Classification Algorithms

UCSB 293S, 2017. T. Yang Some of slides based on R. Mooney (UT Austin)

Table of Content

- Problem Definition
- Rocchio
- K-nearest neighbor (case based)
- Bayesian algorithm
- Decision trees
- SVM

Classification

- Given:
 - A description of an instance, x
 - A fixed set of categories (classes):
 - $C = \{c_1, c_2, \dots c_n\}$
 - Training examples
- Determine:
 - The category of *x*: $h(x) \in C$, where h(x) is a classification function
- A training example is an instance *x*, paired with its correct category *c*(*x*): <*x*, *c*(*x*)>

Sample Learning Problem

- Instance space: <size, color, shape>
 - size \in {small, medium, large}
 - color \in {red, blue, green}
 - shape \in {square, circle, triangle}
- $C = \{\text{positive, negative}\}$

<i>D</i> :	Example	Size	Color	Shape	Category
	1	small	red	circle	positive
	2	large	red	circle	positive
	3	small	red	triangle	negative
	4	large	blue	circle	negative

General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Bias
 - Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy (% of instances classified correctly).
 - Measured on independent test data.
- Training time (efficiency of training algorithm).
- Testing time (efficiency of subsequent classification).

Text Categorization/Classification

- Assigning documents to a fixed set of categories.
- Applications:
 - Web pages
 - Recommending/ranking
 - category classification
 - Newsgroup Messages
 - Recommending
 - spam filtering
 - News articles
 - Personalized newspaper
 - Email messages
 - Routing
 - Prioritizing
 - Folderizing
 - spam filtering

Learning for Classification

- Manual development of text classification functions is difficult.
- Learning Algorithms:
 - Bayesian (naïve)
 - Neural network
 - Rocchio
 - Rule based (Ripper)
 - Nearest Neighbor (case based)
 - Support Vector Machines (SVM)
 - Decision trees
 - Boosting algorithms

Illustration of Rocchio method

Rocchio Algorithm

Assume the set of categories is $\{c_1, c_2, ..., c_n\}$ Training:

Each doc vector is the frequency normalized TF/IDF term vector. For *i* from 1 to n

Sum all the document vectors in c_i to get prototype vector \mathbf{p}_i

Testing: Given document x

Compute the cosine similarity of x with each prototype vector. Select one with the highest similarity value and return its category

Rocchio Anomoly

 Prototype models have problems with polymorphic (disjunctive) categories.

Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in *D*.
- Testing instance *x*:
 - Compute similarity between *x* and all examples in *D*.
 - Assign *x* the category of the most similar example in *D*.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
 - Case-based
 - Memory-based
 - Lazy learning

K Nearest-Neighbor

- Using only the closest example to determine categorization is subject to errors due to:
 - A single atypical example.
 - Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the *k* most-similar examples and return the majority category of these *k* examples.
- Value of *k* is typically odd to avoid ties, 3 and 5 are most common.

Similarity Metrics

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous *m*-dimensional instance space is *Euclidian distance*.
- Simplest for *m*-dimensional binary instance space is *Hamming distance* (number of feature values that differ).
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective.

3 Nearest Neighbor Illustration (Euclidian Distance)

K Nearest Neighbor for Text

Training:

For each training example $\langle x, c(x) \rangle \in D$

Compute the corresponding TF-IDF vector, \mathbf{d}_x , for document x

Test instance *y*:

Compute TF-IDF vector **d** for document *y*

For each
$$\langle x, c(x) \rangle \in D$$

Let $s_x = \operatorname{cosSim}(\mathbf{d}, \mathbf{d}_x)$

Sort examples, x, in D by decreasing value of s_x

Let N be the first k examples in D. (get most similar neighbors) Return the majority class of examples in N

Illustration of 3 Nearest Neighbor for Text

Bayesian Classification

Bayesian Methods

- Learning and classification methods based on probability theory.
 - Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses *prior* probability of each category

 Based on training data
- Categorization produces a *posterior* probability distribution over the possible categories given a description of an item.

Basic Probability Theory

• All probabilities between 0 and 1

 $0 \le P(A) \le 1$

• True proposition has probability 1, false has probability 0.

P(true) = 1 P(false) = 0.

