT, including the use 
of brackets to indicate scope.
§ Rio & Brazil | Hilo & Hawaii
§ hotel & !Hilton

• Output: Document is relevant or not. No partial 
matches or ranking.
§ Can be extended to include ranking.

• Popular retrieval model  in old time:
§ Easy to understand. Clean formalism.
§ But still too complex for web users
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Query example:  Shakespeare plays

• Which plays of Shakespeare contain the words 
Brutus AND Caesar but NOT Calpurnia?

• Could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing 
Calpurnia?
§ Slow (for large corpora)
§ NOT Calpurnia is non-trivial
§ Other operations (e.g., find the phrase Romans and 

countrymen) not feasible
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Term-document incidence 1 if play contains 
word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

• Incident vectors: 0/1 vector for each term.
• Query answer with bitwise operations (AND, negation, OR):

§ Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

§ 110100 AND 110111 AND 101111 = 100100. 
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Inverted index

• For each term T, must store a list of all documents 
that contain T.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

What happens if the word Caesar
is added to document 14? 
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Inverted index

• Linked lists generally preferred to arrays
§ Dynamic space allocation
§ Insertion of terms into documents easy
§ Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings
Sorted by docID (more later on why).
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Possible Document 
Preprocessing Steps

• Strip unwanted characters/markup  (e.g. HTML tags, 
punctuation, numbers, etc.).

• Break into tokens (keywords) on whitespace.
• Possible linguistic processing (used in some 

applications, but dangerous for general web search)
§ Stemming  (cards ->card)   
§ Remove common stopwords (e.g. a, the, it, etc.).
§ Used sometime, but dangerous

• Build inverted index 
§ keyword à list of docs containing it.
§ Common phrases  may be detected first using a 

domain specific dictionary.
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Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic 
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.
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Discussions
• Index construction

§ Stemming?
§ Which terms in a doc do we index?

– All words or only “important” ones?
– Stopword list: terms that are so common 

§ they MAY BE ignored for indexing.
§ e.g., the, a, an, of, to …
§ language-specific.
§ May have to be included for general web search

• How do we process a query?
§ Stop word  removal

– Where is UCSB?
§ Stemming?

Dataset Small Big
Offline Stemming Less  or no stemming

Online Stemming
Stopword removal

Less or no stemming
Stopword removal
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Query processing

• Consider processing the query:
Brutus AND Caesar
§ Locate Brutus in the Dictionary;

– Retrieve its postings.
§ Locate Caesar in the Dictionary;

– Retrieve its postings.
§ “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar
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34

1282 4 8 16 32 64

1 2 3 5 8 13 21

The merge

• Walk through the two postings simultaneously, in 
time linear in the total number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.
Crucial: postings sorted by docID.
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Example: WestLaw   http://www.westlaw.com/

• Largest commercial (paying subscribers) legal 
search service (started 1975; ranking added 1992)

• Majority of users still use boolean queries
• Example query:

§ What is the statute of limitations in cases involving 
the federal tort claims act?

§ LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT 
/3 CLAIM

• Long, precise queries; proximity operators; 
incrementally developed; not like web search
§ Professional searchers (e.g., Lawyers) still like 

Boolean queries:
§ You know exactly what you’re getting.
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More general merges

• Exercise: Adapt the merge for the 
queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?
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Boolean Models - Problems
• Very rigid: AND means all; OR means any.
• Difficult to express complex user requests.

§ Still too complex for general web users
• Difficult to control the number of documents 

retrieved.
§ All matched documents will be returned.

• Difficult to rank output.
§ All matched documents logically satisfy the query.

• Difficult to perform relevance feedback.
§ If a document is identified by the user as relevant or 

irrelevant, how should the query be modified?
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Statistical Retrieval Models
• A document is typically represented by a bag of 

words (unordered words with frequencies).
• Bag = set that allows multiple occurrences of the 

same element.
• User specifies a set of desired terms with optional 

weights:
§ Weighted query terms: 

Q =  < database 0.5; text 0.8; information 0.2 >
§ Unweighted query terms: 

Q  =  < database; text; information >
§ No Boolean conditions specified in the query.
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Statistical Retrieval
• Retrieval based on similarity between 

query and documents.
• Output documents are ranked 

according to similarity to query.
• Similarity based on occurrence 

frequencies of keywords in query and 
document.

• Automatic relevance feedback can be supported:
§ Relevant documents “added” to query.
§ Irrelevant documents “subtracted” from query.
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The Vector-Space Model
• Assume t distinct terms remain after preprocessing; 

call them index terms or the vocabulary.
• Each term, i,  in a document or query, j, is given a real-

valued weight, wij.

