Boolean and Vector Space Retrieval Models

- CS 293S, 2017
- Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK).
Which results satisfy the query constraint?
• Boolean model
• Statistical vector space model
Retrieval Tasks

- **Ad hoc retrieval**: Fixed document corpus, varied queries.
- **Filtering**: Fixed query, continuous document stream.
 - User Profile: A model of relative static preferences.
 - Binary decision of relevant/not-relevant.
- **Routing**: Same as filtering but continuously supply ranked lists rather than binary filtering.
Retrieval Models

• A retrieval model specifies the details of:
 ▪ 1) Document representation
 ▪ 2) Query representation
 ▪ 3) Retrieval function: how to find relevant results
 ▪ Determines a notion of relevance.

• Classical models
 ▪ Boolean models (set theoretic)
 – Extended Boolean
 ▪ Vector space models (statistical/algebraic)
 – Generalized VS
 – Latent Semantic Indexing
 ▪ Probabilistic models
Boolean Model

• A document is represented as a set of keywords.
• Queries are Boolean expressions of keywords, connected by AND, OR, and NOT, including the use of brackets to indicate scope.
 ▪ Rio & Brazil | Hilo & Hawaii
 ▪ hotel & !Hilton
• Output: Document is relevant or not. No partial matches or ranking.
 ▪ Can be extended to include ranking.
• Popular retrieval model in old time:
 ▪ Easy to understand. Clean formalism.
 ▪ But still too complex for web users
Query example: Shakespeare plays

• Which plays of Shakespeare contain the words *Brutus AND Caesar* but *NOT Calpurnia*?

• Could **grep** all of Shakespeare’s plays for *Brutus* and *Caesar*, then strip out lines containing *Calpurnia*?

 - Slow (for large corpora)
 - **NOT Calpurnia** is non-trivial
 - Other operations (e.g., find the phrase *Romans and countrymen*) not feasible
Term-document incidence

1 if play contains word, 0 otherwise

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Incident vectors: 0/1 vector for each term.
- Query answer with bitwise operations (AND, negation, OR):
 - Which plays of Shakespeare contain the words *Brutus AND Caesar* but *NOT Calpurnia*?
 - $110100 \text{ AND } 110111 \text{ AND } 101111 = 100100$.
Inverted index

- For each term T, must store a list of all documents that contain T.

What happens if the word Caesar is added to document 14?
Inverted index

- Linked lists generally preferred to arrays
 - Dynamic space allocation
 - Insertion of terms into documents easy
 - Space overhead of pointers

```
Brutus
Calpurnia
Caesar
```

```
Dictionary

2 → 4 → 8 → 16 → 32 → 64 → 128
1 → 2 → 3 → 5 → 8 → 13 → 21 → 34
13 → 16
```

Sorted by docID (more later on why).
Possible Document
Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML tags, punctuation, numbers, etc.).
• Break into tokens (keywords) on whitespace.
• Possible linguistic processing (used in some applications, but dangerous for general web search)
 ▪ Stemming (cards -> card)
 ▪ Remove common stopwords (e.g. a, the, it, etc.).
 ▪ Used sometime, but dangerous
• Build inverted index
 ▪ keyword → list of docs containing it.
 ▪ Common phrases may be detected first using a domain specific dictionary.
Inverted index construction

Documents to be indexed.

Token stream.

Linguistic modules

Modified tokens.

Indexer

Inverted index.

More on these later.

Tokens:
- Friends
- Romans
- Countrymen

Modified tokens:
- friend
- roman
- countryman
Discussions

• Index construction
 - Stemming?
 - Which terms in a doc do we index?
 - All words or only “important” ones?
 - Stopword list: terms that are so common
 - they MAY BE ignored for indexing.
 - e.g., the, a, an, of, to …
 - language-specific.
 - May have to be included for general web search

• How do we process a query?
 - Stop word removal
 - Where is UCSB?
 - Stemming?

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Small</th>
<th>Big</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline</td>
<td>Stemming</td>
<td>Less or no stemming</td>
</tr>
<tr>
<td>Online</td>
<td>Stemming Stopword removal</td>
<td>Less or no stemming Stopword removal</td>
</tr>
</tbody>
</table>
Query processing

- Consider processing the query:

 Brutus AND Caesar

 - Locate **Brutus** in the Dictionary;
 - Retrieve its postings.
 - Locate **Caesar** in the Dictionary;
 - Retrieve its postings.
 - "Merge" the two postings:
The merge

- Walk through the two postings simultaneously, in time linear in the total number of postings entries.