• The probability of disjunction is: $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Conditional Probability

- P(A | B) is the probability of A given B
- Assumes that *B* is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Independence

• *A* and *B* are *independent* iff:

P(A | B) = P(A)These two constraints are logically equivalent P(B | A) = P(B)

• Therefore, if *A* and *B* are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

 $P(A \land B) = P(A)P(B)$

Joint Distribution

- Joint probability distribution for X_1, \ldots, X_n gives the probability of every combination of values: $P(X_1, \ldots, X_n)$
 - All values must sum to 1.

Category=positive						
Color\shape	circle	square				
red	0.20	0.02				
blue	0.02	0.01				

negative						
	circle	square				
red	0.05	0.30				
blue	0.20	0.20				

• Probability for assignments of values to some subset of variables can be calculated by summing the appropriate subset

 $P(red \land circle) = 0.20 + 0.05 = 0.25$

P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57

• Conditional probabilities can also be calculated.

 $P(positive \mid red \land circle) = \frac{P(positive \land red \land circle)}{P(red \land circle)} = \frac{0.20}{0.25} = 0.80$

Computing probability from a training dataset

Ex	Size	Color	Shape	Category	Probability	Y=positive	negative
	UILC		Shupe	cutogory	P(Y)	0.5	0.5
1	small	red	circle	positive	$P(small \mid Y)$	0.5	0.5
2	1	1	. 1	•,•	P(medium Y)	0.0	0.0
2	large	red	circle	positive	P(large Y)	0.5	0.5
3	small	red	triangle	negitive	$P(red \mid Y)$	1.0	0.5
					P(blue <i>Y</i>)	0.0	0.5
4	large	blue	circle	negitive	P(green Y)	0.0	0.0
					P(square Y)	0.0	0.0
Test Instance X:					P(triangle <i>Y</i>)	0.0	0.5
<medium, circle="" red,=""></medium,>					P(circle Y)	1.0	0.5

Bayes Theorem

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from definition of conditional probability:

$$P(H | E) = \frac{P(H \land E)}{P(E)} \quad \text{(Def. cond. prob.)}$$

$$P(E | H) = \frac{P(H \land E)}{P(H)} \quad \text{(Def. cond. prob.)}$$

$$P(H \land E) = P(E | H)P(H)$$
Thus:
$$P(H | E) = \frac{P(E | H)P(H)}{P(E)}$$

Bayesian Categorization

 Determine category of instance x_k by determining for each y_i

$$P(Y = y_i | X = x_k) = \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)}$$

• P(X=x_k) estimation is not needed in the algorithm to choose a classification decision via comparison.

$$P(Y = y_i | X = x_k) = \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)}$$

• If really needed: $\sum_{i=1}^{m} P(Y = y_i \mid X = x_k) = \sum_{i=1}^{m} \frac{P(Y = y_i)P(X = x_k \mid Y = y_i)}{P(X = x_k)} = 1$ $P(X = x_k) = \sum_{i=1}^{m} P(Y = y_i)P(X = x_k \mid Y = y_i)$

Bayesian Categorization (cont.)

- Need to know: $P(Y = y_i | X = x_k) = \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)}$
 - Priors: $P(Y=y_i)$
 - Conditionals: $P(X=x_k | Y=y_i)$
- P(Y=y_i) are easily estimated from training data.
 If n_i of the examples in training data D are in y_i then
 - $P(Y=y_i) = n_i / |D|$
- Too many possible instances (e.g. 2ⁿ for binary features) to estimate all P(X=x_k | Y=y_i) in advance.

Naïve Bayesian Categorization

• If we assume features of an instance are independent **given the category** (*conditionally independent*).

$$P(X | Y) = P(X_1, X_2, \dots X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

- Therefore, we then only need to know $P(X_i | Y)$ for each possible pair of a feature-value and a category.
 - $-n_i$ of the examples in training data D are in y_i
 - n_{ij} of the examples in D with category y_i
 - $P(x_{ij} | Y = y_i) = n_{ij} / n_i$

Underflow Prevention:

Multiplying lots of probabilities may result in floating-point underflow. Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities.

