
1

Classification Algorithms

UCSB 293S, 2017. T. Yang
Some of slides based on R. Mooney (UT Austin)

2

Table of Content

• Problem Definition
• Rocchio
• K-nearest neighbor (case based)
• Bayesian algorithm
• Decision trees
• SVM

3

Classification

• Given:
– A description of an instance, x
– A fixed set of categories (classes):

C={c1, c2,…cn}
– Training examples

• Determine:
– The category of x: h(x)ÎC, where h(x) is a

classification function

• A training example is an instance x, paired
with its correct category c(x): <x, c(x)>

4

Sample Learning Problem

• Instance space: <size, color, shape>
– size Î {small, medium, large}
– color Î {red, blue, green}
– shape Î {square, circle, triangle}

• C = {positive, negative}
• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

5

General Learning Issues

• Many hypotheses are usually consistent with the
training data.

• Bias
– Any criteria other than consistency with the training

data that is used to select a hypothesis.
• Classification accuracy (% of instances classified

correctly).
– Measured on independent test data.

• Training time (efficiency of training algorithm).
• Testing time (efficiency of subsequent

classification).

6

Text Categorization/Classification

• Assigning documents to a fixed set of categories.
• Applications:

– Web pages
• Recommending/ranking
• category classification

– Newsgroup Messages
• Recommending
• spam filtering

– News articles
• Personalized newspaper

– Email messages
• Routing
• Prioritizing
• Folderizing
• spam filtering

7

Learning for Classification

• Manual development of text classification
functions is difficult.

• Learning Algorithms:
– Bayesian (naïve)
– Neural network
– Rocchio
– Rule based (Ripper)
– Nearest Neighbor (case based)
– Support Vector Machines (SVM)
– Decision trees
– Boosting algorithms

8

Illustration of Rocchio method

9

Rocchio Algorithm

Assume the set of categories is {c1, c2,…cn}
Training:
Each doc vector is the frequency normalized TF/IDF term vector.
For i from 1 to n

Sum all the document vectors in ci to get prototype vector pi

Testing: Given document x
Compute the cosine similarity of x with each prototype vector.
Select one with the highest similarity value and return its category

10

Rocchio Anomoly

• Prototype models have problems with
polymorphic (disjunctive) categories.

11

Nearest-Neighbor Learning Algorithm

• Learning is just storing the representations of the
training examples in D.

• Testing instance x:
– Compute similarity between x and all examples in D.
– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or
category prototypes.

• Also called:
– Case-based
– Memory-based
– Lazy learning

12

K Nearest-Neighbor

• Using only the closest example to determine
categorization is subject to errors due to:
– A single atypical example.
– Noise (i.e. error) in the category label of a

single training example.
• More robust alternative is to find the k

most-similar examples and return the
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3
and 5 are most common.

13

Similarity Metrics

• Nearest neighbor method depends on a
similarity (or distance) metric.

• Simplest for continuous m-dimensional
instance space is Euclidian distance.

• Simplest for m-dimensional binary instance
space is Hamming distance (number of
feature values that differ).

• For text, cosine similarity of TF-IDF
weighted vectors is typically most effective.

14

3 Nearest Neighbor Illustration
(Euclidian Distance)

.. .
.

. .
. .
...

15

K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> Î D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> Î D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx
Let N be the first k examples in D. (get most similar neighbors)
Return the majority class of examples in N

16

Illustration of 3 Nearest Neighbor for Text

17

Bayesian Classification

18

Bayesian Methods

• Learning and classification methods based
on probability theory.
– Bayes theorem plays a critical role in

probabilistic learning and classification.
• Uses prior probability of each category

– Based on training data
• Categorization produces a posterior

probability distribution over the possible
categories given a description of an item.

19

Basic Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has
probability 0.