If the list lengths are m and n, the merge takes $O(m+n)$ operations.

Crucial: postings sorted by docID.
Example: WestLaw http://www.westlaw.com/

- Largest commercial (paying subscribers) legal search service (started 1975; ranking added 1992)
- Majority of users *still* use boolean queries
- Example query:
 - What is the statute of limitations in cases involving the federal tort claims act?
 - LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

- Long, precise queries; proximity operators; incrementally developed; not like web search
 - Professional searchers (e.g., Lawyers) still like Boolean queries:
 - You know exactly what you’re getting.
More general merges

• **Exercise**: Adapt the merge for the queries:

 Brutus AND NOT Caesar
 Brutus OR NOT Caesar

 Can we still run through the merge in time $O(m+n)$?
Boolean Models – Problems

• Very rigid: AND means all; OR means any.
• Difficult to express complex user requests.
 ▪ Still too complex for general web users
• Difficult to control the number of documents retrieved.
 ▪ All matched documents will be returned.
• Difficult to rank output.
 ▪ All matched documents logically satisfy the query.
• Difficult to perform relevance feedback.
 ▪ If a document is identified by the user as relevant or irrelevant, how should the query be modified?
A document is typically represented by a *bag of words* (unordered words with frequencies).

Bag = set that allows multiple occurrences of the same element.

User specifies a set of desired terms with optional weights:

- Weighted query terms:
 \[Q = \langle \text{database} 0.5; \text{text} 0.8; \text{information} 0.2 \rangle \]
- Unweighted query terms:
 \[Q = \langle \text{database}; \text{text}; \text{information} \rangle \]
- No Boolean conditions specified in the query.
Statistical Retrieval

• Retrieval based on *similarity* between query and documents.
• Output documents are ranked according to similarity to query.
• Similarity based on occurrence *frequencies* of keywords in query and document.
• Automatic relevance feedback can be supported:
 ▪ Relevant documents “added” to query.
 ▪ Irrelevant documents “subtracted” from query.
The Vector-Space Model

• Assume \(t \) distinct terms remain after preprocessing; call them index terms or the vocabulary.
• Each term, \(i \), in a document or query, \(j \), is given a real-valued weight, \(w_{ij} \).
• Both documents and queries are expressed as \(t \)-dimensional vectors:

\[
d_j = (w_{1j}, w_{2j}, \ldots, w_{tj})
\]

\[
\begin{array}{cccc}
 & T_1 & T_2 & \ldots & T_t \\
D_1 & w_{11} & w_{21} & \ldots & w_{t1} \\
D_2 & w_{12} & w_{22} & \ldots & w_{t2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
D_n & w_{1n} & w_{2n} & \ldots & w_{tn}
\end{array}
\]
Example:

- $D_1 = 2T_1 + 3T_2 + 5T_3$
- $D_2 = 3T_1 + 7T_2 + T_3$
- $Q = 0T_1 + 0T_2 + 2T_3$

- Is D_1 or D_2 more similar to Q?
- How to measure the degree of similarity? Distance? Angle? Projection?
Issues for Vector Space Model

• How to determine important words in a document?
 ▪ Word n-grams (and phrases, idioms,...) → terms

• How to determine the degree of importance of a term within a document and within the entire collection?

• How to determine the degree of similarity between a document and the query?

• In the case of the web, what is a collection and what are the effects of links, formatting information, etc.?
Term Weights: Term Frequency

• More frequent terms in a document are more important, i.e. more indicative of the topic.

\[f_{ij} = \text{frequency of term } i \text{ in document } j \]

• May want to normalize term frequency (tf) across the entire corpus:

\[tf_{ij} = f_{ij} / \max \{ f_{ij} \} \]
Term Weights: Inverse Document Frequency

- Terms that appear in many *different* documents are less indicative of overall topic.

 \[df_i = \text{document frequency of term } i \]

 \[= \text{number of documents containing term } i \]

 \[idf_i = \text{inverse document frequency of term } i, \]

 \[= \log_2 \left(\frac{N}{df_i} \right) \]

 (N: total number of documents)

- An indication of a term’s *discrimination* power.
- Log used to dampen the effect relative to *tf*.
TF-IDF Weighting

• A typical combined term importance indicator is *tf-idf weighting*:

\[w_{ij} = tf_{ij} \cdot idf_i = tf_{ij} \log_2 \left(\frac{N}{df_i} \right) \]

• A term occurring frequently in the document but rarely in the rest of the collection is given high weight.

