Use of Click Data for Web Search

Tao Yang UCSB 290N

Table of Content

- Search Engine Logs
- Eyetracking data on position bias
 - Click data for ranker training [Joachims, KDD02]
- Case study: Use of click data for search ranking [Agichtein et al, SIGIR 06]

Search Logs

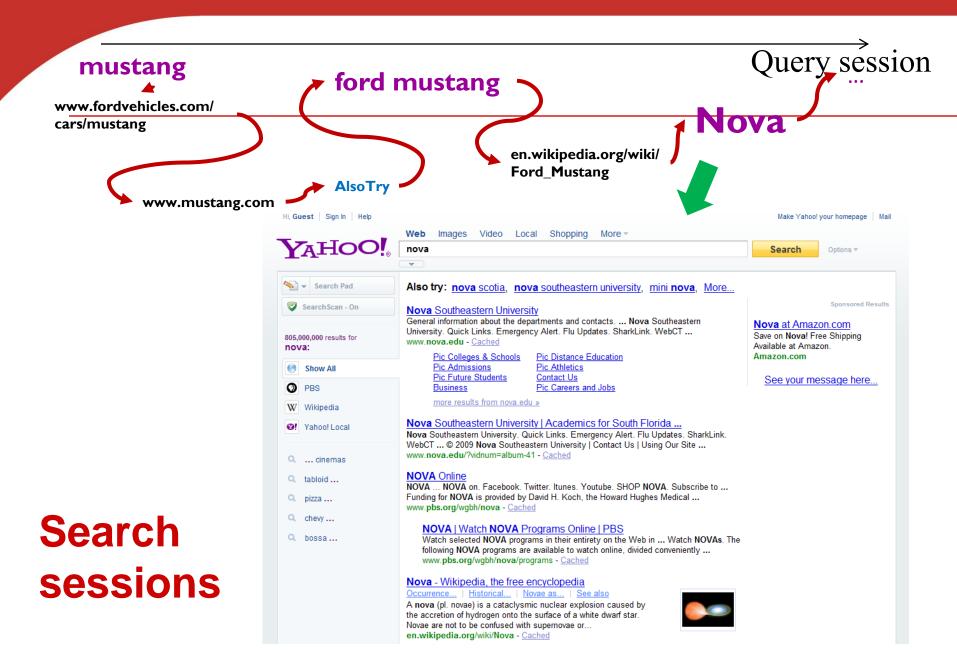
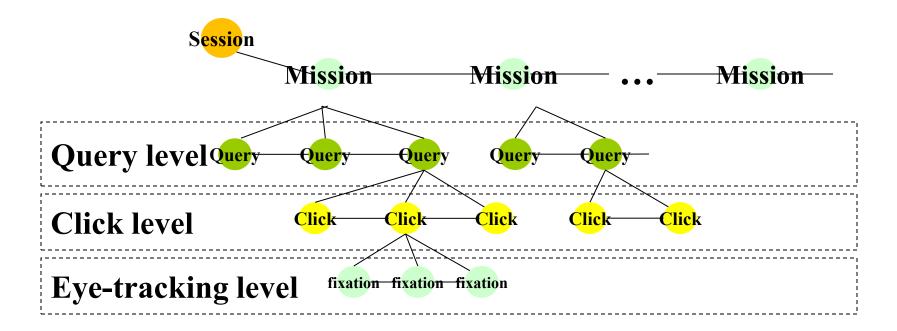