Computing probability from a training dataset

Ex	Size	Color	Shape	Category	Probability	Y=positive	negative
	UIL C		Shupe	cutogory	P(Y)	0.5	0.5
1	small	red	circle	positive	$P(small \mid Y)$	0.5	0.5
2	1	1	. 1	•,•	P(medium Y)	0.0	0.0
2	large	red	circle	positive	P(large Y)	0.5	0.5
3	small	red	triangle	negitive	$P(red \mid Y)$	1.0	0.5
					P(blue <i>Y</i>)	0.0	0.5
4	large	blue	circle	negitive	P(green Y)	0.0	0.0
					P(square Y)	0.0	0.0
Test Instance X:					P(triangle <i>Y</i>)	0.0	0.5
<medium, circle="" red,=""></medium,>					P(circle Y)	1.0	0.5

Naïve Bayes Example

Probability	Y=positive	Y=negative
P(Y)	0.5	0.5
$P(small \mid Y)$	0.4	0.4
P(medium Y)	0.1	0.2
$P(large \mid Y)$	0.5	0.4
$P(red \mid Y)$	0.9	0.3
P(blue Y)	0.05	0.3
$P(\text{green} \mid Y)$	0.05	0.4
P(square Y)	0.05	0.4
P(triangle <i>Y</i>)	0.05	0.3
$P(circle \mid Y)$	0.9	0.3

Test Instance: <medium ,red, circle>

Naïve Bayes Example

Probability	Y=positive	Y=negative	
P(Y)	0.5	0.5	
P(medium Y)	0.1	0.2	
$P(red \mid Y)$	0.9	0.3	Test Instance:
P(circle Y)	0.9	0.3	<pre>// / / / / / / / / / / / / / / / / / /</pre>

$$\begin{split} P(\text{positive} \mid X) &= P(\text{Positive}) * P(X/\text{Positive}) / P(X) \\ &= P(\text{positive}) * P(\text{medium} \mid \text{positive}) * P(\text{red} \mid \text{positive}) * P(\text{circle} \mid \text{positive}) / P(X) \\ & 0.5 & * & 0.1 & * & 0.9 & * & 0.9 \\ &= & 0.0405 / P(X) = 0.0405 / 0.0495 = 0.8181 \end{split}$$
 $P(\text{negative} \mid X) = P(\text{negative}) * P(\text{medium} \mid \text{negative}) * P(\text{red} \mid \text{negative}) * P(\text{circle} \mid \text{negative}) / P(X) \\ & 0.5 & * & 0.2 & * & 0.3 & * & 0.3 \\ &= & 0.009 / P(X) &= 0.009 / 0.0495 = 0.1818 \end{aligned}$ $P(\text{positive} \mid X) + P(\text{negative} \mid X) = 0.0405 / P(X) + 0.009 / P(X) = 1 \end{split}$

P(X) = (0.0405 + 0.009) = 0.0495

Error prone prediction with small training data

D	C:	Calar	Chara	Catagory	Probability	Y=positive	negative
Ex	Size	Color	Shape	Category	P(Y)	0.5	0.5
1	small	red	circle	positive	P(small Y)	0.5	0.5
				••	P(medium Y)	0.0	0.0
2	large	red	circle	positive	P(large Y)	0.5	0.5
3	small	red	triangle	negitive	$P(red \mid Y)$	1.0	0.5
					P(blue <i>Y</i>)	0.0	0.5
4	large	blue	circle	negitive	P(green Y)	0.0	0.0
Test Instance X:					P(square Y)	0.0	0.0
					P(triangle <i>Y</i>)	0.0	0.5
<medium, circle="" red,=""></medium,>					P(circle Y)	1.0	0.5

P(positive $| X \rangle = 0.5 * 0.0 * 1.0 * 1.0 = 0$ P(negative $| X \rangle = 0.5 * 0.0 * 0.5 * 0.5 = 0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or *smoothed*.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.

$$P(X_i = x_{ij} | Y = y_k) = \frac{n_{ijk} + mp}{n_k + m}$$

• For binary features, *p* is simply assumed to be 0.5.

