Classification Algorithms

UCSB 293S, 2017. T. Yang
Some of slides based on R. Mooney (UT Austin)

Table of Content

- Problem Definition
- Rocchio
- K-nearest neighbor (case based)
- Bayesian algorithm
- Decision trees
- SVM

Classification

- Given:
- A description of an instance, x
- A fixed set of categories (classes):
$C=\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
- Training examples
- Determine:
- The category of $x: h(x) \in C$, where $h(x)$ is a classification function
- A training example is an instance x, paired with its correct category $c(x)$:
$<x, c(x)>$

Sample Learning Problem

- Instance space: <size, color, shape>
- size \in \{small, medium, large $\}$
- color $\in\{$ red, blue, green $\}$
- shape \in \{square, circle, triangle\}
- $C=\{$ positive, negative $\}$
- D :

Example	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Bias
- Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy (\% of instances classified correctly).
- Measured on independent test data.
- Training time (efficiency of training algorithm).
- Testing time (efficiency of subsequent classification).

Text Categorization/Classification

- Assigning documents to a fixed set of categories.
- Applications:
- Web pages
- Recommending/ranking
- category classification
- Newsgroup Messages
- Recommending
- spam filtering
- News articles
- Personalized newspaper
- Email messages
- Routing
- Prioritizing
- Folderizing
- spam filtering

Learning for Classification

- Manual development of text classification functions is difficult.
- Learning Algorithms:
- Bayesian (naïve)
- Neural network
- Rocchio
- Rule based (Ripper)
- Nearest Neighbor (case based)
- Support Vector Machines (SVM)
- Decision trees
- Boosting algorithms

Illustration of Rocchio method

Rocchio Algorithm

Assume the set of categories is $\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
Training:
Each doc vector is the frequency normalized TF/IDF term vector.
For i from 1 to n
Sum all the document vectors in c_{i} to get prototype vector \mathbf{p}_{i}

Testing: Given document x
Compute the cosine similarity of x with each prototype vector. Select one with the highest similarity value and return its category

Rocchio Anomoly

- Prototype models have problems with polymorphic (disjunctive) categories.

Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x :
- Compute similarity between x and all examples in D.
- Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
- Case-based
- Memory-based
- Lazy learning

K Nearest-Neighbor

- Using only the closest example to determine categorization is subject to errors due to:
- A single atypical example.
- Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the k most-similar examples and return the majority category of these k examples.
- Value of k is typically odd to avoid ties, 3 and 5 are most common.

Similarity Metrics

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous m-dimensional instance space is Euclidian distance.
- Simplest for m-dimensional binary instance space is Hamming distance (number of feature values that differ).
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective.

3 Nearest Neighbor Illustration (Euclidian Distance)

K Nearest Neighbor for Text

Training:

For each each training example $\langle x, c(x)>\in D$
Compute the corresponding TF-IDF vector, \mathbf{d}_{x}, for document x
Test instance \boldsymbol{y} :
Compute TF-IDF vector \mathbf{d} for document y
For each $<x, c(x)>\in D$
Let $s_{x}=\cos \operatorname{Sim}\left(\mathbf{d}, \mathbf{d}_{x}\right)$
Sort examples, x, in D by decreasing value of s_{x}
Let N be the first k examples in D. (get most similar neighbors)
Return the majority class of examples in N

Illustration of 3 Nearest Neighbor for Text

Bayesian Classification

Bayesian Methods

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses prior probability of each category
- Based on training data
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

Basic Probability Theory

- All probabilities between 0 and 1

$$
0 \leq P(A) \leq 1
$$

- True proposition has probability 1 , false has probability 0 .

$$
P(\text { true })=1 \quad P(\text { false })=0 .
$$

- The probability of disjunction is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Conditional Probability

- $\mathrm{P}(A \mid B)$ is the probability of A given B
- Assumes that B is all and only information known.
- Defined by:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Independence

- A and B are independent iff:
$P(A \mid B)=P(A) \quad$ These two constraints are logically equivalent $P(B \mid A)=P(B)$
- Therefore, if A and B are independent:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A)
$$

$$
P(A \wedge B)=P(A) P(B)
$$

Joint Distribution

- Joint probability distribution for $X_{1}, \ldots, X_{\mathrm{n}}$ gives the probability of every combination of values: $\mathrm{P}\left(X_{1}, \ldots, X_{\mathrm{n}}\right)$
- All values must sum to 1 .