Query logs recorded by search engines

Table 1: Samples of search engine clickthrough data

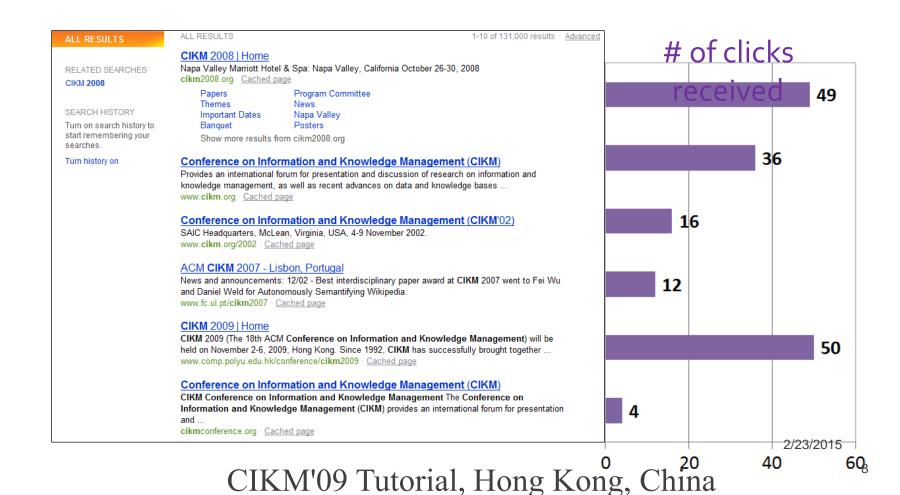

ID	Query	URL	Rank	Time
358	facebook	http://www.facebook.com	1	2008-01-01 07:17:12
358	facebook	http://en.wikipedia.org/wiki/Facebook	3	2008-01-01 07:19:18
3968	apple iphone	http://www.apple.com/iphone/	1	2008-01-01 07:20:36
		***		***

• Huge amount of data: e.g. 10TB/day at Bing

```
1337
     fisery 2006-03-24 14:05:01 2 http://www.fiservinsurance.com
1337
     fisery 2006-03-24 14:05:01 3 http://www.fiservlendingsolutions.com
1337
     integrated real estate 2006-03-27 14:52:29 1 http://www.integratedreal.com
1337
     integrated real estate 2006-03-27 14:52:29 2 http://www.irisnet.net
1337
     integrated loan services 2006-03-29 17:12:27 1 http://www.ils.com
1337
     michael keaton date of birth 2006-04-03 22:05:48 1 http://www.imdb.com
     auto locator pennsylvania 2006-04-11 21:46:57 1 http://theautofinder.com
1337
1337
     auto locator 2006-04-11 21:47:57 1 http://www.auto-locator.com
1337
     kentucky fried chicken 2006-04-25 16:07:14 1 http://www.kfc.com
1410
     google 2006-05-01 21:40:54 1 http://www.google.com
2005
     wnmu homepage 2006-03-01 00:46:55 2 http://www.wnmu.edu
2005
     wnmu homepage 2006-03-01 00:48:28 1 http://www.wnmu.edu
2005
     wnmu homepage 2006-03-01 00:48:28 1 http://www.wnmu.edu
2005
     wnmu homepage 2006-03-01 21:03:03 1 http://www.wnmu.edu
2005
     wnmu homepage 2006-03-01 21:04:35 1 http://www.wnmu.edu
2005
     wnmu home page 2006-03-01 21:57:00 1 http://www.wnmu.edu
2005
     wnmu home page 2006-03-01 22:21:57 1 http://www.wnmu.edu
2005
     wnmu home page 2006-03-05 19:54:12 1 http://www.wnmu.edu
2005
     wnmu homepage 2006-03-07 23:34:21 2 http://www.wnmu.edu
2005
     wnmu homepage 2006-03-07 23:36:11 1 http://www.wnmu.edu
2005
     wnmu webct 2006-03-07 23:47:49 1 https://western.checs.net:4443/wadmin/webct logon.htm
2005
     myspace.ocm 2006-03-09 23:12:40 1 http://www.morcey.net
     glitter graphics.com 2006-03-10 01:00:41 1 http://www.glitter-graphics.com
2005
2005
     google 2006-03-24 21:25:10 1 http://www.google.com
     ww.vibe.com 2006-03-26 21:21:51 7 http://www.vibe985.com
2005
2005
     wnmu.edu 2006-03-27 21:24:09 1 http://www.wnmu.edu
```


Query sessions and analysis

Query-URL correlations:


- Query-to-pick
- Query-to-query
- Pick-to-pick

Examples of behavior analysis with search logs

- Query-pick (click) analysis
- Session detection
- Classification
 - $x_1, x_2, ..., x_N \rightarrow y$
 - eg, whether the session has a commercial intent
- Sequence labeling
 - $x_1, x_2, ..., x_N \rightarrow y_1, y_2, ..., y_N$
 - eg, segment a search sequence into missions and goals
- Prediction
 - $x_1, x_2, ..., x_{N-1} \rightarrow y_N$
- Similarity
 - Similarity(S₁, S₂)

Query-pick (click) analysis

Search Results for "CIKM"

Interpret Clicks: an Example

CIKM 2008 | Home

Napa Valley Marriott Hotel pa: Napa Valley, California October 26-30, 2008 cikm2008.org · Cached page

Papers Program Committee
Themes News
Important Dates Napa Valley
Banquet Posters
Show more results from cikm2008.org

Conference on Information and Knowledge Management (CIKM)

Provides an international forum for presentation and discussion of research on information and knowledge management, as well as recent advances on data and knowledge bases ... www.cikm.org · Cached page

Conference on Information and Knowledge Management (CIKM'02)

SAIC Headquarters, McLean, Virginia, USA, 4-9 November 2002

www.cikm.org/2002 · Cached page

ACM CIKM 2007 - Lisbon, Portugal

News and announcements: 12/02 - Best interdisciplinary paper award at CIKM 2007 went to Fei Wu and Daniel Weld for Autonomously Semantifying Wikipedia.

www.fc.ul.pt/cikm2007 · Cached page

CIKM 2009 | Home

CIKM 2009 (The 18th ACM Conference on Information and Knowledge Management) will be held on November 2-6, 2009, Hong Kong. Since 1992, CIKM has successfully brought together ... www.comp.polyu.edu.hk/conference/cikm2009 · Cached page

Conference on Information and Knowledge Management (CIKM)

CIKM Conference on Information and Knowledge Management The Conference on Information and Knowledge Management (CIKM) provides an international forum for presentation and

cikmconference.org · Cached page

CIKM 2004

Identify challenging problems facing the development of future knowledge and information systems, and shape future directions of research by soliciting and reviewing high quality ...

