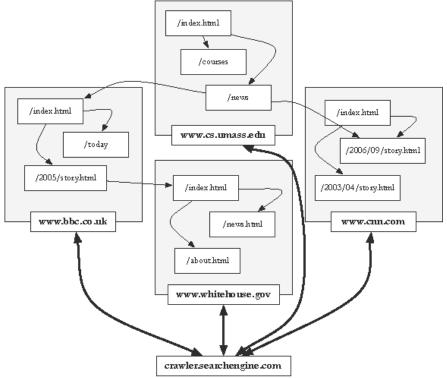

### Crawling

T. Yang, UCSB 293S Some of slides from Crofter/Metzler/Strohman's textbook

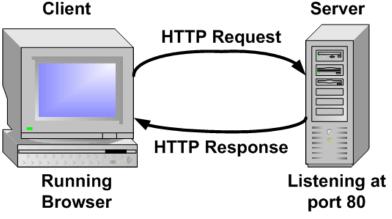







### **Table of Content**

- Basic crawling architecture and flow
  - Distributed crawling
- Scheduling: Where to crawl
  - Crawling control with robots.txt
  - Freshness
  - Focused crawling
- URL discovery
  - Deep web, Sitemaps, & Data feeds
- Data representation and store




- Collecting data is critical for web applications
  - Find and download web pages automatically





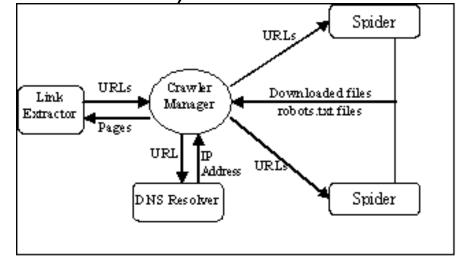
 Web pages are stored on web servers that use HTTP to exchange information with client software
 HTTP /1.1





| Terminal                                                                                                                                                                                                                                                                                                                                            | × |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <u>File E</u> dit <u>V</u> iew <u>T</u> erminal <u>G</u> o <u>H</u> elp                                                                                                                                                                                                                                                                             |   |
| ~\$ telnet java.sun.com 80                                                                                                                                                                                                                                                                                                                          | * |
| Trying 209.249.116.141                                                                                                                                                                                                                                                                                                                              | 4 |
| Connected to java.sun.com.                                                                                                                                                                                                                                                                                                                          |   |
| Escape character is '^]'.                                                                                                                                                                                                                                                                                                                           |   |
| GET / HTTP/1.0                                                                                                                                                                                                                                                                                                                                      |   |
| HTTP/1.1 200 OK                                                                                                                                                                                                                                                                                                                                     |   |
| Server: Netscape-Enterprise/6.0                                                                                                                                                                                                                                                                                                                     |   |
| Date: Thu, 22 Jul 2004 18:27:16 GMT                                                                                                                                                                                                                                                                                                                 |   |
| Content-type: text/html;charset=IS0-8859-1                                                                                                                                                                                                                                                                                                          |   |
| Set-cookie: JSESSIONID=java.sun.com-17d5e%253A41000701%253Ae493f41adc6f1e;path=/                                                                                                                                                                                                                                                                    |   |
| ;expires=Thu, 22-Jul-2004 18:57:14 GMT                                                                                                                                                                                                                                                                                                              |   |
| Connection: close                                                                                                                                                                                                                                                                                                                                   |   |
| HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                                                                                                                                                                                                                                                                                                |   |
| <html></html>                                                                                                                                                                                                                                                                                                                                       |   |
| <head></head>                                                                                                                                                                                                                                                                                                                                       |   |
| <title>Java Technology</title>                                                                                                                                                                                                                                                                                                                      |   |
| <meta content="Java, platform" name="keywords"/>                                                                                                                                                                                                                                                                                                    |   |
| <meta content="Java technology is a portfolio of products tha&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;t are based on the power of networks and the idea that the same software should&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;run on many different kinds of systems and devices." name="description"/> |   |
| <meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>                                                                                                                                                                                                                                                                                |   |
| <meta content="2003-11-23" name="date"/>                                                                                                                                                                                                                                                                                                            | ¥ |
|                                                                                                                                                                                                                                                                                                                                                     |   |