Category=positive

Color\shape	circle	square
red	0.20	0.02
blue	0.02	0.01

	circle	square
red	0.05	0.30
blue	0.20	0.20

- Probability for assignments of values to some subset of variables can be calculated by summing the appropriate subset

$$
\begin{gathered}
P(\text { red } \wedge \text { circle })=0.20+0.05=0.25 \\
P(\text { red })=0.20+0.02+0.05+0.3=0.57
\end{gathered}
$$

- Conditional probabilities can also be calculated.
$P($ positive $\mid r e d \wedge$ circle $)=\frac{P(\text { positive } \wedge r e d ~}{\wedge \text { circle })} \underset{P(\text { red } \wedge \text { circle })}{ }=\frac{0.20}{0.25}=0.80$

Computing probability from a training dataset

Ex	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negitive
4	large	blue	circle	negitive

Probability	$\mathrm{Y}=$ positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.0	0.0
$\mathrm{P}($ large $\mid Y)$	0.5	0.5
$\mathrm{P}($ red $\mid Y)$	1.0	0.5
$\mathrm{P}($ blue $\mid Y)$	0.0	0.5
$\mathrm{P}($ green $\mid Y)$	0.0	0.0
$\mathrm{P}($ square $\mid Y)$	0.0	0.0
$\mathrm{P}($ triangle $\mid Y)$	0.0	0.5
$\mathrm{P}($ circle $\mid Y)$	1.0	0.5

Bayes Theorem

$P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
Simple proof from definition of conditional probability:

$$
\begin{aligned}
& P(H \mid E)=\frac{P(H \wedge E)}{P(E)} \quad \text { (Def. cond. prob.) } \\
& P(E \mid H)=\frac{P(H \wedge E)}{P(H)} \quad \text { (Def. cond. prob.) } \\
& P(H \wedge E)=P(E \mid H) P(H)
\end{aligned}
$$

Thus: $P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$

Bayesian Categorization

- Determine category of instance x_{k} by determining for each y_{i}

$$
P\left(Y=y_{i} \mid X=x_{k}\right)=\frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{P\left(X=x_{k}\right)}
$$

- $\mathrm{P}\left(X=x_{k}\right)$ estimation is not needed in the algorithm to choose a classification decision via comparison.

$$
P\left(Y=y_{i} \mid X=x_{k}\right)=\frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{P\left(X=x_{k}\right)}
$$

- If really needed:

$$
\begin{aligned}
& \sum_{i=1}^{m} P\left(Y=y_{i} \mid X=x_{k}\right)=\sum_{i=1}^{m} \frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{P\left(X=x_{k}\right)}=1 \\
& P\left(X=x_{k}\right)=\sum_{i=1}^{m} P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)
\end{aligned}
$$

Bayesian Categorization (cont.)

- Need to know: $\quad P\left(Y=y_{i} \mid X=x_{k}\right)=\frac{P\left(Y=y_{i}\right) P\left(X=x_{k} \mid Y=y_{i}\right)}{\frac{P(X=1}{}}$
- Priors: $\mathrm{P}\left(Y=y_{i}\right)$
- Conditionals: $\mathrm{P}\left(X=x_{k} \mid Y=y_{i}\right)$
- $\mathrm{P}\left(Y=y_{i}\right)$ are easily estimated from training data.
- If n_{i} of the examples in training data D are in y_{i} then $\mathrm{P}\left(Y=y_{i}\right)=n_{i} /|D|$
- Too many possible instances (e.g. 2^{n} for binary features) to estimate all $\mathrm{P}\left(X=x_{k} \mid Y=y_{i}\right)$ in advance.