P(true) = 1 P(false) = 0.
• The probability of disjunction is:

1)(0 ££ AP

)()()()(BAPBPAPBAP Ù-+=Ú

A BBAÙ

20

Conditional Probability

• P(A | B) is the probability of A given B
• Assumes that B is all and only information

known.
• Defined by:

)(
)()|(

BP
BAPBAP Ù

=

A BBAÙ

21

Independence

• A and B are independent iff:

• Therefore, if A and B are independent:

)()|(APBAP =

)()|(BPABP =

)(
)(
)()|(AP

BP
BAPBAP =

Ù
=

)()()(BPAPBAP =Ù

These two constraints are logically equivalent

22

Joint Distribution
• Joint probability distribution for X1,…,Xn gives the probability of every

combination of values: P(X1,…,Xn)
– All values must sum to 1.

• Probability for assignments of values to some subset of variables can
be calculated by summing the appropriate subset

• Conditional probabilities can also be calculated.

Color\shape circle square

red 0.20 0.02
blue 0.02 0.01

circle square
red 0.05 0.30
blue 0.20 0.20

Category=positive negative

25.005.020.0)(=+=Ù circleredP

80.0
25.0
20.0

)(
)()|(==

Ù
ÙÙ

=Ù
circleredP

circleredpositivePcircleredpositiveP

57.03.005.002.020.0)(=+++=redP

23

Computing probability from a training
dataset

Probability Y=positive negative
P(Y) 0.5 0.5

P(small | Y) 0.5 0.5
P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5
P(red | Y) 1.0 0.5
P(blue | Y) 0.0 0.5
P(green | Y) 0.0 0.0
P(square | Y) 0.0 0.0
P(triangle | Y) 0.0 0.5
P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>

24

Bayes Theorem

Simple proof from definition of conditional probability:

)(
)()|()|(

EP
HPHEPEHP =

)(
)()|(

EP
EHPEHP Ù

=

)(
)()|(

HP
EHPHEP Ù

=

)()|()(HPHEPEHP =Ù

Thus:

(Def. cond. prob.)

(Def. cond. prob.)

)(
)()|()|(

EP
HPHEPEHP =

Bayesian Categorization

• Determine category of instance xk by determining for
each yi

• P(X=xk) estimation is not needed in the algorithm to
choose a classification decision via comparison.

• If really needed:

)(
)|()()|(

k

iki
ki xXP

yYxXPyYPxXyYP
=

===
===

åå
==

=
=

===
===

m

i k

iki
m

i
ki xXP

yYxXPyYPxXyYP
11

1
)(

)|()()|(

å
=

=====
m

i
ikik yYxXPyYPxXP

1

)|()()(

)(
)|()()|(

k

iki
ki xXP

yYxXPyYPxXyYP
=

===
===

26

Bayesian Categorization (cont.)

• Need to know:
– Priors: P(Y=yi)
– Conditionals: P(X=xk | Y=yi)

• P(Y=yi) are easily estimated from training data.
– If ni of the examples in training data D are in yi then

P(Y=yi) = ni / |D|
• Too many possible instances (e.g. 2n for binary

features) to estimate all P(X=xk | Y=yi) in advance.

)(
)|()()|(

k

iki
ki xXP

yYxXPyYPxXyYP
=

===
===

27

Naïve Bayesian Categorization

• If we assume features of an instance are independent given
the category (conditionally independent).

• Therefore, we then only need to know P(Xi | Y) for each
possible pair of a feature-value and a category.
– ni of the examples in training data D are in yi

– nijof the examples in D with category yi
– P(xij |Y=yi) = ni j/ ni

)|()|,,()|(
1

21 Õ
=

==
n

i
in YXPYXXXPYXP !

Underflow Prevention:
Multiplying lots of probabilities may result in floating-point underflow.
Since log(xy) = log(x) + log(y), it is better to perform all computations
by summing logs of probabilities.