#### **Figure 3** Using Telnet to Connect to a Web Server


### **Open-source crawler**

http://en.wikipedia.org/wiki/Web\_crawler#Examples

- Apache Nutch. Java.
- Heritrix for Internet Archive. Java
- mnoGoSearch. C
- PHP-Crawler. PHP
- OpenSearchServer. Multi-platform.
- Seeks. C++
- Yacy. Cross-platform

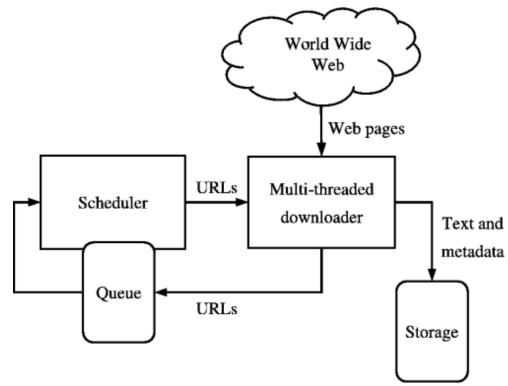

### **Basic Process of Crawling**

- Need a scalable *domain name system* (DNS) server (hostname to IP address translation)
- Crawler attempts to connect to server host using specific *port*



- After connection, crawler sends an HTTP request to the web server to request a page
  - usually a GET request

### A Crawler Architecture at Ask.com

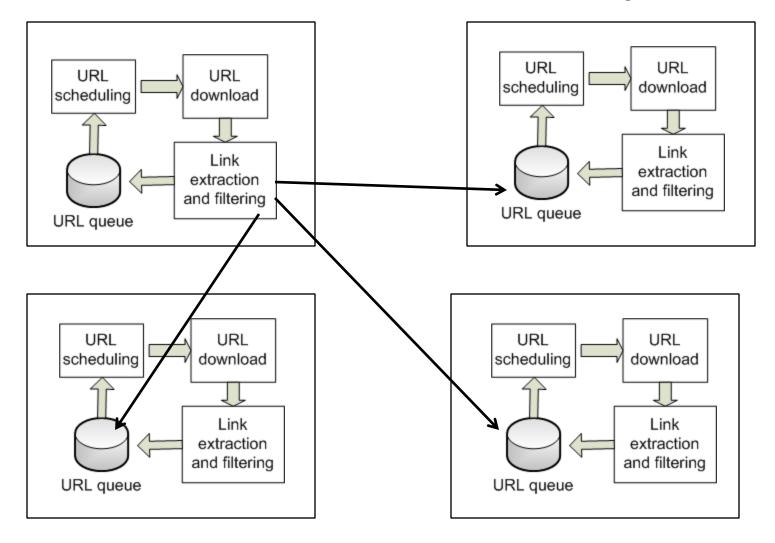



### Web Crawling: Detailed Steps

- Starts with a set of *seeds* 
  - Seeds are added to a URL request queue
- Crawler starts fetching pages from the request queue
- Downloaded pages are parsed to find link tags that might contain other useful URLs to fetch
- New URLs added to the crawler's request queue, or frontier
- Scheduler prioritizes to discover new or refresh the existing URLs
- Repeat the above process

### **Multithreading in crawling**

- Web crawlers spend a lot of time waiting for responses to requests
  - Multi-threaded for concurrency
  - Tolerate slowness of some sites
- Few hundreds
- of threads/machine




### **Distributed Crawling: Parallel Execution**

- Crawlers may be running in diverse geographies USA, Europe, Asia, etc.
  - Periodically update a master index
  - Incremental update so this is "cheap"
- Three reasons to use multiple computers
  - Helps to put the crawler closer to the sites it crawls
  - Reduces the number of sites the crawler has to remember
  - More computing resources

### **A Distributed Crawler Architecture**

#### What to communicate among machines?

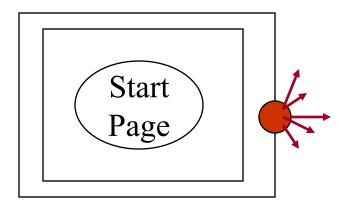


### **Variations of Distributed Crawlers**

- Crawlers are independent
  - Fetch pages oblivious to each other.
- <u>Static</u> assignment
  - Distributed crawler uses a hash function to assign URLs to crawling computers
  - hash function can be computed on the host part of each URL
- Dynamic assignment
  - Master-slaves
  - Central coordinator splits URLs among crawlers

