
1

Boolean and Vector Space
Retrieval Models

• CS 293S, 2017
• Some of slides from R. Mooney (UTexas), J.
Ghosh (UT ECE), D. Lee (USTHK).

Table of Content

Which results satisfy the query constraint?
• Boolean model
• Statistical vector space model

3

Retrieval Tasks
• Ad hoc retrieval: Fixed document corpus, varied

queries.
• Filtering: Fixed query, continuous document

stream.
§ User Profile: A model of relative static preferences.
§ Binary decision of relevant/not-relevant.

• Routing: Same as filtering but continuously supply
ranked lists rather than binary filtering.

News stream user

4

Retrieval Models
• A retrieval model specifies the details of:

§ 1) Document representation
§ 2) Query representation
§ 3) Retrieval function: how to find relevant results
§ Determines a notion of relevance.

• Classical models
§ Boolean models (set theoretic)

– Extended Boolean
§ Vector space models (statistical/algebraic)

– Generalized VS
– Latent Semantic Indexing

§ Probabilistic models

5

Boolean Model
• A document is represented as a set of keywords.
• Queries are Boolean expressions of keywords,

connected by AND, OR, and NOT, including the use
of brackets to indicate scope.
§ Rio & Brazil | Hilo & Hawaii
§ hotel & !Hilton

• Output: Document is relevant or not. No partial
matches or ranking.
§ Can be extended to include ranking.

• Popular retrieval model in old time:
§ Easy to understand. Clean formalism.
§ But still too complex for web users

6

Query example: Shakespeare plays

• Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

• Could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing
Calpurnia?
§ Slow (for large corpora)
§ NOT Calpurnia is non-trivial
§ Other operations (e.g., find the phrase Romans and

countrymen) not feasible

7

Term-document incidence 1 if play contains
word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

• Incident vectors: 0/1 vector for each term.
• Query answer with bitwise operations (AND, negation, OR):

§ Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

§ 110100 AND 110111 AND 101111 = 100100.

8

Inverted index

• For each term T, must store a list of all documents
that contain T.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

What happens if the word Caesar
is added to document 14?

9

Inverted index

• Linked lists generally preferred to arrays
§ Dynamic space allocation
§ Insertion of terms into documents easy
§ Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings
Sorted by docID (more later on why).

10

Possible Document
Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML tags,
punctuation, numbers, etc.).

• Break into tokens (keywords) on whitespace.
• Possible linguistic processing (used in some

applications, but dangerous for general web search)
§ Stemming (cards ->card)
§ Remove common stopwords (e.g. a, the, it, etc.).
§ Used sometime, but dangerous

• Build inverted index
§ keyword à list of docs containing it.
§ Common phrases may be detected first using a

domain specific dictionary.

11

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

12

Discussions
• Index construction

§ Stemming?
§ Which terms in a doc do we index?

– All words or only “important” ones?
– Stopword list: terms that are so common

§ they MAY BE ignored for indexing.
§ e.g., the, a, an, of, to …
§ language-specific.
§ May have to be included for general web search

• How do we process a query?
§ Stop word removal

– Where is UCSB?
§ Stemming?

Dataset Small Big
Offline Stemming Less or no stemming

Online Stemming
Stopword removal

Less or no stemming
Stopword removal

13

Query processing

• Consider processing the query:
Brutus AND Caesar
§ Locate Brutus in the Dictionary;

– Retrieve its postings.
§ Locate Caesar in the Dictionary;

– Retrieve its postings.
§ “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

14

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

The merge

• Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.
Crucial: postings sorted by docID.

15

Example: WestLaw http://www.westlaw.com/

• Largest commercial (paying subscribers) legal
search service (started 1975; ranking added 1992)

• Majority of users still use boolean queries
• Example query:

§ What is the statute of limitations in cases involving
the federal tort claims act?

§ LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT
/3 CLAIM

• Long, precise queries; proximity operators;
incrementally developed; not like web search
§ Professional searchers (e.g., Lawyers) still like

Boolean queries:
§ You know exactly what you’re getting.

16

More general merges

• Exercise: Adapt the merge for the
queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

17

Boolean Models - Problems
• Very rigid: AND means all; OR means any.
• Difficult to express complex user requests.

§ Still too complex for general web users
• Difficult to control the number of documents

retrieved.
§ All matched documents will be returned.

• Difficult to rank output.
§ All matched documents logically satisfy the query.

• Difficult to perform relevance feedback.
§ If a document is identified by the user as relevant or

irrelevant, how should the query be modified?