Naïve Bayesian Categorization

- If we assume features of an instance are independent given the category (conditionally independent).

$$
P(X \mid Y)=P\left(X_{1}, X_{2}, \cdots X_{n} \mid Y\right)=\prod_{i=1}^{n} P\left(X_{i} \mid Y\right)
$$

- Therefore, we then only need to know $\mathrm{P}\left(X_{i} \mid Y\right)$ for each possible pair of a feature-value and a category.
- n_{i} of the examples in training data D are in y_{i}
- $n_{i j}$ of the examples in D with category y_{i}
$-\mathrm{P}\left(x_{i j} \mid Y=y_{i}\right)=n_{i j} / n_{i}$

Underflow Prevention:

Multiplying lots of probabilities may result in floating-point underflow. Since $\log (x y)=\log (x)+\log (y)$, it is better to perform all computations by summing logs of probabilities.

Computing probability from a training dataset

Ex	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negitive
4	large	blue	circle	negitive

Probability	$\mathrm{Y}=$ positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.0	0.0
$\mathrm{P}($ large $\mid Y)$	0.5	0.5
$\mathrm{P}($ red $\mid Y)$	1.0	0.5
$\mathrm{P}($ blue $\mid Y)$	0.0	0.5
$\mathrm{P}($ green $\mid Y)$	0.0	0.0
$\mathrm{P}($ square $\mid Y)$	0.0	0.0
$\mathrm{P}($ triangle $\mid Y)$	0.0	0.5
$\mathrm{P}($ circle $\mid Y)$	1.0	0.5

Naïve Bayes Example

Probability	$\mathrm{Y}=$ positive	$\mathrm{Y}=$ negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.4	0.4
$\mathrm{P}($ medium $\mid Y)$	0.1	0.2
$\mathrm{P}($ large $\mid Y)$	0.5	0.4
$\mathrm{P}($ red $\mid Y)$	0.9	0.3
$\mathrm{P}($ blue $\mid Y)$	0.05	0.3
$\mathrm{P}($ green $\mid Y)$	0.05	0.4
$\mathrm{P}($ square $\mid Y)$	0.05	0.4
$\mathrm{P}($ triangle $\mid Y)$	0.05	0.3
$\mathrm{P}($ circle $\mid Y)$	0.9	0.3

Test Instance:
<medium ,red, circle>

Naïve Bayes Example

Probability	$\mathrm{Y}=$ positive	$\mathrm{Y}=$ negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.1	0.2
$\mathrm{P}($ red $\mid Y)$	0.9	0.3
$\mathrm{P}($ circle $\mid Y)$	0.9	0.3

Test Instance:
$\mathrm{P}($ positive $\mid X)=\mathrm{P}($ Positive $) * \mathrm{P}(\mathrm{X} /$ Positive $) / \mathrm{P}(\mathrm{X})$
$=\mathrm{P}($ positive $) *$ P(medium \mid positive) ${ }^{*} \mathrm{P}(\text { red } \mid \text { positive })^{*} \mathrm{P}($ circle \mid positive $) / \mathrm{P}(X)$

$$
\begin{array}{cccccc}
0.5 & * & 0.1 & * & 0.9 & *
\end{array} 0.9
$$

$\mathrm{P}($ negative $\mid X)=\mathrm{P}($ negative $) * \mathrm{P}($ medium \mid negative) $* \mathrm{P}($ red | negative) $* \mathrm{P}($ circle | negative) $/ \mathrm{P}(X)$

$$
\begin{array}{cccccc}
0.5 & * & 0.2 & * & 0.3 & * \\
=0.009 / \mathrm{P}(X) & =0.009 / 0.0495 & =0.1818 & &
\end{array}
$$

$\mathrm{P}($ positive $\mid X)+\mathrm{P}($ negative $\mid X)=0.0405 / \mathrm{P}(X)+0.009 / \mathrm{P}(X)=1$
$\mathrm{P}(X)=(0.0405+0.009)=0.0495$

Error prone prediction with small training data

Ex	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negitive
4	large	blue	circle	negitive