### **Comparison of Distributed Crawlers**

|                                | Advantages                                                         | Disadvantages                                                             |
|--------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| Independent                    | Fault tolerance<br>Easier management                               | Load imbalance<br>Redundant crawling                                      |
| Hash-based URL<br>distribution | Improved load<br>imbalance<br>Non-duplicated<br>crawling           | Inter-machine<br>communication<br>Load imbalance/slow<br>machine handling |
| Master-slave                   | Load balanced<br>Tolerate slow/failed<br>slaves<br>Non-duplication | Master bottleneck<br>Master-slave comm.                                   |

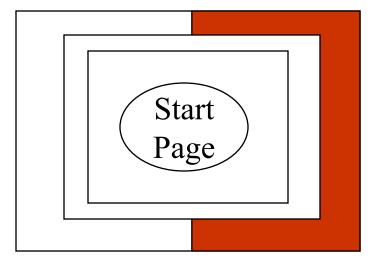

### **Table of Content**

- Crawling architecture and flow
- Schedule: Where to crawl
  - Crawling control with robots.txt
  - Freshness
  - Focused crawling
- URL discovery:
  - Deep web, Sitemaps, & Data feeds
- Data representation and store



# Where do we spider next? URLs crawled and parsed URLs in queue Web

### How fast can spam URLs contaminate a queue?




BFS depth = 2

Normal avg outdegree = 10

100 URLs on the queue including a spam page.

Assume the spammer is able to generate dynamic pages with 1000 outlinks



BFS depth = 3 2000 URLs on the queue 50% belong to the spammer

BFS depth = 4 1.01 million URLs on the queue 99% belong to the spammer

## Scheduling Issues: Where do we spider next?

- Keep all spiders busy (load balanced)
  - Avoid fetching duplicates repeatedly
- Respect politeness and robots.txt
  - Crawlers could potentially flood sites with requests for pages
  - use *politeness policies:* e.g., delay between requests to same web server
- Handle crawling abnormality:
  - Avoid getting stuck in traps
  - Tolerate faults with retry

### More URL Scheduling Issues

- Conflicting goals
  - Big sites are crawled completely;
  - Discover and recrawl URLs frequently
    - -Important URLs need to have high priority
      - What's best?
         Quality, fresh, topic coverage
    - -Avoid/Minimize duplicate and spam
  - Revisiting for recently crawled URLs should be excluded to avoid the endless of revisiting of the same URLs.
- Access properties of URLs to make a scheduling decision.

### /robots.txt

- Protocol for giving spiders ("robots") limited access to a website
  - www.robotstxt.org/
- Website announces its request on what can(not) be crawled
  - For a URL, create a file robots.txt
  - This file specifies access restrictions
  - Place in the top directory of web server.
    - E.g. <u>www.cs.ucsb.edu/robots.txt</u>
    - www.ucsb.edu/robots.txt

### **Robots.txt example**

 No robot should visit any URL starting with "/yoursite/temp/", except the robot called "searchengine":

User-agent: \* Disallow: /yoursite/temp/

User-agent: searchengine Disallow:

### More Robots.txt example

```
User-agent: *
Disallow: /private/
Disallow: /confidential/
Disallow: /other/
Allow: /other/public/
```

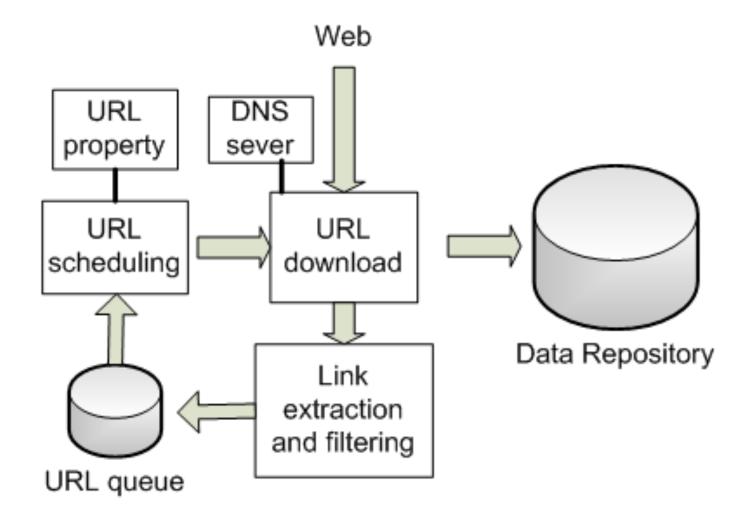
User-agent: FavoredCrawler Disallow:

Sitemap: http://mysite.com/sitemap.xml.gz



- Web pages are constantly being added, deleted, and modified
- Web crawler must continually revisit pages it has already crawled to see if they have changed in order to maintain the *freshness* of the document collection
- Not possible to constantly check all pages
  - Need to check important pages and pages that change frequently

### **Freshness**


- HTTP protocol has a special request type called HEAD that makes it easy to check for page changes
  - returns information about page, not page itself
  - Information is not reliable. (e.g ~40+% incorrect)

```
Client request: HEAD /csinfo/people.html HTTP/1.1
Host: www.cs.umass.edu
HTTP/1.1 200 OK
Date: Thu, 03 Apr 2008 05:17:54 GMT
Server: Apache/2.0.52 (CentOS)
Last-Modified: Fri, 04 Jan 2008 15:28:39 GMT
Server response: ETag: "239c33-2576-2a2837c0"
Accept-Ranges: bytes
Content-Length: 9590
Connection: close
Content-Type: text/html; charset=ISO-8859-1
```

### **Focused Crawling**

- Attempts to download only those pages that are about a particular topic
  - used by vertical search applications
  - E.g. crawl and collect technical reports and papers appeared in all computer science dept. websites
- Rely on the fact that pages about a topic tend to have links to other pages on the same topic
  - popular pages for a topic are typically used as seeds
- Crawler uses text classifier to decide whether a page is on topic

### Where/what to modify in this architecture for a focused crawler?



### **Table of Content**

- Basic crawling architecture and flow
- Schedule: Where to crawl
  - Crawling control with robots.txt
  - Freshness
  - Focused crawling
- Discover new URLs
  - Deep web, Sitemaps, & Data feeds
- Data representation and store



### **Discover new URLs & Deepweb**

- Challenges to discover new URLs
  - Bandwidth/politeness prevent the crawler from covering large sites fully.
  - Deepweb
- Strategies
  - Mining new topics/related URLs from news, blogs, facebook/twitters.
  - Idendify sites that tend to deliver more new URLs.
  - Deepweb handling/sitemaps
  - RSS feeds



- Sites that are difficult for a crawler to find are collectively referred to as the *deep* (or *hidden*) Web
  - much larger than conventional Web
- Three broad categories:
  - private sites
    - no incoming links, or may require log in with a valid account
  - form results
    - sites that can be reached only after entering some data into a form
  - scripted pages
    - pages that use JavaScript, Flash, or another client-side language to generate links



- Placed at the root directory of an HTML server.
  - For example, http://example.com/sitemap.xml.
- Sitemaps contain lists of URLs and data about those URLs, such as modification time and modification frequency
- Generated by web server administrators
- Tells crawler about pages it might not otherwise find
- Gives crawler a hint about when to check a page for changes

### **Sitemap Example**

```
<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.company.com/</loc>
    <lastmod>2008-01-15</lastmod>
    <changefreq>monthly</changefreq>
    <priority>0.7</priority>
  </url>
  \langle url \rangle
    <loc>http://www.company.com/items?item=truck</loc>
    <changefreq>weekly</changefreq>
  </url>
  \langle url \rangle
    <loc>http://www.company.com/items?item=bicycle</loc>
    <changefreq>daily</changefreq>
  </url>
</urlset>
```