• Many other ways of determining term weights have been proposed.

• Experimentally, *tf-idf* has been found to work well.
Computing TF-IDF -- An Example

Given a document with term frequencies:

A(3), B(2), C(1)

Assume collection contains 10,000 documents and
document frequencies of these terms are:

A(50), B(1300), C(250)

Then:

A: \(tf = \frac{3}{3}; \quad idf = \log\left(\frac{10000}{50}\right) = 5.3; \quad tf\text{-idf} = 5.3\)

B: \(tf = \frac{2}{3}; \quad idf = \log\left(\frac{10000}{1300}\right) = 2.0; \quad tf\text{-idf} = 1.3\)

C: \(tf = \frac{1}{3}; \quad idf = \log\left(\frac{10000}{250}\right) = 3.7; \quad tf\text{-idf} = 1.2\)
Similarity Measure

• A similarity measure is a function that computes the *degree of similarity* between two vectors.

• Using a similarity measure between the query and each document:

• Similarity between vectors for the document d_i and query q can be computed as the vector inner product:

\[
\text{sim}(d_j, q) = d_j \cdot q = w_{ij} \cdot w_{iq}
\]

where w_{ij} is the weight of term i in document j and w_{iq} is the weight of term i in the query.
Inner Product -- Examples

Binary:
- \(D = 1, 1, 1, 0, 1, 1, 0\)
- \(Q = 1, 0, 1, 0, 0, 1, 1\)

\[\text{sim}(D, Q) = 3\]

Weighted:

\[
\begin{align*}
D_1 &= 2T_1 + 3T_2 + 5T_3 \\
D_2 &= 3T_1 + 7T_2 + 1T_3 \\
Q &= 0T_1 + 0T_2 + 2T_3
\end{align*}
\]

\[
\begin{align*}
\text{sim}(D_1, Q) &= 2*0 + 3*0 + 5*2 = 10 \\
\text{sim}(D_2, Q) &= 3*0 + 7*0 + 1*2 = 2
\end{align*}
\]
Properties of Inner Product

- The inner product is unbounded.
- Favors long documents with a large number of unique terms.
- Measures how many terms matched but not how many terms are *not* matched.
Cosine Similarity Measure

- Cosine similarity measures the cosine of the angle between two vectors.
- Inner product normalized by the vector lengths.

\[
\text{CosSim}(\mathbf{d}_j, \mathbf{q}) = \frac{\mathbf{d}_j \cdot \mathbf{q}}{|\mathbf{d}_j| \cdot |\mathbf{q}|} = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w_{ij}^2} \cdot \sqrt{\sum_{i=1}^{t} w_{iq}^2}}
\]

\[
\begin{align*}
D_1 &= 2T_1 + 3T_2 + 5T_3 \\
\text{CosSim}(D_1, Q) &= 10 / \sqrt{(4+9+25)(0+0+4)} = 0.81 \\
D_2 &= 3T_1 + 7T_2 + 1T_3 \\
\text{CosSim}(D_2, Q) &= 2 / \sqrt{(9+49+1)(0+0+4)} = 0.13 \\
Q &= 0T_1 + 0T_2 + 2T_3
\end{align*}
\]

\(D_1\) is 6 times better than \(D_2\) using cosine similarity but only 5 times better using inner product.
Comments on Vector Space Models

• Simple, practical, and mathematically based approach

• Provides partial matching and ranked results.

• Problems
 - Missing syntactic information (e.g. phrase structure, word order, proximity information).
 - Missing semantic information
 - word sense
 - Assumption of term independence. ignores synonomy.
 - Lacks the control of a Boolean model (e.g., requiring a term to appear in a document).
 - Given a two-term query “A B”, may prefer a document containing A frequently but not B, over a document that contains both A and B, but both less frequently.