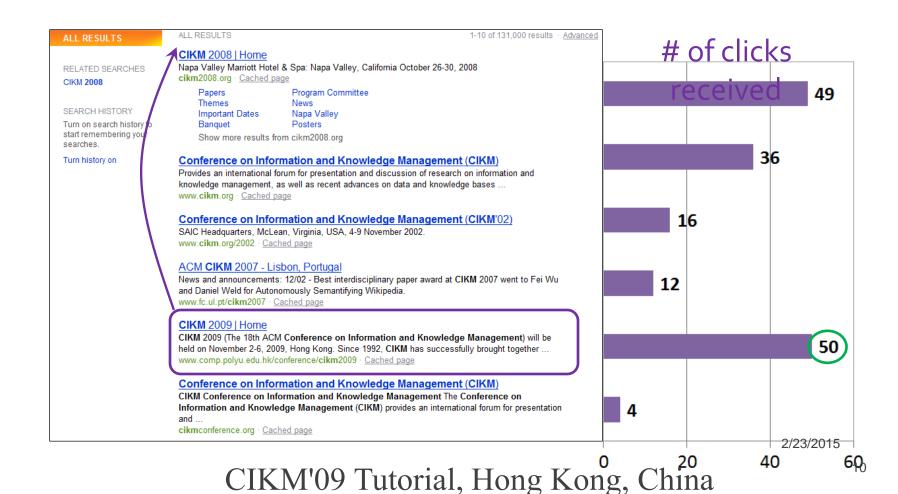
ir.iit.edu/cikm2004 · Cached page

CIKM

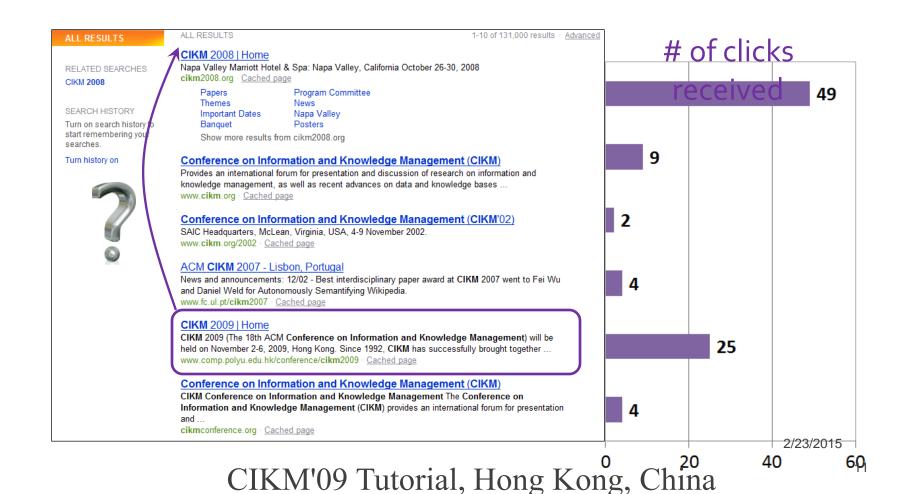
International Conference on Information and Knowledge Management (CIKM) CIKM Home Page ACM DL: CIKM 17. CIKM 2008: Napa Valley, California, USA. James G. Shanahan, Sihem Amer-Yahia ...

www.informatik.uni-trier.de/~ley/db/conf/cikm/index.html · Cached page

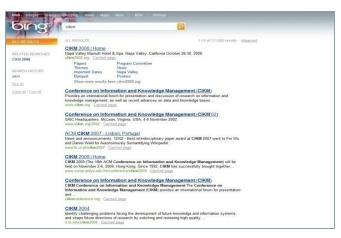
- Clicks are good…
 - Are these two clicks equally "good"?
- Non-clicks may have excuses:
 - Not relevant
 - Not examined



2/23/2015

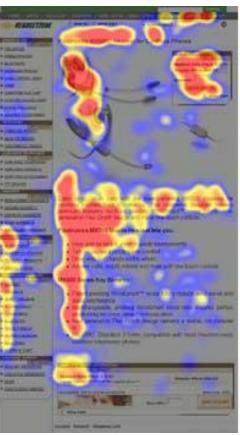

Use of behavior data

Adapt ranking to user clicks?

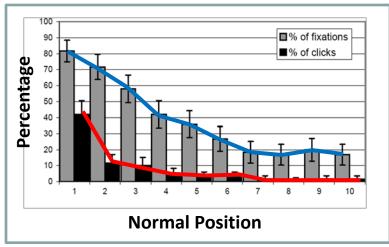

Non-trivial cases

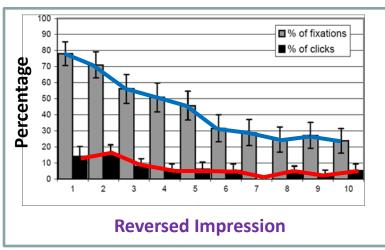
Tools needed for non-trivial cases

Eye-tracking User Study



Eye tracking for different web sites


Google user patterns



Click Position-bias

- Higher positions receive more user attention (eye fixation) and clicks than lower positions.
- This is true even in the extreme setting where the order of positions is reversed.
- "Clicks are informative but biased".

[Joachims+o7]

2/23/2015

Clicks as Relative Judgments for Rank Training

"Clicked > Skipped Above" [Joachims, KDD02]

