
Learning Ensembles

293S T. Yang. UCSB, 2017
.

Outlines

• Learning Assembles
• Random Forest
• Adaboost

Training data: Restaurant example

• Examples described by attribute values (Boolean, discrete,
continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

A decision tree to decide whether to wait

• imagine someone talking a sequence of decisions.

5

Learning Ensembles

• Learn multiple classifiers separately
• Combine decisions (e.g. using weighted voting)
• When combing multiple decisions, random errors

cancel each other out, correct decisions are
reinforced. Training Data

Data1 Data mData2 × × × × × × × ×

Learner1 Learner2 Learner m× × × × × × × ×

Model1 Model2 Model m× × × × × × × ×

Model Combiner Final
Model

Homogenous Ensembles

• Use a single, arbitrary learning algorithm
but manipulate training data to make it
learn multiple models.
§ Data1 ¹ Data2 ¹ … ¹ Data m
§ Learner1 = Learner2 = … = Learner m

• Methods for changing training data:
§ Bagging: Resample training data
§ Boosting: Reweight training data
§ DECORATE: Add additional artificial training data

Training Data

Data1 Data mData2 × × × × × × × ×

Learner1 Learner2 Learner m× × × × × × × ×

7

Bagging

• Create ensembles by repeatedly randomly resampling
the training data (Brieman, 1996).

• Given a training set of size n, create m sample sets
§ Each bootstrap sample set will on average contain 63.2% of

the unique training examples, the rest are replicates.
• Combine the m resulting models using majority vote.

• Decreases error by decreasing the variance in the
results due to unstable learners, algorithms (like
decision trees) whose output can change dramatically
when the training data is slightly changed.

Random Forests

• Introduce two sources of randomness: “Bagging”
and “Random input vectors”
§ Each tree is grown using a bootstrap sample of

training data
§ At each node, best split is chosen from random

sample of m variables instead of all variables M.
• m is held constant during the forest growing
• Each tree is grown to the largest extent possible
• Bagging using decision trees is a special case of random

forests when m=M

Random Forests

Random Forest Algorithm

• Good accuracy without over-fitting
• Fast algorithm (can be faster than growing/pruning a

single tree); easily parallelized
• Handle high dimensional data without much problem

Boosting: AdaBoost

Yoav Freund and Robert E. Schapire. A decision-
theoretic generalization of on-line

learning and an application to boosting. Journal of
Computer and System Sciences,

55(1):119–139, August 1997.
§ Simple with theoretical foundation

12

Adaboost - Adaptive Boosting

• Use training set re-weighting
§ Each training sample uses a weight to determine the

probability of being selected for a training set.

• AdaBoost is an algorithm for constructing a
“strong” classifier as linear combination of
“simple” “weak” classifier

• Final classification based on weighted sum of weak
classifiers

AdaBoost: An Easy Flow

Data set 1 Data set 2 Data set T

Learner1 Learner2 LearnerT… ...

… ...

… ...

training instances that are wrongly
predicted by Learner1 will be weighted
more for Learner2

weighted
combination

Original training set

14

Adaboost Terminology

• ht(x) … “weak” or basis classifier
• … “strong” or final classifier

• Weak Classifier: < 50% error over any distribution

• Strong Classifier: thresholded linear combination
of weak classifier outputs

And in a Picture

training case
correctly
classified

training case
has large weight
in this round

this DT has
a strong vote.

• Given training set X={(x1,y1),…,(xm,ym)}
• yiÎ{-1,+1} correct label of instance xiÎX
• Initialize distribution D1(i)=1/m; (weight of training cases)
• for t = 1,…,T:

• Find a weak classifier (“rule of thumb”)
ht : X ® {-1,+1}

with small error et on Dt:
• Update distribution Dt on {1,…,m}. 𝛼t = log(1/𝜀t-1)

• output final hypothesis

AdaBoost.M1

å =
=

T

t tt xhsignxH
1

))(()(a

yi * ht(xi) > 0, if correct
yi * ht(xi) < 0, if wrong

17

Reweighting

y * h(x) = -1

y * h(x) = 1

Toy Example

Round 1

Weak classifier: if h1 <0.2 à 1 else -1

Round 2

Weak classifier: if h2 <0.8 à 1 else -1

Round 3

Weak classifier: if h3 >0.7 à 1 else -1

Final Combination
if h1 <0.2 à 1 else -1

if h3 >0.7 à 1 else -1

if h2 <0.8 à 1 else -1

23

Pros and cons of AdaBoost

Advantages
§ Very simple to implement
§ Does feature selection resulting in relatively simple

classifier
§ Fairly good generalization

Disadvantages
§ Suboptimal solution
§ Sensitive to noisy data and outliers

24

References

• Duda, Hart, ect – Pattern Classification

• Freund – “An adaptive version of the boost by majority algorithm”

• Freund – “Experiments with a new boosting algorithm”

• Freund, Schapire – “A decision-theoretic generalization of on-line learning and an application to boosting”

• Friedman, Hastie, etc – “Additive Logistic Regression: A Statistical View of Boosting”

• Jin, Liu, etc (CMU) – “A New Boosting Algorithm Using Input-Dependent Regularizer”

• Li, Zhang, etc – “Floatboost Learning for Classification”

• Opitz, Maclin – “Popular Ensemble Methods: An Empirical Study”

• Ratsch, Warmuth – “Efficient Margin Maximization with Boosting”

• Schapire, Freund, etc – “Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods”

• Schapire, Singer – “Improved Boosting Algorithms Using Confidence-Weighted Predictions”

• Schapire – “The Boosting Approach to Machine Learning: An overview”

• Zhang, Li, etc – “Multi-view Face Detection with Floatboost”

n Suppose

n Therefore, training error is:

n As:

Considering

Finally:

AdaBoost: Training Error Analysis

Õ
=

£¹
T

t
tii zyxHi

m 1

})(:{1
1

1() 1, exp(())T i i tt
i i
D i y f x Z

m+ = - =å å Õ

Equivalent

{i: H(xi)≠yi} is a vector which
i-th element is [H(xi) ≠ yi].

|{i: H(xi)≠yi}| is the sum of all the
element in the vector

n According to

n Therefore, we choose
n Let

n The right term is minimized when

AdaBoost: How to choose

()* argmin argmin () t i t i

t t

y h x
t t t

i
Z D i e a

a a
a -= = å

Õ
=

£¹
T

t
tii zyxHi

m 1

})(:{1

ta

titii xhyu aa ==),(

Minimize the error
bound could be done
by greedily minimizing
Zt each round.

This equation is obvious
if we treat ui as a binary-
valued variable.

By setting dz/dα=0 , and
considering ∑D(i)=1, we can
easily get this solution.

Actually AdaBoost can just minimize the
training error.

1 () ()
1, let (), we have

2
() ()

t t
h y h y

t
h y

t t
h y h y

D i D i
rD i

r D i D i
e e= ¹

¹

= ¹

ì = +ï -ï = =í
ï = -
ïî

å å
å

å å