### **Document Feeds**

- Many documents are published on the web
  - created at a fixed time and rarely updated again
  - e.g., news articles, blog posts, press releases, email
  - new documents found by examining the end of the feed

| .cnn.com/services/rss/         |                                            |           | \$ |
|--------------------------------|--------------------------------------------|-----------|----|
| What is RSS?   How do I access | RSS?                                       |           |    |
| Title                          | Copy URLs to RSS Reader                    |           |    |
| Top Stories                    | http://rss.cnn.com/rss/cnn_topstories.rss  | MY YAHOO! |    |
| World                          | http://rss.cnn.com/rss/cnn_world.rss       | MY YAHOO! |    |
| U.S.                           | http://rss.cnn.com/rss/cnn_us.rss          | MY YAHOO! |    |
| Business (CNNMoney.com)        | http://rss.cnn.com/rss/money_latest.rss    | MY YAHOO! |    |
| Politics                       | http://rss.cnn.com/rss/cnn_allpolitics.rss | MY YAHOO! |    |
| Crime                          | http://rss.cnn.com/rss/cnn_crime.rss       | MY YAHOO! |    |
| Technology                     | http://rss.cnn.com/rss/cnn_tech.rss        | MY YAHOO! |    |
| Health                         | http://rss.cnn.com/rss/cnn_health.rss      | MY YAHOO! |    |
| Entertainment                  | http://rss.cnn.com/rss/cnn_showbiz.rss     | MY YAHOO! |    |
| Travel                         | http://rss.cnn.com/rss/cnn_travel.rss      | MY YAHOO! |    |
|                                | http://rss.cnn.com/rss/cnn_living.rss      | MY YAHOO! |    |
| Living                         |                                            |           |    |
| Living<br>Video                | http://rss.cnn.com/rss/cnn_freevideo.rss   |           |    |

### **Document Feeds**

- Two types:
  - A *push feed* alerts the subscriber to new documents
  - A *pull feed* requires the subscriber to check periodically for new documents

### • Most common format for pull feeds is called RSS

 Really Simple Syndication, RDF Site Summary, Rich Site Summary, or ...

### • Examples

- CNN RSS newsfeed under different categories
- Amazon RSS popular product feeds under different tags

### **RSS Example**

```
<?rml version="1.0"?>
<rss version="2.0">
<channel>
<title>Search Engine News</title>
<link>http://www.search-engine-news.org/</link>
<description>News about search engines.</description>
<language>en-us</language>
<pubDate>Tue, 19 Jun 2008 05:17:00 GMT</pubDate>
<ttl>60</ttl>
```

<item>

<title>Upcoming SIGIR Conference</title> <link>http://www.sigir.org/conference</link> <description>The annual SIGIR conference is coming! Mark your calendars and check for cheap flights.</description> <pubDate>Tue, 05 Jun 2008 09:50:11 GMT</pubDate> <guid>http://search-engine-news.org#500</guid> </item>

### **RSS Example**

<item>

<title>New Search Engine Textbook</title> <link>http://www.cs.umass.edu/search-book</link> <description>A new textbook about search engines will be published soon.</description> <pubDate>Tue, 05 Jun 2008 09:33:01 GMT</pubDate> <guid>http://search-engine-news.org#499</guid> </item> </channel>

</rss>

### RSS

- A number of channel elements:
  - Title
  - Link
  - description
  - ttl tag (time to live)
    - amount of time (in minutes) contents should be cached
- RSS feeds are accessed like web pages
  - using HTTP GET requests to web servers that host them
- Easy for crawlers to parse
- Easy to find new information

### **Table of Content**

- Crawling architecture and flow
- Scheduling: Where to crawl
  - Crawling control with robots.txt
  - Freshness
  - Focused crawling
- URL discovery
  - Deep web, Sitemaps, & Data feeds
- Data representation and store





- Text is stored in hundreds of incompatible file formats
  - e.g., raw text, RTF, HTML, XML, Microsoft Word, ODF, PDF
- Other types of files also important
  - e.g., PowerPoint, Excel
- Typically use a conversion tool
  - converts the document content into a tagged text format such as HTML or XML
  - retains some of the important formatting information