Probability	$\mathrm{Y}=$ positive	negative
$\mathrm{P}(Y)$	0.5	0.5
$\mathrm{P}($ small $\mid Y)$	0.5	0.5
$\mathrm{P}($ medium $\mid Y)$	0.0	0.0
$\mathrm{P}($ large $\mid Y)$	0.5	0.5
$\mathrm{P}($ red $\mid Y)$	1.0	0.5
$\mathrm{P}($ blue $\mid Y)$	0.0	0.5
$\mathrm{P}($ green $\mid Y)$	0.0	0.0
$\mathrm{P}($ square $\mid Y)$	0.0	0.0
$\mathrm{P}($ triangle $\mid Y)$	0.0	0.5
$\mathrm{P}($ circle $\mid Y)$	1.0	0.5

$\mathrm{P}($ positive $\mid X)=0.5 * 0.0 * 1.0 * 1.0=0$
$\mathrm{P}($ negative $\mid X)=0.5 * 0.0 * 0.5 * 0.5=0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an m-estimate assumes that each feature is given a prior probability, p, that is assumed to have been previously observed in a
"virtual" sample of size m.

$$
P\left(X_{i}=x_{i j} \mid Y=y_{k}\right)=\frac{n_{i j k}+m p}{n_{k}+m}
$$

- For binary features, p is simply assumed to be 0.5 .

Laplace Smothing Example

- Assume training set contains 10 positive examples:
- 4: small
- 0: medium
- 6: large
- Estimate parameters as follows (if $m=1, p=1 / 3$)
$-\mathrm{P}($ small \mid positive $)=(4+1 / 3) /(10+1)=0.394$
$-\mathrm{P}($ medium \mid positive $)=(0+1 / 3) /(10+1)=0.03$
$-\mathrm{P}($ large \mid positive $)=(6+1 / 3) /(10+1)=\underline{0.576}$
$-\mathrm{P}($ small or medium or large \mid positive $)=1.0$

Bayes Training Example

Naïve Bayes Classification

Evaluating Accuracy of Classification

- Evaluation must be done on test data that are independent of the training data
- Classification accuracy: the number of test instances correctly classified divided by total number of test instances
- Average results over multiple training and test sets (splits of the overall data) for the best results.
- Not enough labeled data? N-fold cross-validation
- Partition data into N equal-sized disjoint segments.
- Run N trials, each time using a different segment of the data for testing, and training on the remaining $N-1$ segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the N trials.
- Typically, $N=10$.

Sample Learning Curve (Yahoo Science Data)

Classification with Decision Trees

Decision Trees

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
- Prefer to find more compact decision trees: we don't want to memorize the data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($\$, \$ \$, \$ \$ \$)$
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time ($0-10,10-30,30-60,>60$)

Training data: Restaurant example

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table:

Example	Attributes										Target Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

- Classification of examples is positive (T) or negative (F)

A decision tree to decide whether to wait

- imagine someone talking a sequence of decisions.

Decision tree learning

- If there are so many possible trees, can we actually search this space? (solution: greedy search).
- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree.

Choosing an attribute for making a decision

- Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative" 000000 -0.0.0.

Information theory background: Entropy

- Entropy measures uncertainty

$$
-p \log (p)-(1-p) \log (1-p)
$$

Consider tossing a biased coin. If you toss the coin VERY often, the frequency of heads is, say, p, and hence the frequency of tails is 1-p.

Uncertainty (entropy) is zero if $\mathrm{p}=0$ or 1 and maximal if we have $\mathrm{p}=0.5$.

Using information theory for binary decisions

- Imagine we have p examples which are true (positive) and n examples which are false (negative).
- Our best estimate of true or false is given by:

$$
\begin{aligned}
& P(\text { true }) \approx p / p+n \\
& p(\text { false }) \approx n / p+n
\end{aligned}
$$

- Hence the entropy is given by:
$\operatorname{Entropy}\left(\frac{p}{p+n}, \frac{n}{p+n}\right) \approx-\frac{p}{p+n} \log \frac{p}{p+n}-\frac{n}{p+n} \log \frac{n}{p+n}$