28

Computing probability from a training
dataset

Probability Y=positive negative
P(Y) 0.5 0.5

P(small | Y) 0.5 0.5
P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5
P(red | Y) 1.0 0.5
P(blue | Y) 0.0 0.5
P(green | Y) 0.0 0.0
P(square | Y) 0.0 0.0
P(triangle | Y) 0.0 0.5
P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>

29

Naïve Bayes Example

Probability Y=positive Y=negative
P(Y) 0.5 0.5

P(small | Y) 0.4 0.4
P(medium | Y) 0.1 0.2

P(large | Y) 0.5 0.4
P(red | Y) 0.9 0.3
P(blue | Y) 0.05 0.3
P(green | Y) 0.05 0.4
P(square | Y) 0.05 0.4
P(triangle | Y) 0.05 0.3
P(circle | Y) 0.9 0.3

Test Instance:
<medium ,red, circle>

30

Naïve Bayes Example
Probability Y=positive Y=negative

P(Y) 0.5 0.5
P(medium | Y) 0.1 0.2

P(red | Y) 0.9 0.3
P(circle | Y) 0.9 0.3

P(positive | X) = P(Positive)*P(X/Positive)/P(X)
= P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)

0.5 * 0.1 * 0.9 * 0.9
= 0.0405 / P(X)

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5 * 0.2 * 0.3 * 0.3

= 0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:
<medium ,red, circle>

31

Error prone prediction with small
training data

Probability Y=positive negative
P(Y) 0.5 0.5

P(small | Y) 0.5 0.5
P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5
P(red | Y) 1.0 0.5
P(blue | Y) 0.0 0.5
P(green | Y) 0.0 0.0
P(square | Y) 0.0 0.0
P(triangle | Y) 0.0 0.5
P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 = 0

32

Smoothing

• To account for estimation from small samples,
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that
each feature is given a prior probability, p, that is
assumed to have been previously observed in a
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.

mn
mpn

yYxXP
k

ijk
kiji +

+
===)|(

33

Laplace Smothing Example

• Assume training set contains 10 positive examples:
– 4: small
– 0: medium
– 6: large

• Estimate parameters as follows (if m=1, p=1/3)
– P(small | positive) = (4 + 1/3) / (10 + 1) = 0.394
– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
– P(large | positive) = (6 + 1/3) / (10 + 1) = 0.576
– P(small or medium or large | positive) = 1.0

34

nude
dealNigeria

Bayes Training Example

spam legit

hot

$
Viagra

lottery

!!
!

win
Friday

exam

computer

May

PM

test
March

scienceViagra

homework
score!

spam
legit
spam

spam
legit

spam

legit

legitspam

Category

Viagra

deal
hot !!

35

Naïve Bayes Classification

nude
dealNigeria

spam legit

hot

$
Viagra

lottery

!!
!

win
Friday

exam

computer

May

PM

test
March

scienceViagra

homework
score!

spam
legit
spam

spam
legit

spam

legit

legitspam

Category

Win lotttery $!
?? ??

36

Evaluating Accuracy of Classification

• Evaluation must be done on test data that are independent of
the training data
– Classification accuracy: the number of test instances

correctly classified divided by total number of test instances
– Average results over multiple training and test sets (splits of

the overall data) for the best results.
• Not enough labeled data? N-fold cross-validation
• Partition data into N equal-sized disjoint segments.

– Run N trials, each time using a different segment of the
data for testing, and training on the remaining N-1
segments.

– This way, at least test-sets are independent.
– Report average classification accuracy over the N trials.
– Typically, N = 10.

37

Sample Learning Curve
(Yahoo Science Data)

38

Classification with Decision Trees

Decision Trees
• Decision trees can express any function of the input attributes.
• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with one path
to leaf for each example (unless f nondeterministic in x) but it probably won't
generalize to new examples

• Prefer to find more compact decision trees: we don’t want to memorize the
data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at
a restaurant, based on the following
attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Training data: Restaurant example
• Examples described by attribute values (Boolean, discrete, continuous)
• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

A decision tree to decide whether to wait
• imagine someone talking a sequence of decisions.