### **Character Encoding**

- A character encoding is a mapping between bits and glyphs
  - Mapping from bits to characters on a screen
- ASCII is basic character encoding scheme for English
  - encodes 128 letters, numbers, special characters, and control characters in 7 bits

| <u>Dec</u> | H  | Oct  | Char |                          | Dec | Hx | Oct | Html                  | Chr   | Dec  | Нх | Oct  | Html                  | Chr | Dec | Hx C  | )ct | Html Ch                | hr |
|------------|----|------|------|--------------------------|-----|----|-----|-----------------------|-------|------|----|------|-----------------------|-----|-----|-------|-----|------------------------|----|
| 0          | 0  | 000  | NUL  | (null)                   | 32  | 20 | 040 | <b>⊛#</b> 32;         | Space | 64   | 40 | 100  | «#64;                 | 0   | 96  | 60 1  | 40  | <b></b> <i>∉</i> #96;  | 1  |
| 1          |    |      |      | (start of heading)       |     |    |     | <b>&amp;#</b> 33;     |       |      | 41 | 101  | «#65;                 | A   | 97  | 61 1  | 41  | <b></b> ∉#97;          | a  |
| 2          |    |      |      | (start of text)          |     |    |     | «#34;                 |       |      |    |      | «#66;                 |     | 98  | 62 1  | 42  | «#98;                  | b  |
| 3          |    |      |      | (end of text)            | 35  | 23 | 043 | «#35;                 | #     |      |    |      | «#67;                 |     | 99  | 63 1  | 43  | «#99;                  | с  |
| 4          |    |      |      | (end of transmission)    | 36  | 24 | 044 | \$                    | ş –   | 68   | 44 | 104  | <b>D</b>              | D   | 100 | 64 1  | 44  | <b></b> <i>∉</i> #100; | d  |
| 5          |    |      |      | (enquiry)                | 37  | 25 | 045 | <b>⊛#37;</b>          | *     | 69   | 45 | 105  | E                     | Е   | 101 | 65 1  | 45  | e                      | e  |
| 6          |    |      |      | (acknowledge)            | 38  | 26 | 046 | <b>&amp;</b>          | 6     | 70   | 46 | 106  | F                     | F   | 102 | 66 1  | 46  | <b>∉#102;</b>          | f  |
| 7          |    |      |      | (bell)                   | 39  | 27 | 047 | <b>'</b>              | 1.00  | 71   | 47 | 107  | & <b>#71;</b>         | G   | 103 | 67 1  | 47  | <i>«#</i> 103;         | g  |
| 8          | 8  | 010  |      | (backspace)              | 40  | 28 | 050 | <b></b> <i>‱</i> #40; | (     | 72   | 48 | 110  | 6#72;                 | н   | 104 | 68 1  | 50  | ∝#104;                 | h  |
| 9          | 9  | 011  | TAB  | (horizontal tab)         | 41  | 29 | 051 | <b>)</b>              | j 🖿   | 73   | 49 | 111  | «#73;                 | I   | 105 | 69 1  | 51  | <b>∉#105;</b>          | i  |
| 10         | A  | 012  |      | (NL line feed, new line) | 42  | 2A | 052 | «#42;                 | *     | 74   | 4A | 112  | ¢#74;                 | J   | 106 | 6A 1. | 52  | <b></b> <i>∝</i> #106; | Ĵ. |
| 11         | В  | 013  | VT   | (vertical tab)           |     | 2B | 053 | 6#43;                 | +     | 75   | 4B | 113  | & <b>#75;</b>         | K   | 107 | 6B 1  | 53  | <b></b> <i>∝</i> #107; | k  |
| 12         | С  | 014  | FF   | (NP form feed, new page) | 44  | 2C | 054 | 6#44;                 | . N   | 76   | 4C | 114  | & <b>#</b> 76;        | L   | 108 | 6C 1. | 54  | <b></b> <i>₄</i> #108; | 1  |
| 13         | D  | 015  | CR   | (carriage return)        |     |    |     | «#45;                 |       | 77   | 4D | 115  | «#77;                 | М   | 109 | 6D 1  | 55  | «#109;                 | m  |
| 14         | Е  | 016  | S0   | (shift out)              | 46  | 2E | 056 | «#46;                 | 1.1.1 | 78   | 4E | 116  | <b>&amp;</b> #78;     | N   | 110 | 6E 1  | 56  | n                      | n  |
| 15         | F  | 017  | SI   | (shift in)               | 47  | 2F | 057 | 6#47;                 | 1     | 79   | 4F | 117  | & <b>#</b> 79;        | 0   | 111 | 6F 1  | 57  | o                      | 0  |
| 16         | 10 | 020  | DLE  | (data link escape)       | 48  | 30 | 060 | «#48;                 | 0     | 80   | 50 | 120  | <b></b> <i>€</i> #80; | P   | 112 | 70 1  | 50  | «#112;                 | р  |
| 17         | 11 | 021  |      | (device control 1)       | 49  | 31 | 061 | «#49;                 | 1     | 81   | 51 | 121  | Q                     | Q   | 113 | 71 1  | 51  | <b>⊛#113;</b>          | p  |
|            |    |      |      | (device control 2)       | 50  | 32 | 062 | 2                     | 2     | 82   | 52 | 122  | <b></b> <i>∉</i> #82; | R   | 114 | 72 1  | 52  | r                      | r  |
|            |    |      |      | (device control 3)       | 51  | 33 | 063 | 3                     | 3     | 83   | 53 | 123  | <b>S</b>              | S   | 115 | 73 1  | 63  | s                      | s  |
| 20         | 14 | 024  | DC4  | (device control 4)       | 52  | 34 | 064 | & <b>#</b> 52;        | 4     | 84   | 54 | 124  | «#84;                 | Т   | 116 | 74 1  | 64  | t                      | t  |
| 21         | 15 | 025  | NAK  | (negative acknowledge)   | 53  | 35 | 065 | <b></b> ∉#53;         | 5     | 85   | 55 | 125  | <b>U</b>              | U   | 117 | 75 1  | 65  | u                      | u  |
|            |    |      |      | (synchronous idle)       | 54  | 36 | 066 | <b></b> <i>∉</i> 54;  | 6     | 86   | 56 | 126  | <b>V</b>              | V   | 118 | 76 1  | 66  | <b></b> <i>₄</i> #118; | v  |
|            |    |      |      | (end of trans. block)    |     |    |     | «#55;                 |       | 87   | 57 | 127  | «#87;                 | W   | 119 | 77 1  | 67  | «#119;                 | w  |
|            |    |      |      | (cancel)                 |     |    |     | «#56;                 |       | 88   | 58 | 130  | «#88;                 |     | 1   |       |     | «#120;                 |    |
| 25         | 10 | 0.21 | FH   | inna na maasuma          | 6.7 | 20 | 071 | ·#57 ·                | 0     | - 00 | 50 | 1.91 | , #oo.                | v   | 121 | 20 1  | 21  | ×#121 ·                | 37 |

