Learning Ensembles

293S T. Yang. UCSB, 2017

.

Outlines

- Learning Assembles
- Random Forest
- Adaboost

Training data: Restaurant example

Examples described by attribute values (Boolean, discrete, continuous)

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	T	Τ	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Τ	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Τ	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

A decision tree to decide whether to wait

imagine someone talking a sequence of decisions.

Learning Ensembles

- Learn multiple classifiers separately
- Combine decisions (e.g. using weighted voting)

 When combing multiple decisions, random errors cancel each other out, correct decisions are reinforced.

Homogenous Ensembles

- Use a single, arbitrary learning algorithm but manipulate training data to make it learn multiple models.
 - Data1 ≠ Data2 ≠ ... ≠ Data m
 - Learner1 = Learner2 = ... = Learner m
- Methods for changing training data:
 - Bagging: Resample training data
 - Boosting: Reweight training data
 - DECORATE: Add additional artificial training data

Bagging

- Create ensembles by repeatedly randomly resampling the training data (Brieman, 1996).
- Given a training set of size *n*, create *m* sample sets
 - Each bootstrap sample set will on average contain 63.2% of the unique training examples, the rest are replicates.
- Combine the m resulting models using majority vote.
- Decreases error by decreasing the variance in the results due to unstable learners, algorithms (like decision trees) whose output can change dramatically when the training data is slightly changed.

Random Forests

- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Each tree is grown using a bootstrap sample of training data
 - At each node, best split is chosen from random sample of m variables instead of all variables M.
- m is held constant during the forest growing
- Each tree is grown to the largest extent possible
- Bagging using decision trees is a special case of random forests when m=M

Random Forests

Figure 5.40. Random forests.

Random Forest Algorithm

- Good accuracy without over-fitting
- Fast algorithm (can be faster than growing/pruning a single tree); easily parallelized
- Handle high dimensional data without much problem

Boosting: AdaBoost

Yoav Freund and Robert E. Schapire. A decisiontheoretic generalization of on-line learning and an application to boosting. *Journal of Computer and System Sciences*,

55(1):119–139, August 1997.

Simple with theoretical foundation

Adaboost - Adaptive Boosting

- Use training set re-weighting
 - Each training sample uses a weight to determine the probability of being selected for a training set.
- AdaBoost is an algorithm for constructing a "strong" classifier as linear combination of "simple" "weak" classifier

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Final classification based on weighted sum of weak classifiers

AdaBoost: An Easy Flow

combination

Adaboost Terminology

- $h_t(x)$... "weak" or basis classifier
- H(x) = sign(f(x)) ... "strong" or final classifier
- Weak Classifier: < 50% error over any distribution
- Strong Classifier: thresholded linear combination of weak classifier outputs

And in a Picture

AdaBoost.M1

- Given <u>training set</u> X={(x₁,y₁),...,(x_m,y_m)}
- $y_i \in \{-1,+1\}$ correct label of instance $x_i \in X$
- Initialize distribution $D_1(i)=1/m$; (weight of training cases)
- for t = 1,...,T:
 - Find a <u>weak classifier</u> ("rule of thumb")

$$h_t: X \to \{-1,+1\}$$

with small error ε_t on D_t :

• Update distribution D_t on $\{1,...,m\}$. $\alpha_t = \log(1/\varepsilon_t-1)$

$$y_i * h_t(x_i) > 0$$
, if correct $y_i * h_t(x_i) < 0$, if wrong

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

• output final hypothesis where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

Reweighting

Effect on the training set

Reweighting formula:

$$\begin{split} D_{t+1}(i) &= \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} \\ &exp(-\alpha_t y_i h_t(x_i)) \left\{ \begin{array}{ccc} <1, & y_i = h_t(x_i) \\ >1, & y_i \neq h_t(x_i) \end{array} \right. \\ & \left. \begin{array}{cccc} \mathbf{y} * \mathbf{h}(\mathbf{x}) = 1 \\ \end{array} \right. \end{split}$$