Decision tree learning

• If there are so many possible trees, can we
actually search this space? (solution: greedy
search).

• Aim: find a small tree consistent with the
training examples

• Idea: (recursively) choose "most significant"
attribute as root of (sub)tree.

Choosing an attribute for making a
decision

• Idea: a good attribute splits the examples
into subsets that are (ideally) "all positive"
or "all negative"

To wait or not to wait is still at 50%.

Information theory background: Entropy

• Entropy measures uncertainty
-p log (p) - (1-p) log (1-p)

Consider tossing a biased coin.
If you toss the coin VERY often,
the frequency of heads is, say, p,

and hence the frequency of tails is
1-p.

Uncertainty (entropy) is zero if p=0 or 1
and maximal if we have p=0.5.

Using information theory for binary
decisions

• Imagine we have p examples which are true
(positive) and n examples which are false
(negative).

• Our best estimate of true or false is given by:

• Hence the entropy is given by:

(,) log logp p pn n nEntropy
p n p n p n p n p n p n

» - -
+ + + + + +

() /
() /

P true p p n
p false n p n

» +

» +

Using information theory for more than
2 states

• If there are more than two states s=1,2,..n we have
(e.g. a die):

() (1)log[(1)]
(2)log[(2)]

...
()log[()]

Entropy p p s p s
p s p s

p s n p s n

= - = =

- = =

- = =

1
() 1

n

s
p s

=

=å

ID3 Algorithm: Using Information
Theory to Choose an Attribute

• How much information do we gain if we disclose
the value of some attribute?

• ID3 algorithm by Ross Quinlan uses information
gained measured by maximum entropy reduction:
– IG(A) = uncertainty before – uncertainty after
– Choose an attribute with the maximum IA

Before: Entropy = - ½ log(1/2) – ½ log(1/2)=log(2) = 1 bit:
There is “1 bit of information to be discovered”.

After: for Type: If we go into branch “French” we have 1 bit, similarly for the others.
French: 1bit
Italian: 1 bit
Thai: 1 bit

Burger: 1bit

After: for Patrons: In branch “None” and “Some” entropy = 0!,
In “Full” entropy = -1/3log(1/3)-2/3log(2/3)=0.92

So Patrons gains more information!

On average: 1 bit and gained nothing!

Information Gain: How to combine
branches

•1/6 of the time we enter “None”, so we weight“None” with 1/6.
Similarly: “Some” has weight: 1/3 and “Full” has weight ½.

1
() (,)

n
i i i i

i i i i i

p n p nEntropy A Entropy
p n p n p n=

+
=

+ + +å

weight for each branch

entropy for each branch.

Choose an attribute: Restaurant Example

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Patrons has the highest IG of all attributes and so is chosen by the DTL
algorithm as the root

bits 0)]
4
2,

4
2(

12
4)

4
2,

4
2(

12
4)

2
1,

2
1(

12
2)

2
1,

2
1(

12
2[1)(

bits 0541.)]
6
4,

6
2(

12
6)0,1(

12
4)1,0(

12
2[1)(

=+++-=

=++-=

IIIITypeIG

IIIPatronsIG

Example: Decision tree learned

• Decision tree learned from the 12 examples:

Issues

• When there are no attributes left:
– Stop growing and use majority vote.

• Avoid over-fitting data
– Stop growing a tree earlier
– Grow first, and prune later.

• Deal with continuous-valued attributes
– Dynamically select thresholds/intervals.

• Handle missing attribute values
– Make up with common values

• Control tree size
– pruning

54

Classification with SVM

Two Class Problem: Linear Separable
Case with a Hyperplane

Class 1

Class 2

Class 1

Class 2

Many decision boundaries can separate classes using a hyperplane.
Which one should we choose?