Using information theory for more than 2 states

- If there are more than two states $\mathrm{s}=1,2, . . \mathrm{n}$ we have (e.g. a die):
$\operatorname{Entropy}(p)=-p(s=1) \log [p(s=1)]$ $-p(s=2) \log [p(s=2)]$

$$
-p(s=n) \log [p(s=n)]
$$

$$
\sum_{s=1}^{n} p(s)=1
$$

ID3 Algorithm: Using Information Theory to Choose an Attribute

- How much information do we gain if we disclose the value of some attribute?
- ID3 algorithm by Ross Quinlan uses information gained measured by maximum entropy reduction:
$-\quad \operatorname{IG}(\mathrm{A})=$ uncertainty before - uncertainty after
- Choose an attribute with the maximum IA

Before: Entropy $=-1 / 2 \log (1 / 2)-1 / 2 \log (1 / 2)=\log (2)=1$ bit:
There is " 1 bit of information to be discovered".

After: for Type: If we go into branch "French" we have 1 bit, similarly for the others.

French: 1bit
Italian: 1 bit
Thai: 1 bit On average: 1 bit and gained nothing! Burger: 1bit

After: for Patrons: In branch "None" and "Some" entropy $=0$!, In "Full" entropy $=-1 / 3 \log (1 / 3)-2 / 3 \log (2 / 3)=0.92$

So Patrons gains more information!

Information Gain: How to combine branches

- $1 / 6$ of the time we enter "None", so we weight"None" with $1 / 6$. Similarly: "Some" has weight: $1 / 3$ and "Full" has weight $1 / 2$.
$\operatorname{Entropy}(A)=\sum_{i=1}^{n} \frac{p_{i}+n_{i}}{p+n} \operatorname{Entropy}\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)$ entropy for each branch.
weight for each branch

Choose an attribute: Restaurant Example

For the training set, $p=n=6, I(6 / 12,6 / 12)=1$ bit

$$
\begin{aligned}
& I G(\text { Patrons })=1-\left[\frac{2}{12} I(0,1)+\frac{4}{12} I(1,0)+\frac{6}{12} I\left(\frac{2}{6}, \frac{4}{6}\right)\right]=.0541 \text { bits } \\
& I G(\text { Type })=1-\left[\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)\right]=0 \mathrm{bits}
\end{aligned}
$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

Example: Decision tree learned

- Decision tree learned from the 12 examples:

Issues

- When there are no attributes left:
- Stop growing and use majority vote.
- Avoid over-fitting data
- Stop growing a tree earlier
- Grow first, and prune later.
- Deal with continuous-valued attributes
- Dynamically select thresholds/intervals.
- Handle missing attribute values
- Make up with common values
- Control tree size
- pruning

Classification with SVM

Two Class Problem: Linear Separable Case with a Hyperplane
 Many decision boundaries can separate classes using a hyperplane. Which one should we choose?

Example of Bad Decision Boundaries

Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane.
- A.k.a. large margin classifiers
- The decision function is fully specified by a subset of training samples, the support vectors.
- Quadratic programming problem

Training examples for document ranking

Two ranking signals are used (Cosine text similarity score, proximity of term appearance window)				
Example	DocID Query	Cosine score	ω	Judgment
Φ_{1}	37 linux operating system	0.032	3	relevant
Φ_{2}	37 penguin logo	0.02	4	nonrelevant
Φ_{3}	238 operating system	0.043	2	relevant
Φ_{4}	238 runtime environment	0.004	2	nonrelevant
Φ_{5}	1741 kernel layer	0.022	3	relevant
Φ_{6}	2094 device driver	0.03	2	relevant
Φ_{7}	3191 device driver	0.027	5	nonrelevant
		57		

Proposed scoring function for ranking

$\operatorname{Score}(d, q)=\operatorname{Score}(\alpha, \omega)=a \alpha+b \omega+c_{r}$

Formalization

- w: weight coefficients
- x_{i} : data point i
- y_{i} : class result of data point $\mathrm{i}(+1$ or -1$)$
- Classifier is: $\quad f\left(x_{i}\right)=\operatorname{sign}\left(w^{T} x_{i}+b\right)$

Linear Support Vector Machine (SVM)