Laplace Smothing Example

- Assume training set contains 10 positive examples:
 - 4: small
 - 0: medium
 - 6: large
- Estimate parameters as follows (if m=1, p=1/3)
 - P(small | positive) = (4 + 1/3) / (10 + 1) = 0.394
 - P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
 - P(large | positive) = (6 + 1/3) / (10 + 1) = 0.576
 - P(small or medium or large | positive) = 1.0

Bayes Training Example

Naïve Bayes Classification

Evaluating Accuracy of Classification

- Evaluation must be done on test data that are independent of the training data
 - Classification accuracy: the number of test instances correctly classified divided by total number of test instances
 - Average results over multiple training and test sets (splits of the overall data) for the best results.
- Not enough labeled data? N-fold cross-validation
- Partition data into *N* equal-sized disjoint segments.
 - Run N trials, each time using a different segment of the data for testing, and training on the remaining N–1 segments.
 - This way, at least test-sets are independent.
 - Report average classification accuracy over the *N* trials.
 - Typically, N = 10.

Sample Learning Curve (Yahoo Science Data)

Classification with Decision Trees

Decision Trees

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless *f* nondeterministic in *x*) but it probably won't generalize to new examples
- Prefer to find more compact decision trees: we don't want to memorize the data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Training data: Restaurant example

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table:

Example	Attributes							Target			
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

• Classification of examples is positive (T) or negative (F)

A decision tree to decide whether to wait

• imagine someone talking a sequence of decisions.

Decision tree learning

- If there are so many possible trees, can we actually search this space? (solution: greedy search).
- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree.

Choosing an attribute for making a decision

• Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Information theory background: Entropy

1.0

₹<u>0.5</u>

0

0.5

Pr(X = 1)

1.0

Entropy measures uncertainty
-p log (p) - (1-p) log (1-p)

Consider tossing a biased coin. If you toss the coin VERY often, the frequency of heads is, say, p, and hence the frequency of tails is 1-p.

Uncertainty (entropy) is zero if p=0 or 1 and maximal if we have p=0.5.

Using information theory for binary decisions

- Imagine we have p examples which are true (positive) and n examples which are false (negative).
- Our best estimate of true or false is given by:

 $P(true) \approx p / p + n$ $p(false) \approx n / p + n$

• Hence the entropy is given by:

$$Entropy(\frac{p}{p+n},\frac{n}{p+n}) \approx -\frac{p}{p+n}\log\frac{p}{p+n} - \frac{n}{p+n}\log\frac{n}{p+n}$$

Using information theory for more than 2 states

If there are more than two states s=1,2,..n we have (e.g. a die):

$$Entropy(p) = -p(s = 1)\log[p(s = 1)]$$

- p(s = 2)log[p(s = 2)]
...
- p(s = n)log[p(s = n)]

$$\sum_{s=1}^{n} p(s) = 1$$

ID3 Algorithm: Using Information Theory to Choose an Attribute

- How much information do we gain if we disclose the value of some attribute?
- ID3 algorithm by Ross Quinlan uses information gained measured by maximum entropy reduction:
 - IG(A) = uncertainty before uncertainty after
 - Choose an attribute with the maximum IA

Before: Entropy = $-\frac{1}{2} \log(1/2) - \frac{1}{2} \log(1/2) = \log(2) = 1$ bit: There is "1 bit of information to be discovered".

After: for Type: If we go into branch "French" we have 1 bit, similarly for the others. French: 1bit Italian: 1 bit Thai: 1 bit Burger: 1bit

> After: for Patrons: In branch "None" and "Some" entropy = 0!, In "Full" entropy = $-1/3\log(1/3)-2/3\log(2/3)=0.92$

> > So Patrons gains more information!

Information Gain: How to combine branches

•1/6 of the time we enter "None", so we weight"None" with 1/6. Similarly: "Some" has weight: 1/3 and "Full" has weight ½.

Choose an attribute: Restaurant Example

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6},\frac{4}{6})\right] = .0541 \text{ bits}$$
$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2},\frac{1}{2}) + \frac{2}{12}I(\frac{1}{2},\frac{1}{2}) + \frac{4}{12}I(\frac{2}{4},\frac{2}{4}) + \frac{4}{12}I(\frac{2}{4},\frac{2}{4})\right] = 0 \text{ bits}$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

Example: Decision tree learned

• Decision tree learned from the 12 examples:

Issues

- When there are no attributes left:
 - Stop growing and use majority vote.
- Avoid over-fitting data
 - Stop growing a tree earlier
 - Grow first, and prune later.
- Deal with continuous-valued attributes
 - Dynamically select thresholds/intervals.
- Handle missing attribute values
 - Make up with common values
- Control tree size
 - pruning

Classification with SVM

Two Class Problem: Linear Separable Case with a Hyperplane

Many decision boundaries can separate classes using a hyperplane. Which one should we choose?