Example of Bad Decision Boundaries

Class 1

Class 2

56

Support Vector Machine (SVM)

Support vectors

Maximize
margin

• SVMs maximize the margin
around the separating hyperplane.

• A.k.a. large margin
classifiers

• The decision function is fully
specified by a subset of training
samples, the support vectors.

• Quadratic programming problem

•57

Two ranking signals are used (Cosine text similarity score, proximity of term appearance window)

Example DocID Query Cosine score Judgment

37 linux operating
system 0.032 3 relevant

37 penguin logo 0.02 4 nonrelevant

238 operating system 0.043 2 relevant

238 runtime
environment 0.004 2 nonrelevant

1741 kernel layer 0.022 3 relevant

2094 device driver 0.03 2 relevant

3191 device driver 0.027 5 nonrelevant

Training examples for document ranking

•58

Cosine score

Term proximity
2 3 4 5

0.025

R
R

RR
R

R

R

NN NN
N

N

N
N

N
R

R

0

Proposed scoring function for ranking

59

• w: weight coefficients
• xi: data point i
• yi: class result of data point i (+1 or -1)
• Classifier is: f(xi) = sign(wTxi + b)

Formalization

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

•60

Linear Support Vector Machine (SVM)

• Hyperplane
wT x + b = 0
wT x + b = 1
wT x + b = -1

Support vectors
datapoints that the
margin
pushes up against

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

n ρ = ||xa–xb||2 = 2/||w||2

n ||w||2 = wTw

•61

Linear SVM Mathematically

• Assume that all data is at least distance 1 from the hyperplane, then the
following two constraints follow for a training set {(xi ,yi)}

• For support vectors, the inequality becomes an equality
• Then, each example’s distance from the hyperplane is

• The margin of dataset is:

wTxi + b ≥ 1 if yi = 1

wTxi + b ≤ -1 if yi = -1

w
2

=r

w
xw byr

T +
=

The Optimization Problem

• Let {x1, ..., xn} be our data set and let yi Î
{1,-1} be the class label of xi

• The decision boundary should classify all
points correctly Þ

• A constrained optimization problem

•63

Classification with SVMs

• Given a new point (x1,x2), we can score its
projection onto the hyperplane normal:
– In 2 dims: score = w1x1+w2x2+b.

• I.e., compute score: wx + b = Σαiyixi
Tx + b

– Set confidence threshold t.

3
5
7

Score > t: yes

Score < -t: no

Else: don’t know

•64

Soft Margin Classification

• If the training set is not
linearly separable, slack
variables ξi can be added to
allow misclassification of
difficult or noisy examples.

• Allow some errors
– Let some points be

moved to where they
belong, at a cost

• Still, try to minimize training
set errors, and to place
hyperplane “far” from each
class (large margin)

ξj

ξi

Soft margin

• We allow “error” xi in classification; it is based on
the output of the discriminant function wTx+b

• xi approximates the number of misclassified samples

Class 1

Class 2

New objective function:

C : tradeoff parameter between
error and margin;

chosen by the user;
large C means a higher

penalty to errors

•66

Soft Margin Classification
Mathematically

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting – a
regularization term

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and ξi ≥ 0 for all i

•67

Non-linear SVMs

• Datasets that are linearly separable (with some noise) work out great:

• But what are we going to do if the dataset is just too hard?

• How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

•68

Non-linear SVMs: Feature spaces

• General idea: the original feature space
can always be mapped to some higher-
dimensional feature space where the
training set is separable:

Φ: x→ φ(x)

Transformation to Feature Space

• “Kernel tricks”

– Make non-separable problem separable.
– Map data into better representational space

f()

f()

f()
f()f()

f()

f()f()

f(.) f()

f()

f()
f()
f()

f()

f()

f()
f() f()

Feature spaceInput space

Example Transformation

• Consider the following transformation

• Define the kernel function K (x,y) as

• SVM computation involves pair-wise vector
product. The inner product f(.)f(.) can be
computed by K without going through the map f(.)
explicitly!