18

Statistical Retrieval Models
• A document is typically represented by a bag of

words (unordered words with frequencies).
• Bag = set that allows multiple occurrences of the

same element.
• User specifies a set of desired terms with optional

weights:
§ Weighted query terms:

Q = < database 0.5; text 0.8; information 0.2 >
§ Unweighted query terms:

Q = < database; text; information >
§ No Boolean conditions specified in the query.

19

Statistical Retrieval
• Retrieval based on similarity between

query and documents.
• Output documents are ranked

according to similarity to query.
• Similarity based on occurrence

frequencies of keywords in query and
document.

• Automatic relevance feedback can be supported:
§ Relevant documents “added” to query.
§ Irrelevant documents “subtracted” from query.

20

The Vector-Space Model
• Assume t distinct terms remain after preprocessing;

call them index terms or the vocabulary.
• Each term, i, in a document or query, j, is given a real-

valued weight, wij.

• Both documents and queries are expressed as t-
dimensional vectors:

dj = (w1j, w2j, …, wtj)

T1 T2 …. Tt
D1 w11 w21 … wt1
D2 w12 w22 … wt2
: : : :
: : : :
Dn w1n w2n … wtn

21

Graphic Representation
Example:
D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree of

similarity? Distance? Angle?
Projection?

22

Issues for Vector Space Model

• How to determine important words in a document?
§ Word n-grams (and phrases, idioms,…) à terms

• How to determine the degree of importance of a
term within a document and within the entire
collection?

• How to determine the degree of similarity between
a document and the query?

• In the case of the web, what is a collection and
what are the effects of links, formatting
information, etc.?

23

Term Weights: Term Frequency

• More frequent terms in a document are more
important, i.e. more indicative of the topic.

fij = frequency of term i in document j

• May want to normalize term frequency (tf) across
the entire corpus:

tfij = fij / max{fij}

24

Term Weights: Inverse Document Frequency

• Terms that appear in many different documents are
less indicative of overall topic.
df i = document frequency of term i

= number of documents containing term i
idfi = inverse document frequency of term i,

= log2 (N/ df i)
(N: total number of documents)

• An indication of a term’s discrimination power.
• Log used to dampen the effect relative to tf.

25

TF-IDF Weighting
• A typical combined term importance indicator is

tf-idf weighting:
wij = tfij idfi = tfij log2 (N/ dfi)

• A term occurring frequently in the document but
rarely in the rest of the collection is given high
weight.

• Many other ways of determining term weights
have been proposed.

• Experimentally, tf-idf has been found to work
well.

26

Computing TF-IDF -- An Example

Given a document with term frequencies:
A(3), B(2), C(1)

Assume collection contains 10,000 documents and
document frequencies of these terms are:

A(50), B(1300), C(250)
Then:
A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3
B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3
C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

27

Similarity Measure
• A similarity measure is a function that computes

the degree of similarity between two vectors.
• Using a similarity measure between the query and

each document:

• Similarity between vectors for the document di and
query q can be computed as the vector inner
product:

sim(dj,q) = dj•q = wij · wiq

where wij is the weight of term i in document j and wiq is the
weight of term i in the query

28

Inner Product -- Examples

Binary:
§ D = 1, 1, 1, 0, 1, 1, 0
§ Q = 1, 0 , 1, 0, 0, 1, 1

sim(D, Q) = 3

Weighted:
D1 = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3
Q = 0T1 + 0T2 + 2T3

sim(D1 , Q) = 2*0 + 3*0 + 5*2 = 10
sim(D2 , Q) = 3*0 + 7*0 + 1*2 = 2

29

Properties of Inner Product

• The inner product is unbounded.
• Favors long documents with a large number of

unique terms.
• Measures how many terms matched but not how

many terms are not matched.

30

Cosine Similarity Measure
• Cosine similarity measures the

cosine of the angle between two
vectors.

• Inner product normalized by the
vector lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / Ö(4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / Ö(9+49+1)(0+0+4) = 0.13
Q = 0T1 + 0T2 + 2T3

q2

t3

t1

t2

D1

D2

Q

q1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using
inner product.

å å

å

= =

=•

×

×
=

×
t

i

t

i

t

i

ww

ww
qd
qd

iqij

iqij

j

j

1 1

22

1
)(

!!
!!

CosSim(dj, q) =

31

Comments on Vector Space Models
• Simple, practical, and mathematically based

approach
• Provides partial matching and ranked results.
• Problems

§ Missing syntactic information (e.g. phrase structure,
word order, proximity information).

§ Missing semantic information
– word sense
– Assumption of term independence. ignores synonomy.

§ Lacks the control of a Boolean model (e.g., requiring
a term to appear in a document).

– Given a two-term query “A B”, may prefer a document containing A
frequently but not B, over a document that contains both A and B, but
both less frequently.