• Both documents and queries are expressed as       t-
dimensional vectors:

dj = (w1j, w2j, …, wtj)

T1 T2 ….      Tt
D1 w11 w21 …      wt1
D2 w12 w22 …      wt2
: :      :               :
: :      :               :
Dn w1n w2n …      wtn
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Graphic Representation
Example:
D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 +   T3

Q = 0T1 + 0T2 +  2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 +  T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree of 

similarity? Distance? Angle? 
Projection?
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Issues for Vector Space Model

• How to determine important words in a document?
§ Word n-grams (and phrases, idioms,…)  à terms

• How to determine the degree of importance of a 
term within a document and within the entire 
collection?

• How to determine the degree of similarity between 
a document and the query?

• In the case of the web, what is a collection and 
what are the effects of links, formatting 
information, etc.?
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Term Weights: Term Frequency

• More frequent terms in a document are more 
important, i.e. more indicative of the topic.

fij = frequency of term i in document j

• May want to normalize term frequency (tf) across 
the entire corpus:

tfij   = fij  / max{fij}
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Term Weights: Inverse Document Frequency

• Terms that appear in many different documents are 
less indicative of overall topic.
df i = document frequency of term i  

= number of documents containing term i
idfi = inverse document frequency of term i, 

= log2 (N/ df i)  
(N: total number of documents)

• An indication of a term’s discrimination power.
• Log used to dampen the effect relative to tf.
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TF-IDF Weighting
• A typical combined term importance indicator is 

tf-idf weighting:
wij =  tfij idfi  =  tfij log2 (N/ dfi) 

• A term occurring frequently in the document but 
rarely in the rest of the collection is given high 
weight.

• Many other ways of determining term weights 
have been proposed.

• Experimentally, tf-idf has been found to work 
well.
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Computing TF-IDF -- An Example

Given a document with term frequencies:
A(3), B(2), C(1)

Assume collection contains 10,000 documents and 
document frequencies of these terms are:

A(50), B(1300), C(250)
Then:
A:  tf = 3/3;  idf = log(10000/50) = 5.3;     tf-idf = 5.3
B:  tf = 2/3;  idf = log(10000/1300) = 2.0; tf-idf = 1.3
C:  tf = 1/3;  idf = log(10000/250) = 3.7;   tf-idf = 1.2
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Similarity Measure
• A similarity measure is a function that computes 

the degree of similarity between two vectors.
• Using a similarity measure between the query and 

each document:

• Similarity between vectors for the document di and 
query q can be computed as the vector inner 
product:

sim(dj,q) = dj•q =      wij · wiq

where wij is the weight of term i in document j and wiq is the 
weight of term i in the query
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Inner Product -- Examples

Binary:
§ D  =  1,    1,    1,   0,    1,    1,     0
§ Q  =  1,    0 ,   1,   0,    0,    1,     1

sim(D, Q) = 3

Weighted:
D1 = 2T1 + 3T2 + 5T3           D2 = 3T1 + 7T2 +  1T3      
Q = 0T1 + 0T2 +  2T3

sim(D1 , Q) = 2*0 + 3*0 + 5*2  = 10
sim(D2 , Q) = 3*0 + 7*0 + 1*2  =  2
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Properties of Inner Product

• The inner product is unbounded.
• Favors long documents with a large number of 

unique terms.
• Measures how many terms matched but not how 

many terms are not matched.
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Cosine Similarity Measure
• Cosine similarity measures the 

cosine of the angle between two 
vectors.

• Inner product normalized by the 
vector lengths.

D1 = 2T1 + 3T2 + 5T3     CosSim(D1 , Q) = 10 / Ö(4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3     CosSim(D2 , Q) =  2 / Ö(9+49+1)(0+0+4) = 0.13
Q = 0T1 + 0T2 + 2T3

q2

t3

t1

t2

D1

D2

Q

q1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using 
inner product.
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Comments on Vector Space Models
• Simple, practical, and mathematically based 

approach
• Provides partial matching and ranked results.
• Problems

§ Missing syntactic information (e.g. phrase structure, 
word order, proximity information).

§ Missing semantic information 
– word sense
– Assumption of term independence. ignores synonomy.

§ Lacks the control of a Boolean model (e.g., requiring
a term to appear in a document).

– Given a two-term query “A B”, may prefer a document containing A 
frequently but not B, over a document that contains both A and B, but 
both less frequently.