CIKM 2008 | Home Napa Valley Marriott Hotel & Spa: Napa Valley, California October 26-30, 2008 Papers Program Committee Themes Important Dates Napa Valley Posters Banquet Show more results from cikm2008.org Conference on Information and Knowledge Management (CIKM) Provides an international forum for presentation and discussion of research on information and knowledge management, as well as recent advances on data and knowledge bases ... www.cikm.org - Cached page Conference on Information and Knowledge Management (CIKM'02) SAIC Headquarters, McLean, Virginia, USA, 4-9 November 2002. www.cikm.org/2002 Cached page ACM CIKM 2007 - Lisbon, Portugal News and announcements: 12/02 - Best interdisciplinary paper award at CIKM 2007 went to Fei Wu and Daniel Weld for Autonomously Semantifying Wikipedia. www.fc.ul.pt/cikm2007 - Cached page CIKM 2009 (The 18th ACM Conference on Information and Knowledge Management) will be held on November 2-6, 2009, Hong Kong, Since 1992, CIKM has successfully brought together ... www.comp.polyu.edu.hk/conference/cikm2009 - Cached page Conference on Information and Knowledge Management (CIKM) CIKM Conference on Information and Knowledge Management The Conference on Information and Knowledge Management (CIKM) provides an international forum for presentation cikmconference.org - Cached page **CIKM 2004** Identify challenging problems facing the development of future knowledge and information systems, and shape future directions of research by soliciting and reviewing high quality ir.iit.edu/cikm2004 - Cached page International Conference on Information and Knowledge Management (CIKM) CIKM Home Page ACM DL: CIKM 17. CIKM 2008: Napa Valley, California, USA. James G. Shanahan, Sihem www.informatik.uni-trier.de/~ley/db/conf/cikm/index.html - Cached page

- Preference pairs:
 #5>#2, #5>#3, #5>#4.
- Use Rank SVM to optimize the retrieval function.
- Limitation:
 - Confidence of judgments
 - Little implication to user modeling

2/23/2015

Additional relation for relative relevance judgments

click > skip above

last click > click above

click > click earlier

last click > click previous

click > no-click next

Web Search Ranking by Incorporating User Behavior Information Rank pages relevant for a query

- •Eugene Agichtein, Eric Brill, Susan Dumais SIGIR 2006
- Categories of Features (Signals) for Web Search Ranking
 - Content match
 - e.g., page terms, anchor text, term weights, term span
 - Document quality
 - e.g., web topology, spam features
- Add one more category:
 - Implicit user feedback from click data

Rich User Behavior Feature Space

Observed and distributional features

- Aggregate observed values over all user interactions for each query and result pair
- Distributional features: deviations from the "expected" behavior for the query
- Represent user interactions as vectors in user behavior space
 - Presentation: what a user sees before a click
 - Clickthrough: frequency and timing of clicks
 - Browsing: what users do after a click

Ranking Features (Signals)

Presentation				
ResultPosition	Position of the URL in Current ranking			
QueryTitleOverlap	Fraction of query terms in result Title			
Clickthrough				
DeliberationTime	Seconds between query and first click			
ClickFrequency	Fraction of all clicks landing on page			
ClickDeviation	Deviation from expected click frequency			
Browsing				
DwellTime	Result page dwell time			
DwellTimeDeviation	Deviation from expected dwell time for query			

More Presentation Features

Query-text features				
TitleOverlap	Words shared between query and title			
SummaryOverlap	Words shared between query and snippet			
QueryURLOverlap	Words shared between query and URL			
QueryDomainOverlap	Words shared between query and URL domain			
QueryLength	Number of tokens in query			
QueryNextOverlap	Fraction of words shared with next query			

More Clickthough Features

Clickthrough features		
Position	Position of the URL in Current ranking	
ClickFrequency	Number of clicks for this query, URL pair	
ClickProbability	Probability of a click for this query and URL	
ClickDeviation	Deviation from expected click probability	
IsNextClicked	1 if clicked on next position, 0 otherwise	
IsPreviousClicked	1 if clicked on previous position, 0 otherwise	
IsClickAbove	1 if there is a click above, 0 otherwise	
IsClickBelow	1 if there is click below, 0 otherwise	

