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Recommendation Systems

* Systems for recommending items (e.g. books,
movies, music, web pages, newsgroup messages)
to users based on examples of their preferences.

— Amazon, Netflix. Increase sales at on-line stores.

 Basic approaches to recommending:
— Collaborative Filtering (a.k.a. social filtering)
— Content-based

 Instances of personalization software.

— adapting to the individual needs, interests, and
preferences of each user with recommending, filtering,
& predicting



Process of Book Recommendation
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Collaborative Filtering

e Maintain a database of many users’ ratings of a
variety of items.

* For a given user, find other similar users whose
ratings strongly correlate with the current user.

* Recommend items rated highly by these similar
users, but not rated by the current user.

* Almost all existing commercial recommenders use

this approach (e.g. Amazon). - ‘
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Collaborative Filtering Method

1. Weight all users with respect to similarity
with the active user.

2. Select a subset of the users (neighbors) to
use as predictors.

3. Normalize ratings and compute a
prediction from a weighted combination of
the selected neighbors’ ratings.

4. Present items with highest predicted
ratings as recommendations.
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Similarity Weighting

« Similarity of two rating vectors for active user, a,

and another user, u. covar(r, ,r)
_ a’’ u

— Pearson correlation coefficient Ca,u —

Gl" Gl"
. O
— a cosine similarity formula

r, and r, are the ratings vectors for the m items rated by

both a and u
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Definition: Covariance and Standard

Deviation

e Covariance:
Z(r -7 )7, —F,)
covar(r,,r,)=-2
m
b l_m Z(r ~7)’
° ° O-rx =

e Standard Deviation: m

* Pearson correlation coefficient

covar
Co = is1s) = Cosine(r, —7,,7, —7,)
c,0,




Neighbor Selection

* For a given active user, a, select correlated
users to serve as source of predictions.

— Standard approach is to use the most similar »
users, u, based on similarity weights, w,,,

— Alternate approach 1s to include all users whose
similarity weight 1s above a given threshold.
Sim(r, r,)>t
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Significance Weighting

» Important not to trust correlations based on
very few co-rated items.

* Include significance weights, s, ,, based on
number of co-rated items, m.
w o =S ¢

a, a,u-—a,u
(1ifm>50

Sau =158 1 < 50
50 )
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Rating Prediction (Version 0)

* Predict a rating, p, ;, for each item i, for active user, a,
by using the n selected neighbor users, u € {1,2,...n}.

* Weight users’ ratings contribution by their similarity to
the active user.
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Rating Prediction (Version 1)

* Predict a rating, p, ;, for each item i, for active user, a,
by using the n selected neighbor users, u € {1,2,...n}.

* To account for users different ratings levels, base
predictions on differences from a user’s average rating.

* Weight users’ ratings contribution by their similarity to
the active user.

. User a
Zwa,u(ruz _ru)
= u=l1
pa,i T ra + n
2 Wa
u=1
[ ]
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Problems with Collaborative Filtering

* Cold Start: There needs to be enough other users
already 1n the system to find a match.

* Sparsity: If there are many items to be
recommended, even if there are many users, the
user/ratings matrix 1s sparse, and it 1s hard to find

users that have rated the same i1tems.

* First Rater: Cannot recommend an item that has
not been previously rated.
— New items, esoteric items

* Popularity Bias: Cannot recommend items to
someone with unique tastes.
— Tends to recommend popular items.
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Recommendation vs Web Ranking
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Content-Based Recommendation

« Recommendations are based on information on
the content of 1items rather than on other users’
opinions.

— Less dependence for data on other users.

* Able to recommend to users with unique tastes.

* Able to recommend new and unpopular items

— No first-rater problem.

— No cold-start or sparsity problems..
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Example: LIBRA System

Amazon Book Pages
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Combining Content and Collaboration

* (Content-based and collaborative methods have
complementary strengths and weaknesses.

* Combine methods to obtain the best of both.
* Various hybrid approaches:

— Apply both methods and combine recommendations.
— Use collaborative data as content.
— Use content-based predictor as another collaborator.

— Use content-based predictor to complete
collaborative data.
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Content-Boosted Collaborative Filtering

User Ratings
Matrix (Sparse)
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Content-Boosted Collaborative Filtering

User-ratings Vector

Training Examples

Content-Based
Predictor

Pseudo User-ratings Vector
. User-rated Items
D Unrated Items
. Items with Predicted Ratings
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Content-Boosted Collaborative Filtering

User Ratings
Matrix

* Compute pseudo user ratings matrix

— Full matrix — approximates actual full user ratings matrix

* Perform collaborative filtering

— Using Pearson corr. between pseudo user-rating vectors

21



Conclusions

Recommending and personalization are
important approaches to combating
information over-load.

Machine Learning 1s an important part of
systems for these tasks.

Collaborative filtering has problems.
Content-based methods address these

problems (but have problems of their own).

Integrating both 1s best.
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