
Crawling

T. Yang, UCSB 293S
Some of slides from Crofter/Metzler/Strohman’s
textbook

Where are we?

Internet
Web
documents

CrawlerCrawlerCrawler

Content
classification

Bad content
removal

ParsingParsingParsing

Evaluation
with TREC data

Rank signal
generation

Online
Database

Document
respository

Document
respository

Document
respository

Match&Retrieval

Rank

Inverted index
generation

HW1

HW2

Table of Content

• Basic crawling architecture and flow
§ Distributed crawling

• Scheduling: Where to crawl
§ Crawling control with robots.txt
§ Freshness
§ Focused crawling

• URL discovery
• Deep web, Sitemaps, & Data feeds

• Data representation and store

Web Crawler

• Collecting data is critical for web applications
§ Find and download web pages automatically

Downloading Web Pages

• Every page has a unique uniform resource locator
(URL)

• Web pages are stored on web servers that use
HTTP to exchange information with client software
§ HTTP /1.1

HTTP

Open-source crawler
http://en.wikipedia.org/wiki/Web_crawler#Examples

• Apache Nutch. Java.
• Heritrix for Internet Archive. Java
• mnoGoSearch. C
• PHP-Crawler. PHP
• OpenSearchServer. Multi-platform.
• Seeks. C++
• Yacy. Cross-platform

Basic Process of Crawling

• Need a scalable domain name system (DNS) server
(hostname to IP address translation)

• Crawler attempts to
connect to server host
using specific port

• After connection, crawler sends an HTTP request to the
web server to request a page
§ usually a GET request

A Crawler Architecture at Ask.com

Web Crawling: Detailed Steps

• Starts with a set of seeds
§ Seeds are added to a URL request queue

• Crawler starts fetching pages from the request queue
• Downloaded pages are parsed to find link tags that might

contain other useful URLs to fetch
• New URLs added to the crawler’s request queue, or

frontier
• Scheduler prioritizes to discover new or refresh the

existing URLs
• Repeat the above process

Multithreading in crawling

• Web crawlers spend a lot of time waiting for
responses to requests
§ Multi-threaded for concurrency
§ Tolerate slowness
of some sites

• Few hundreds
of threads/machine

Distributed Crawling: Parallel Execution

• Crawlers may be running in diverse geographies –
USA, Europe, Asia, etc.
§ Periodically update a master index
§ Incremental update so this is “cheap”

• Three reasons to use multiple computers
§ Helps to put the crawler closer to the sites it crawls
§ Reduces the number of sites the crawler has to

remember
§ More computing resources

A Distributed Crawler Architecture

What to communicate among machines?

Variations of Distributed Crawlers

• Crawlers are independent
§ Fetch pages oblivious to each other.

• Static assignment
§ Distributed crawler uses a hash function to assign

URLs to crawling computers
§ hash function can be computed on the host part of

each URL
• Dynamic assignment

§ Master-slaves
§ Central coordinator splits URLs among crawlers

Comparison of Distributed Crawlers

Advantages Disadvantages

Independent Fault tolerance

Easier management

Load imbalance
Redundant crawling

Hash-based URL
distribution

Improved load
imbalance
Non-duplicated
crawling

Inter-machine
communication

Load imbalance/slow
machine handling

Master-slave Load balanced
Tolerate slow/failed
slaves
Non-duplication

Master bottleneck

Master-slave comm.

Table of Content

• Crawling architecture and flow
• Schedule: Where to crawl

§ Crawling control with robots.txt
§ Freshness
§ Focused crawling

• URL discovery:
• Deep web, Sitemaps, & Data feeds

• Data representation and store

Where do we spider next?

Web

URLs crawled
and parsed

URLs in queue

How fast can spam URLs contaminate a queue?

BFS depth = 2

Normal avg outdegree = 10

100 URLs on the queue
including a spam page.

Assume the spammer is able to
generate dynamic pages with
1000 outlinks

Start
Page

Start
Page

BFS depth = 3
2000 URLs on the queue
50% belong to the spammer

BFS depth = 4
1.01 million URLs on the queue
99% belong to the spammer

Scheduling Issues: Where do we spider
next?

• Keep all spiders busy (load balanced)
§ Avoid fetching duplicates repeatedly

• Respect politeness and robots.txt
§ Crawlers could potentially flood sites with requests

for pages
§ use politeness policies: e.g., delay between

requests to same web server
• Handle crawling abnormality:

§ Avoid getting stuck in traps
§ Tolerate faults with retry

More URL Scheduling Issues

• Conflicting goals
§ Big sites are crawled completely;
§ Discover and recrawl URLs frequently

– Important URLs need to have high priority
§ What’s best? Quality, fresh, topic coverage

–Avoid/Minimize duplicate and spam
§ Revisiting for recently crawled URLs

should be excluded to avoid the endless
of revisiting of the same URLs.

• Access properties of URLs to make a
scheduling decision.

/robots.txt

• Protocol for giving spiders (“robots”) limited
access to a website
§ www.robotstxt.org/

• Website announces its request on what can(not) be
crawled
§ For a URL, create a file robots.txt
§ This file specifies access restrictions
§ Place in the top directory of web server.