Browsing features

Browsing features	
TimeOnPage	Page dwell time
CumulativeTimeOnPage	Cumulative time for all subsequent pages after search
TimeOnDomain	Cumulative dwell time for this domain
TimeOnShortUrl	Cumulative time on URL prefix, no parameters
IsFollowedLink	1 if followed link to result, 0 otherwise
IsExactUrlMatch	0 if aggressive normalization used, 1 otherwise
IsRedirected	1 if initial URL same as final URL, 0 otherwise
IsPathFromSearch	1 if only followed links after query, 0 otherwise
ClicksFromSearch	Number of hops to reach page from query
AverageDwellTime	Average time on page for this query
DwellTimeDeviation	Deviation from average dwell time on page
CumulativeDeviation	Deviation from average cumulative dwell time
DomainDeviation	Deviation from average dwell time on domain

User Behavior Models for Ranking

Use interactions from previous instances of query

- General-purpose (not personalized)
- Only available for queries with past user interactions

3 Models:

- Rerank results by number of clicks (clickthrough rate)
- Rerank with all user behavior features).
- Integrate directly into ranker: incorporate user behavior features with other categories of ranking (e.g. text matching)

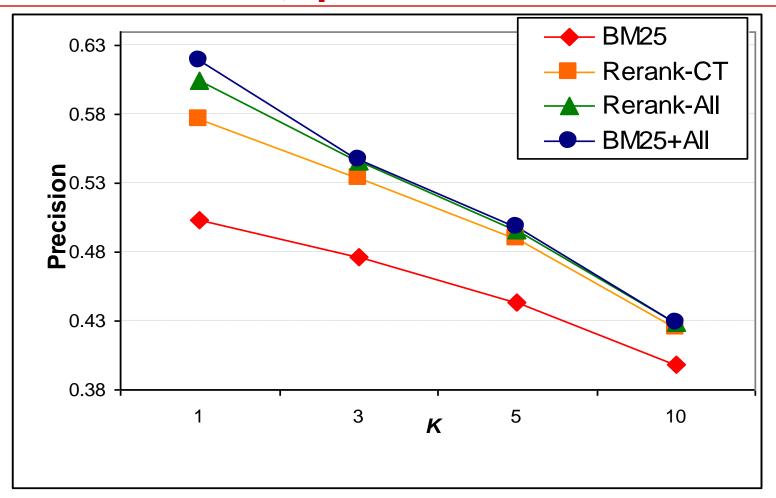
Evaluation Metrics

- Precision at K: fraction of relevant in top K
- NDCG at K: norm. discounted cumulative gain
 - Top-ranked results most important

$$N_q = M_q \sum_{j=1}^K (2^{r(j)} - 1) / \log(1 + j)$$

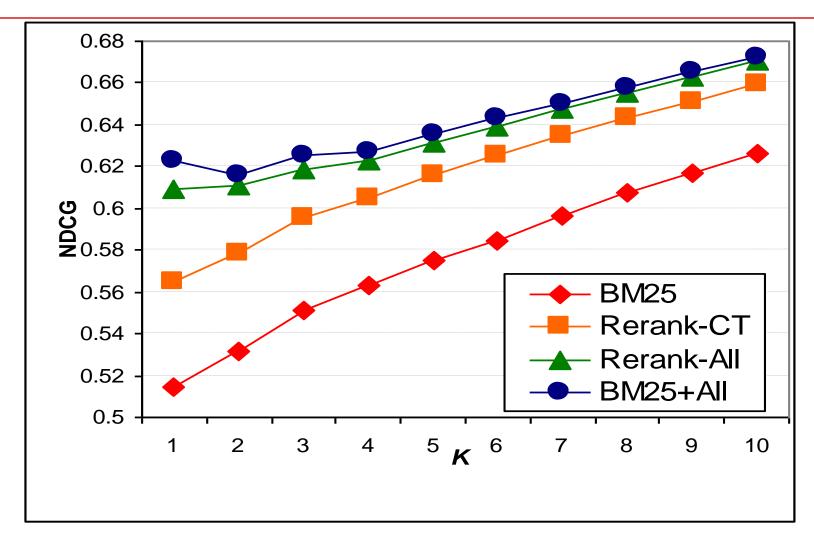
- MAP: mean average precision
 - Average precision for each query: mean of the precision at K values computed after each relevant document was retrieved

