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Recommendation Systems

• Systems for recommending items (e.g. books, 
movies, music, web pages, newsgroup messages) 
to users based on examples of their preferences.
– Amazon, Netflix. Increase sales at on-line stores.

• Basic approaches to recommending:
– Collaborative Filtering (a.k.a. social filtering)
– Content-based

• Instances of personalization software.
– adapting to the individual needs, interests, and 

preferences of each user with recommending, filtering, 
& predicting 
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Process of Book Recommendation
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Collaborative Filtering

• Maintain a database of many users’ ratings of a 
variety of items.

• For a given user, find other similar users whose 
ratings strongly correlate with the current user.

• Recommend items rated highly by these similar 
users, but not rated by the current user.

• Almost all existing commercial recommenders use 
this approach (e.g. Amazon). User rating?

Item recommendation

User ratingUser ratingUser ratingUser ratingUser rating
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Collaborative Filtering
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Collaborative Filtering Method

1. Weight all users with respect to similarity 
with the active user.

2. Select a subset of the users (neighbors) to 
use as predictors.

3. Normalize ratings and compute a 
prediction from a weighted combination of 
the selected neighbors’ ratings.

4. Present items with highest predicted 
ratings as recommendations.
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Find users with similar ratings/interests
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Similarity Weighting

• Similarity of two rating vectors  for active user, a, 
and another user, u.
– Pearson correlation coefficient
– a cosine similarity formula ua rr
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ra  and ru are the ratings vectors for the m items rated by 
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Definition: Covariance and Standard 
Deviation

• Covariance:

• Standard Deviation:
• Pearson correlation coefficient
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Neighbor Selection

• For a given active user, a, select correlated 
users to serve as source of predictions.
– Standard approach is to use the most similar n

users, u, based on similarity weights, wa,u   

– Alternate approach is to include all users whose 
similarity weight is above a given threshold. 
Sim(ra , ru )> t

a
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Significance Weighting

• Important not to trust correlations based on 
very few co-rated items.

• Include significance weights, sa,u, based on 
number of co-rated items, m.
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Rating Prediction (Version 0)

• Predict a rating, pa,i, for each item i, for active user, a, 
by using the n selected neighbor users, u Î {1,2,…n}.

• Weight users’ ratings contribution by their similarity to 
the active user.
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Rating Prediction (Version 1)

• Predict a rating, pa,i, for each item i, for active user, a, 
by using the n selected neighbor users, u Î {1,2,…n}.

• To account for users different ratings levels, base 
predictions on differences from a user’s average rating. 

• Weight users’ ratings contribution by their similarity to 
the active user.
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Problems with Collaborative Filtering

• Cold Start: There needs to be enough other users 
already in the system to find a match.

• Sparsity: If there are many items to be 
recommended, even if there are many users, the 
user/ratings matrix is sparse, and it is hard to find 
users that have rated the same items.

• First Rater: Cannot recommend an item that has 
not been previously rated.
– New items, esoteric items

• Popularity Bias: Cannot recommend items to 
someone with unique tastes. 
– Tends to recommend popular items.
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Recommendation vs Web Ranking
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Content-Based Recommendation

• Recommendations are based on information on 
the content of items rather than on other users’ 
opinions.
– Less dependence for data on other users.

• Able to recommend to users with unique tastes.
• Able to recommend new and unpopular items

– No first-rater problem.
– No cold-start or sparsity problems..
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Example: LIBRA System

Amazon Book Pages
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Combining Content and Collaboration

• Content-based and collaborative methods have 
complementary strengths and weaknesses.

• Combine methods to obtain the best of both.
• Various hybrid approaches:

– Apply both methods and combine recommendations.
– Use collaborative data as content.
– Use content-based predictor as another collaborator.
– Use content-based predictor to complete 

collaborative data.
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Content-Boosted Collaborative Filtering
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Content-Boosted Collaborative Filtering
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Content-Boosted Collaborative Filtering

• Compute pseudo user ratings matrix
– Full matrix – approximates actual full user ratings matrix

• Perform collaborative filtering
– Using Pearson corr. between pseudo user-rating vectors
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Conclusions

• Recommending and personalization are 
important approaches to combating  
information over-load.

• Machine Learning is an important part of 
systems for these tasks.

• Collaborative filtering has problems.
• Content-based methods address these 

problems (but have problems of their own).
• Integrating both is best.