Example of Bad Decision Boundaries

Class

Support Vector Machine (SVM)

- SVMs maximize the *margin* around the separating hyperplane.
 - A.k.a. large margin classifiers
- The decision function is fully specified by a subset of training samples, *the support vectors*.
- *Quadratic programming* problem

Training examples for document ranking

Two ranking signals are used (Cosine text similarity score, proximity of term appearance window)						
Example	DocID Query	Cosine score	ω	Judgment		
$\frac{\Phi_1}{\Phi_2}$	37 linux operating system	0.032	3	relevant		
-2	37 penguin logo	0.02	4	nonrelevant		
Φ_3	238 operating system	0.043	2	relevant		
Φ_4	238 ^{runtime} environment	0.004	2	nonrelevant		
Φ_5 Φ_6	1741 kernel layer	0.022	3	relevant		
*6	2094 device driver	0.03	2	relevant		
Φ ₇	3191 device driver	0.027	5	nonrelevant		

•57

. . .

. . .

. . .

. . .

Proposed scoring function for ranking

$$Score(d,q) = Score(\alpha,\omega) = a\alpha + b\omega + c,$$

Formalization

- w: weight coefficients
- x_i: data point i
- y_i: class result of data point i (+1 or -1)
- Classifier is: $f(x_i) = sign(w^Tx_i + b)$

Linear Support Vector Machine (SVM)

Linear SVM Mathematically

• Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set {(**x**_i, *y*_i)}

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathrm{i}} + b \ge 1 \quad \text{if } y_{i} = 1$$
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathrm{i}} + b \le -1 \quad \text{if } y_{i} = -1$$

- For support vectors, the inequality becomes an equality
- Then, each example's distance from the hyperplane is

$$r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$$

• The margin of dataset is:

$$\rho = \frac{2}{\|\mathbf{w}\|}$$

The Optimization Problem

- Let $\{x_1, ..., x_n\}$ be our data set and let $y_i \in \{1,-1\}$ be the class label of x_i
- The decision boundary should classify all points correctly ⇒
- A constrained optimization problem Minimize $\frac{1}{2}||\mathbf{w}||^2$ subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 \quad \forall i$

Classification with SVMs

• Given a new point (x_1, x_2) , we can score its projection onto the hyperplane normal:

- In 2 dims: score = $w_1x_1 + w_2x_2 + b$.

• I.e., compute score: $wx + b = \sum \alpha_i y_i \mathbf{x_i}^T \mathbf{x} + b$

Set confidence threshold t.

Soft Margin Classification

- If the training set is not linearly separable, *slack variables* ξ_i can be added to allow misclassification of difficult or noisy examples.
- Allow some errors
 - Let some points be moved to where they belong, at a cost
- Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

Soft margin

- We allow "error" ξ_i in classification; it is based on the output of the discriminant function $\mathbf{w}^T \mathbf{x} + \mathbf{b}$
- ξ_i approximates the number of misclassified samples

New objective function:

$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

C : tradeoff parameter between error and margin; chosen by the user; large C means a higher penalty to errors

Soft Margin Classification Mathematically

• The old formulation:

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\{(\mathbf{x}_{i}, y_{i})\}$ $y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + \mathbf{b}) \ge 1$

• The new formulation incorporating slack variables:

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \Sigma \xi_{i} \text{ is minimized and for all } \{(\mathbf{x}_{i}, y_{i})\}$ $y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + b) \ge 1 - \xi_{i} \text{ and } \xi_{i} \ge 0 \text{ for all } i$

• Parameter *C* can be viewed as a way to control overfitting – a regularization term

Non-linear SVMs

• Datasets that are linearly separable (with some noise) work out great:

• But what are we going to do if the dataset is just too hard?

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:

Transformation to Feature Space

- "Kernel tricks"
 - Make non-separable problem separable.
 - Map data into better representational space

Example Transformation

• Consider the following transformation

$$\phi(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\phi(\begin{bmatrix} y_1\\ y_2 \end{bmatrix}) = (1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2)$$

$$\langle \phi(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1\\ y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2$$

$$= K(\mathbf{x}, \mathbf{y})$$

• Define the kernel function $K(\mathbf{x},\mathbf{y})$ as

 $K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$

SVM computation involves pair-wise vector product. The inner product φ(.)φ(.) can be computed by *K* without going through the map φ(.) explicitly!