- Hyperplane

$$
\begin{aligned}
\mathrm{w}^{\mathrm{T}} \mathrm{x}+\mathrm{b} & =0 \\
\mathrm{w}^{\mathrm{T}} \mathrm{x}+\mathrm{b} & =1 \\
\mathrm{w}^{\mathrm{T}} \mathrm{x}+\mathrm{b} & =-1
\end{aligned}
$$

- $\rho=\left\|\mathrm{x}_{\mathrm{a}}-\mathrm{x}_{\mathrm{b}}\right\|_{2}=2 /\|\mathrm{w}\|_{2}$

- $\|w\|^{2}=w^{\top} w$

Linear SVM Mathematically

- Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$

$$
\begin{array}{ll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b \geq 1 & \text { if } y_{i}=1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b \leq-1 & \text { if } y_{i}=-1
\end{array}
$$

- For support vectors, the inequality becomes an equality
- Then, each example's distance from the hyperplane is

$$
r=y \frac{\mathbf{w}^{T} \mathbf{x}+b}{\|\mathbf{w}\|}
$$

- The margin of dataset is:

$$
\rho=\frac{2}{\|\mathbf{w}\|}
$$

The Optimization Problem

- Let $\left\{x_{1}, \ldots, x_{\mathrm{n}}\right\}$ be our data set and let $y_{\mathrm{i}} \in$ $\{1,-1\}$ be the class label of x_{i}
- The decision boundary should classify all points correctly \Rightarrow
- A constrained optimization problem

Minimize $\frac{1}{2}\|\mathbf{w}\|^{2}$
subject to $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1$
$\forall i$

Classification with SVMs

- Given a new point (x_{1}, x_{2}), we can score its projection onto the hyperplane normal:
- In 2 dims: score $=w_{1} x_{1}+w_{2} x_{2}+b$.
- I.e., compute score: $w x+b=\Sigma \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{x}+b$
- Set confidence threshold t.

Score > t: yes
Score < -t: no
Else: don’t know

Soft Margin Classification

- If the training set is not linearly separable, slack variables ξ_{i} can be added to allow misclassification of difficult or noisy examples.
- Allow some errors
- Let some points be moved to where they belong, at a cost
- Still, try to minimize training
 set errors, and to place hyperplane "far" from each class (large margin)

Soft margin

- We allow "error" ξ_{i} in classification; it is based on the output of the discriminant function $\mathbf{w}^{\mathrm{T}} \mathbf{x}+\mathrm{b}$
- ξ_{i} approximates the number of misclassified samples

New objective function:

$$
\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

C : tradeoff parameter between error and margin; chosen by the user; large C means a higher penalty to errors

Soft Margin Classification Mathematically

- The old formulation:

Find \mathbf{w} and b such that
$\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$ $y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+\mathbf{b}\right) \geq 1$

- The new formulation incorporating slack variables:

Find \mathbf{w} and b such that $\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}+C \Sigma \xi_{i} \quad$ is minimized and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$ $y_{i}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1-\xi_{i} \quad$ and $\quad \xi_{i} \geq 0$ for all i

- Parameter C can be viewed as a way to control overfitting - a regularization term

Non-linear SVMs

- Datasets that are linearly separable (with some noise) work out great:

- But what are we going to do if the dataset is just too hard?

- How about ... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

- General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:

Transformation to Feature Space

- "Kernel tricks"
- Make non-separable problem separable.
- Map data into better representational space

$\xrightarrow{\text { Feature space }}$

Example Transformation

- Consider the following transformation

$$
\begin{aligned}
& \phi\left(\left[\begin{array}{l}
\left.x_{1}\right] \\
x_{2}
\end{array}\right]\right)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right) \\
& \phi\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)=\left(1, \sqrt{2} y_{1}, \sqrt{2} y_{2}, y_{1}^{2}, y_{2}^{2}, \sqrt{2} y_{1} y_{2}\right) \\
& \left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)\right\rangle=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}=K(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

- Define the kernel function $K(\mathbf{x}, \mathbf{y})$ as

$$
K(\mathbf{x}, \mathbf{y})=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

- SVM computation involves pair-wise vector product. The inner product $\phi(.) \phi($.$) can be$ computed by K without going through the map $\phi($. explicitly!