– E.g. www.cs.ucsb.edu/robots.txt
– www.ucsb.edu/robots.txt

Robots.txt example

• No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine
Disallow:

More Robots.txt example

Freshness

• Web pages are constantly being added, deleted,
and modified

• Web crawler must continually revisit pages it has
already crawled to see if they have changed in
order to maintain the freshness of the document
collection

• Not possible to constantly check all pages
§ Need to check important pages and pages that

change frequently

Freshness

• HTTP protocol has a special request type called
HEAD that makes it easy to check for page changes
§ returns information about page, not page itself
§ Information is not reliable. (e.g ~40+% incorrect)

Focused Crawling

• Attempts to download only those pages that are
about a particular topic
§ used by vertical search applications
§ E.g. crawl and collect technical reports and papers

appeared in all computer science dept. websites
• Rely on the fact that pages about a topic tend to

have links to other pages on the same topic
§ popular pages for a topic are typically used as seeds

• Crawler uses text classifier to decide whether a page
is on topic

Where/what to modify in this architecture
for a focused crawler?

Table of Content

• Basic crawling architecture and flow
• Schedule: Where to crawl

§ Crawling control with robots.txt
§ Freshness
§ Focused crawling

• Discover new URLs
• Deep web, Sitemaps, & Data feeds

• Data representation and store

Discover new URLs & Deepweb

• Challenges to discover new URLs
§ Bandwidth/politeness prevent the crawler from

covering large sites fully.
§ Deepweb

• Strategies
§ Mining new topics/related URLs from news, blogs,

facebook/twitters.
§ Idendify sites that tend to deliver more new URLs.
§ Deepweb handling/sitemaps
§ RSS feeds

Deep Web

• Sites that are difficult for a crawler to find are
collectively referred to as the deep (or hidden) Web
§ much larger than conventional Web

• Three broad categories:
§ private sites

– no incoming links, or may require log in with a valid account
§ form results

– sites that can be reached only after entering some data into a
form

§ scripted pages
– pages that use JavaScript, Flash, or another client-side

language to generate links

Sitemaps

• Placed at the root directory of an HTML server.
§ For example, http://example.com/sitemap.xml.

• Sitemaps contain lists of URLs and data about those
URLs, such as modification time and modification
frequency

• Generated by web server administrators
• Tells crawler about pages it might not otherwise find
• Gives crawler a hint about when to check a page for

changes

Sitemap Example

Document Feeds

• Many documents are published on the web
§ created at a fixed time and rarely updated again
§ e.g., news articles, blog posts, press releases, email
§ new documents found by examining the end of the

feed

Document Feeds

• Two types:
§ A push feed alerts the subscriber to new documents
§ A pull feed requires the subscriber to check

periodically for new documents
• Most common format for pull feeds is called RSS

§ Really Simple Syndication, RDF Site Summary,
Rich Site Summary, or ...

• Examples
§ CNN RSS newsfeed under different categories
§ Amazon RSS popular product feeds under different

tags

RSS Example

RSS Example

RSS

• A number of channel elements:
§ Title
§ Link
§ description
§ ttl tag (time to live)

– amount of time (in minutes) contents should be cached
• RSS feeds are accessed like web pages

§ using HTTP GET requests to web servers that host
them

• Easy for crawlers to parse
• Easy to find new information

Table of Content

• Crawling architecture and flow
• Scheduling: Where to crawl

§ Crawling control with robots.txt
§ Freshness
§ Focused crawling

• URL discovery
• Deep web, Sitemaps, & Data feeds

• Data representation and store

Conversion

• Text is stored in hundreds of incompatible file
formats
§ e.g., raw text, RTF, HTML, XML, Microsoft Word,

ODF, PDF
• Other types of files also important

§ e.g., PowerPoint, Excel
• Typically use a conversion tool

§ converts the document content into a tagged text
format such as HTML or XML

§ retains some of the important formatting information

Character Encoding

• A character encoding is a mapping between bits
and glyphs
§ Mapping from bits to characters on a screen

• ASCII is basic character encoding scheme for
English
§ encodes 128 letters, numbers, special characters,

and control characters in 7 bits

Character Encoding

• Major source of incompatibility
• Other languages can have many more glyphs

§ e.g., Chinese has more than 40,000 characters, with
over 3,000 in common use

• Many languages have multiple encoding schemes
§ e.g., CJK (Chinese-Japanese-Korean) family of East

Asian languages, Hindi, Arabic
§ can’t have multiple languages in one file

• Unicode developed to address encoding problems

Unicode

• Single mapping from numbers to glyphs
§ attempts to include all glyphs in common use in all

known languages
§ e.g., UTF-8, UTF-16, UTF-32

Software Internationalization with
Unicode

• Search software needs to be able to run for serving
different international content
§ compatibility & space saving
§ UTF-8 uses one byte for English (ASCII), as many as

4 bytes for some traditional Chinese characters
§ UTF-32 uses 4 bytes for every character

• Many applications use UTF-32 for internal text
encoding (fast random lookup) and UTF-8 for disk
storage (less space)

Example of Unicode

§ Greek letter pi (π) is Unicode symbol number 960
– In binary, 00000011 11000000 (3C0 in

hexadecimal)
– Final encoding is 11001111 10000000 (CF80 in

hexadecimal)

Storing the Documents

• Many reasons to store converted document text
§ saves crawling time when page is not updated
§ provides efficient access to text for snippet

generation, information extraction, etc.
• Data stores used for page repository

§ Store many documents in large files, rather than each
document in a file

– avoids overhead in opening and closing files
– reduces seek time relative to read time

• Compound documents formats
§ used to store multiple documents in a file
§ e.g., TREC Web

TREC Web Format

Text Compression

• Text is highly redundant (or predictable)
• Compression techniques exploit this redundancy to

make files smaller without losing any of the content
• Compression of indexes: a separate topic
• Popular algorithms can compress HTML and XML

text by 80%
§ e.g., DEFLATE (zip, gzip) and LZW (UNIX compress,

PDF)
§ may compress large files in blocks to make access

faster