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

Toy Example

Round 1

Weak classifier: if $h_1 < 0.2 \rightarrow 1$ else -1

Round 2

Weak classifier: if $h_2 < 0.8 \rightarrow 1$ else -1

Round 3

Weak classifier: if $h_3 > 0.7 \rightarrow 1$ else -1

Final Combination

if
$$h_1 < 0.2 \rightarrow 1$$
 else -1

if
$$h_2 < 0.8 \rightarrow 1$$
 else -1

$$H_{\text{final}} = \text{sign}\left(0.42 + 0.65\right)$$

if
$$h_3 > 0.7 \rightarrow 1$$
 else -1

Pros and cons of AdaBoost

Advantages

- Very simple to implement
- Does feature selection resulting in relatively simple classifier
- Fairly good generalization

Disadvantages

- Suboptimal solution
- Sensitive to noisy data and outliers

References

- Duda, Hart, ect Pattern Classification
- Freund "An adaptive version of the boost by majority algorithm"
- Freund "Experiments with a new boosting algorithm"
- Freund, Schapire "A decision-theoretic generalization of on-line learning and an application to boosting"
- Friedman, Hastie, etc "Additive Logistic Regression: A Statistical View of Boosting"
- Jin, Liu, etc (CMU) "A New Boosting Algorithm Using Input-Dependent Regularizer"
- Li, Zhang, etc "Floatboost Learning for Classification"
- Opitz, Maclin "Popular Ensemble Methods: An Empirical Study"
- Ratsch, Warmuth "Efficient Margin Maximization with Boosting"
- Schapire, Freund, etc "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods"
- Schapire, Singer "Improved Boosting Algorithms Using Confidence-Weighted Predictions"
- Schapire "The Boosting Approach to Machine Learning: An overview"
- Zhang, Li, etc "Multi-view Face Detection with Floatboost"

AdaBoost: Training Error Analysis

Suppose
$$f(x) = \sum_{t=1}^{T} \frac{\mathsf{Equivalent}}{\alpha_t h_t(x)} \qquad H(x) = \mathrm{sign}(f(x))$$
 if $H(x_i) \neq y_i$ then $y_i f(x_i) \leq 0$ implying that $\exp(-y_i f(x_i)) \geq 1$. Thus,

$$[H(x_i) \neq y_i] \leq \exp(-y_i f(x_i)).$$

Therefore, training error is:

$$\frac{1}{m} \left| \{ i : H(x_i) \neq y_i \} \right| \leq \frac{1}{n}$$

As:

$$D_{T+1}(i) = \frac{\exp(-\sum_t \alpha_t y_i)}{m \prod_t Z_t}$$

Considering

 $\frac{1}{m} |\{i: H(x_i) \neq y_i\}| \leq \frac{1}{r}$ $\{i: H(x_i) \neq y_i\} \text{ is a vector which}$ $D_{T+1}(i) = \frac{\exp(-\sum_t \alpha_t y_i)}{m \prod_t Z_t}$ $|\{i: H(x_i) \neq y_i\}| \text{ is the sum of all the}$ element in the vector

Finally:
$$\sum_{t=1}^{\infty} D_{T+1}(i) = 1, \quad \sum_{t=1}^{\infty} C_{T}(X_{i}) = \prod_{t=1}^{\infty} Z_{t}$$

$$\frac{1}{m} |\{i : H(X_{i}) \neq y_{i}\}| \leq \prod_{t=1}^{\infty} Z_{t}$$

AdaBoost: How to choose

According to
$$\frac{1}{m} |\{i : H(x_i) \neq y_i\}| \leq \prod_{t=1}^{T} z_t$$

This equation is obvious if we treat u_i as a binaryvalued variable.

$$U_i = y_i n_t$$

$$Z = \sum_i D(i)e^{-t}$$
By setting consider easily gets

The right term is mip

Minimize the error bound could be done

Actually AdaBoost can just minimize the training error.

training error.
$$Z = \sum_{i} D(i)e^{-t} \text{ easily ge}$$

$$\alpha = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) - \sum_{i} D(i) u_{i}$$

Then the training error of H is at most

$$\prod_{t=1}^{T} \sqrt{1-r_t^2}.$$