Choosing a Kernel Function

\square Active research on kernel function choices for different applications
■xamples:
Polynomial kernel with degree $d \quad K(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}^{T} \mathbf{y}+1\right)^{d}$
\square Radial basis function (RBF) kernel

$$
k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\exp \left(-\gamma\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right\|^{2}\right)
$$

or sometime

$$
K(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|^{2} /\left(2 \sigma^{2}\right)\right)
$$

■Closely related to radial basis function neural networks
-In practice, a low degree polynomial kernel or RBF kernel is a good initial try

Example: 5 1D data points

 degree 2

$$
K(x, y)=(x y+1)^{2}
$$

Software

- A list of SVM implementation can be found at http://www.kernelmachines.org/software.html
- Some implementation (such as LIBSVM) can handle multi-class classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available

Evaluation: Reuters News Data Set

- Most (over)used data set
- 21578 documents
- 9603 training, 3299 test articles (ModApte split)
- 118 categories
- An article can be in more than one category
- Learn 118 binary category distinctions
- Average document: about 90 types, 200 tokens
- Average number of classes assigned
- 1.24 for docs with at least one category
- Only about 10 out of 118 categories are large

Common categories (\#train, \#test)

- Earn $(2877,1087)$
- Acquisitions (1650, 179)
- Money-fx $(538,179)$
- Grain (433, 149)
- Crude $(389,189)$
- Trade $(369,119)$
- Interest $(347,131)$
- Ship $(197,89)$
- Wheat $(212,71)$
- Corn $(182,56)$

New Reuters: RCV1: 810,000 docs

- Top topics in Reuters RCV1

Dumais et al. 1998: Reuters - Accuracy

	Rocchio	NBayes	Trees	LinearSVM	
earn	92.9%	95.9%	97.8%	98.2%	
acq	64.7%	87.8%	89.7%	92.8%	
money-fx	46.7%	56.6%	66.2%	74.0%	
grain	67.5%	78.8%	85.0%	92.4%	
crude	70.1%	79.5%	85.0%	88.3%	
trade	65.1%	63.9%	72.5%	73.5%	
interest	63.4%	64.9%	67.1%	76.3%	
ship	49.2%	85.4%	74.2%	78.0%	
wheat	68.9%	69.7%	92.5%	89.7%	
corn	48.2%	65.3%	91.8%	91.1%	
Avg Top 10	64.6%	81.5%	88.4%	91.4%	
Avg All Cat	61.7%	75.2%	na		86.4%

Recall: \% labeled in category among those stories that are really in category
Precision: \% really in category among those stories labeled in category
Break Even: (Recall + Precision) / 2

Results for Kernels (Joachims 1998)

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging: Example

Class 1	Truth: yes	Truth: no
Classifier: yes	10	10
Classifier: no	10	970

Class 2	Truth: yes	Truth: no
Classifier: yes	90	10
Classifier: no	10	890

- Macroaveraged precision: $(0.5+0.9) / 2=0.7$
- Microaveraged precision: $100 / 120=.83$
- Why this difference?

Micro.Av. Table

	Truth: yes	Truth: no
Classifier: yes	100	20
Classifier: no	20	1860

The Real World

- How much training data do you have? None, very little, quite a lot, a huge amount and its growing
- Manually written rules
- No training data, adequate editorial staff?
- Never forget the hand-written rules solution!
- If (wheat or grain) then categorize as grain
- With careful crafting (human tuning on development data) performance is high:
- 94% recall, 84% precision over 675 categories (Hayes and Weinstein 1990)
- Amount of work required is huge
- Estimate 2 days per class ... plus maintenance

Which methods to use?

- A reasonable amount of data
- Good with SVM, Trees
- Be prepared with the "hybrid" solution.
- A huge amount of data
- SVMs (train time) or kNN (test time) can be too expensive.
- Naïve Bayes, logistic regression
- Trees including boosting trees, random forests