Choosing a Kernel Function

Active research on kernel function choices for different applications

Examples:

Polynomial kernel with degree d $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$

Radial basis function (RBF) kernel

 $k(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}) = \exp(-\gamma \|\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{\mathbf{j}}\|^2)$

or sometime $K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} - \mathbf{y}||^2/(2\sigma^2))$

Closely related to radial basis function neural networksIn practice, a low degree polynomial kernel or RBF kernel is a good initial try

Example: 5 1D data points

Software

- A list of SVM implementation can be found at http://www.kernelmachines.org/software.html
- Some implementation (such as LIBSVM) can handle multi-class classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available

Evaluation: Reuters News Data Set

- Most (over)used data set
- 21578 documents
- 9603 training, 3299 test articles (ModApte split)
- 118 categories
 - An article can be in more than one category
 - Learn 118 binary category distinctions
- Average document: about 90 types, 200 tokens
- Average number of classes assigned
 - 1.24 for docs with at least one category
- Only about 10 out of 118 categories are large

Common categories (#train, #test)

- Earn (2877, 1087)
- Acquisitions (1650, 179)
- Money-fx (538, 179)
- Grain (433, 149)
- Crude (389, 189)

- Trade (369,119)
- Interest (347, 131)
- Ship (197, 89)
- Wheat (212, 71)
- Corn (182, 56)

New Reuters: RCV1: 810,000 docs

• Top topics in Reuters RCV1

Number of Stories

Dumais et al. 1998: Reuters - Accuracy

	Rocchio	NBayes	Trees	LinearSVM	
earn	92.9%	95.9%	97.8%	98.2%	
acq	64.7%	87.8%	89.7%	92.8%	
money-fx	46.7%	56.6%	66.2%	74.0%	
grain	67.5%	78.8%	85.0%	92.4%	
crude	70.1%	79.5%	85.0%	88.3%	
trade	65.1%	63.9%	72.5%	73.5%	
interest	63.4%	64.9%	67.1%	76.3%	
ship	49.2%	85.4%	74.2%	78.0%	
wheat	68.9%	69.7%	92.5%	89.7%	
corn	48.2%	65.3%	91.8%	91.1%	
Avg Top 10	64.6%	81.5%	88.4%	91.4%	
Avg All Cat	61.7%	75.2%	na	86.4%	

Recall: % labeled in category among those stories that are really in category **Precision:** % really in category among those stories labeled in category **Break Even:** (Recall + Precision) / 2 •76

Results for Kernels (Joachims 1998)

						SVM (poly)				SVM (rbf)			
						de	gree	d =			widtl	h $\gamma =$	1
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
$_{\rm ship}$	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2	85.1	85.9	86.2	85.9	86.4	86.5	86.3	86.2
microavg.	12.0	19.9	19.4	04.9		com	bined:	86.0)	COI	mbine	ed: 86	5.4

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging: Example

Class 1	Truth: yes	Truth: no
Classifier: yes	10	10
Classifier: no	10	970

Class 2	Truth: yes	Truth: no
Classifier: yes	90	10
Classifier: no	10	890

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Why this difference?

	_		
Mic	cro.A	νТ	ahle
		V I I	abic

	Truth: yes	Truth: no
Classifier: yes	100	20
Classifier: no	20	1860

The Real World

- How much training data do you have? None, very little, quite a lot, a huge amount and its growing
- Manually written rules
 - No training data, adequate editorial staff?
 - Never forget the hand-written rules solution!
 - If (wheat or grain) then categorize as grain
 - With careful crafting (human tuning on development data) performance is high:
 - 94% recall, 84% precision over 675 categories (Hayes and Weinstein 1990)
 - Amount of work required is huge
 - Estimate 2 days per class ... plus maintenance

Which methods to use?

- A reasonable amount of data
 - Good with SVM, Trees
 - Be prepared with the "hybrid" solution.
- A huge amount of data
 - SVMs (train time) or kNN (test time) can be too expensive.
 - Naïve Bayes, logistic regression
 - Trees including boosting trees, random forests