### **Character Encoding**

- Major source of incompatibility
- Other languages can have many more glyphs
  - e.g., Chinese has more than 40,000 characters, with over 3,000 in common use
- Many languages have multiple encoding schemes
  - e.g., CJK (Chinese-Japanese-Korean) family of East Asian languages, Hindi, Arabic
  - can't have multiple languages in one file
- Unicode developed to address encoding problems



- Single mapping from numbers to glyphs
  - attempts to include all glyphs in common use in all known languages
  - e.g., UTF-8, UTF-16, UTF-32

#### Table of UNICODE codes,

for **Czech, Hungarian, Polish, Scandinavian** and some other Central European Languages. The hexadecimal digits hhh used in the &#Xhhh; code.

| Char | Code |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Ā    | 100  | Ð    | 110  | Ę    | 118  | Ķ    | 136  | Ń    | 143  | Ó    | d3   | Ś    | 15a  | Ű    | 170  |
| ā    | 101  | đ    | 111  | ę    | 119  | ķ    | 137  | ń    | 144  | 6 Ó  | f3   | Ś    | 15b  | ű    | 171  |
| Ă    | 102  | Ď    | 10e  | Ě    | 11a  | Ĺ    | 139; | Ņ    | 145  | Œ    | 152  | Š    | 160  | Ų    | 172  |
| ă    | 103  | ď    | 10f  | ě    | 11b  | Í    | 13a  | ņ    | 146  | œ    | 153  | š    | 161  | ્ય   | 173  |
| Ą    | 104  | Ē    | 112  |      |      | Ļ    | 13b  | Ň    | 147  | ŕ    | 155  | Ţ    | 162  | Ϋ́   | 178  |
| ą    | 105  | Ē    | 113  | Ģ    | 122  | 1    | 13c  | ň    | 148  | Ŗ    | 156  | ţ    | 163  | Ź    | 179  |
| Ć    | 106  | ě    | 115  | ģ    | 123  | Ľ    | 13d  | Ō    | 14c  | ŗ    | 157  |      |      | ź    | 17a  |
| ć    | 107  | Ė    | 116  | Ī    | 12a  | ľ    | 13e  | ō    | 14d  | Ř    | 158  | ť    | 165  | Ż    | 17ь  |
| Č    | 10c  | ė    | 117  | ī    | 12b  |      |      | Ő    | 150  | ř    | 159  |      |      | Ż    | 17c  |
| č    | 10d  |      |      | f    | 12e  | Ł    | 141  | ő    | 151  | Ş    | 15e  |      |      | Ž    | 17d  |
|      |      |      |      | į    | 12f  | 1    | 142  |      |      | Ş    | 15f  |      |      | ž    | 17e  |