24

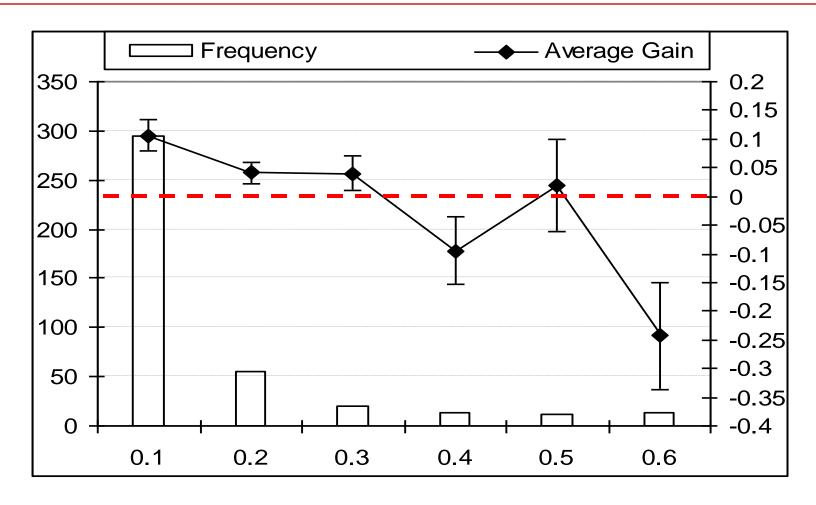

Datasets

- 8 weeks of user behavior data from anonymized opt-in client instrumentation
- Millions of unique queries and interaction traces
- Random sample of 3,000 queries
 - Gathered independently of user behavior
 - 1,500 train, 500 validation, 1,000 test
- Explicit relevance assessments for top 10 results for each query in sample

Methods Compared


- Full Search Engine
 - Content match feature uses BM25F
 - A variation of TF-IDF model
- Compare 4 ranking models
 - BM25F only
 - Clickthrough: called Rerank-CT
 - Rerank these queries with sufficient historic click data
 - Full user behavior model predictions: called Rerank-All
 - Integrate all user behavior features directly: +AII
 - User behavior features + content match

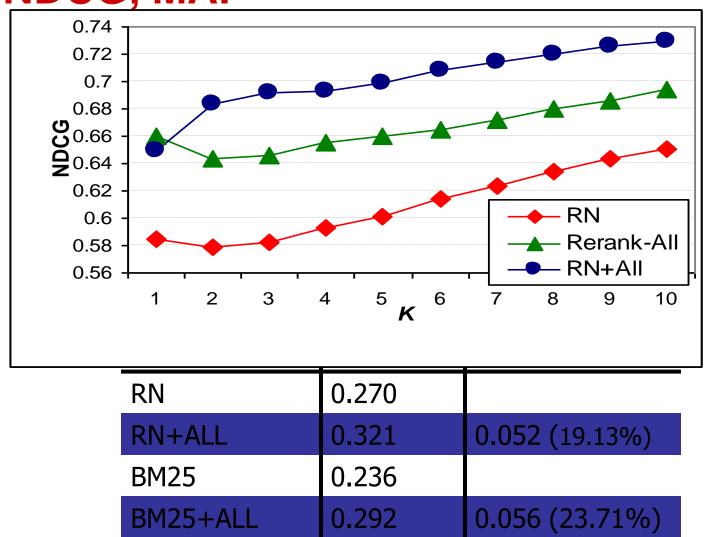
Content, User Behavior: Precision at K, queries with interactions


BM25 < Rerank-CT < Rerank-All < +All

Content, User Behavior: NDCG

BM25 < Rerank-CT < Rerank-All < +All

Which Queries Benefit Most



Most gains are for queries with poor ranking

Conclusions

- Incorporating user behavior into web search ranking dramatically improves relevance
- Providing rich user interaction features to ranker is the most effective strategy
- Large improvement shown for up to 50% of test queries

Full Search Engine, User Behavior: NDCG, MAP