Choosing a Kernel Function
nActive research on kernel function choices for different

applications
nExamples:

nPolynomial kernel with degree d
nRadial basis function (RBF) kernel

or sometime
nClosely related to radial basis function neural networks

nIn practice, a low degree polynomial kernel or RBF kernel is a
good initial try

Example: 5 1D data points

Value of discriminant function

1 2 4 5 6

class 2 class 1class 1

We use the polynomial kernel of
degree 2
K(x,y) = (xy+1)2

Software

• A list of SVM implementation can be found
at http://www.kernel-
machines.org/software.html

• Some implementation (such as LIBSVM)
can handle multi-class classification

• SVMLight is among one of the earliest
implementation of SVM

• Several Matlab toolboxes for SVM are also
available

•74

• Most (over)used data set
• 21578 documents
• 9603 training, 3299 test articles (ModApte split)
• 118 categories

– An article can be in more than one category
– Learn 118 binary category distinctions

• Average document: about 90 types, 200 tokens
• Average number of classes assigned

– 1.24 for docs with at least one category
• Only about 10 out of 118 categories are large

Common categories
(#train, #test)

Evaluation: Reuters News Data Set

• Earn (2877, 1087)
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)

•75

New Reuters: RCV1: 810,000 docs

• Top topics in Reuters RCV1

•76

Dumais et al. 1998:
Reuters - Accuracy

Recall: % labeled in category among those stories that are really in category
Precision: % really in category among those stories labeled in category
Break Even: (Recall + Precision) / 2

Rocchio NBayes Trees LinearSVM
earn 92.9% 95.9% 97.8% 98.2%
acq 64.7% 87.8% 89.7% 92.8%
money-fx 46.7% 56.6% 66.2% 74.0%
grain 67.5% 78.8% 85.0% 92.4%
crude 70.1% 79.5% 85.0% 88.3%
trade 65.1% 63.9% 72.5% 73.5%
interest 63.4% 64.9% 67.1% 76.3%
ship 49.2% 85.4% 74.2% 78.0%
wheat 68.9% 69.7% 92.5% 89.7%
corn 48.2% 65.3% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 88.4% 91.4%
Avg All Cat 61.7% 75.2% na 86.4%

•77

Results for Kernels (Joachims 1998)

•78

Micro- vs. Macro-Averaging

• If we have more than one class, how do we
combine multiple performance measures
into one quantity?

• Macroaveraging: Compute performance for
each class, then average.

• Microaveraging: Collect decisions for all
classes, compute contingency table,
evaluate.

79

Micro- vs. Macro-Averaging: Example
Truth: yes Truth: no

Classifier:
yes

10 10

Classifier:
no

10 970

Truth: yes Truth: no

Classifier:
yes

90 10

Classifier:
no

10 890

Truth: yes Truth: no

Classifier:
yes

100 20

Classifier:
no

20 1860

Class 1 Class 2

Micro.Av. Table

n Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
n Microaveraged precision: 100/120 = .83
n Why this difference?

•80

The Real World

• How much training data do you have? None, very little,
quite a lot, a huge amount and its growing

• Manually written rules
– No training data, adequate editorial staff?
– Never forget the hand-written rules solution!

• If (wheat or grain) then categorize as grain
– With careful crafting (human tuning on development

data) performance is high:
• 94% recall, 84% precision over 675 categories

(Hayes and Weinstein 1990)
– Amount of work required is huge

• Estimate 2 days per class … plus maintenance

•81

Which methods to use?

• A reasonable amount of data
– Good with SVM, Trees
– Be prepared with the “hybrid” solution.

• A huge amount of data
– SVMs (train time) or kNN (test time) can be

too expensive.
– Naïve Bayes, logistic regression
– Trees including boosting trees, random forests