**Example:** Ł = Ł

© 2002 B. C. Biega http://biega.com

# Software Internationalization with Unicode

- Search software needs to be able to run for serving different international content
  - compatibility & space saving
  - UTF-8 uses one byte for English (ASCII), as many as 4 bytes for some traditional Chinese characters
  - UTF-32 uses 4 bytes for every character
- Many applications use UTF-32 for internal text encoding (fast random lookup) and UTF-8 for disk storage (less space)

### **Example of Unicode**

| Decimal         | Hexadecimal       | Encoding  |          |          |          |  |  |  |  |  |
|-----------------|-------------------|-----------|----------|----------|----------|--|--|--|--|--|
| 0-127           | 0-7F              | Oxxxxxxx  |          |          |          |  |  |  |  |  |
| 128 - 2047      | $80-7\mathrm{FF}$ | 110xxxxx  | 10xxxxxx |          |          |  |  |  |  |  |
| 2048 - 55295    | 800-D7FF          | 1110xxxx  | 10xxxxxx | 10xxxxxx |          |  |  |  |  |  |
| 55296 - 57343   | D800–DFFF         | Undefined |          |          |          |  |  |  |  |  |
| 57344 - 65535   | E000–FFFF         | 1110xxxx  | 10xxxxxx | 10xxxxxx |          |  |  |  |  |  |
| 65536 - 1114111 | 10000 - 10 FFFF   | 11110xxx  | 10xxxxxx | 10xxxxxx | 10xxxxxx |  |  |  |  |  |

- Greek letter pi ( $\pi$ ) is Unicode symbol number 960
  - In binary, 00000011 11000000 (3C0 in hexadecimal)
  - Final encoding is **110**01111 **10**000000 (CF80 in hexadecimal)

### **Storing the Documents**

- Many reasons to store converted document text
  - saves crawling time when page is not updated
  - provides efficient access to text for snippet generation, information extraction, etc.
- Data stores used for page repository
  - Store many documents in large files, rather than each document in a file
    - avoids overhead in opening and closing files
    - reduces seek time relative to read time
- Compound documents formats
  - used to store multiple documents in a file
  - e.g., TREC Web

### **TREC Web Format**

<D0C> <DOCNO>WTX001-B01-10</DOCNO> <DOCHDR> http://www.example.com/test.html 204.244.59.33 19970101013145 text/html 440 HTTP/1.0 200 OK Date: Wed, 01 Jan 1997 01:21:13 GMT Server: Apache/1.0.3 Content-type: text/html Content-length: 270 Last-modified: Mon, 25 Nov 1996 05:31:24 GMT </DOCHDR> <HTML> <TITLE>Tropical Fish Store</TITLE> Coming soon! </HTML> </DOC> <D0C> <DOCNO>WTX001-B01-109</DOCNO> <DOCHDR> http://www.example.com/fish.html 204.244.59.33 19970101013149 text/html 440 HTTP/1.0 200 OK Date: Wed, 01 Jan 1997 01:21:19 GMT Server: Apache/1.0.3 Content-type: text/html Content-length: 270 Last-modified: Mon, 25 Nov 1996 05:31:24 GMT </DOCHDR> <HTML> <TITLE>Fish Information</TITLE> This page will soon contain interesting information about tropical fish. </HTML> </DOC>

### **Text Compression**

- Text is highly redundant (or predictable)
- Compression techniques exploit this redundancy to make files smaller without losing any of the content
- Compression of indexes: a separate topic
- Popular algorithms can compress HTML and XML text by 80%
  - e.g., DEFLATE (zip, gzip) and LZW (UNIX compress, PDF)
  - may compress large files in blocks to make access faster