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Outlines

• Learning Assembles
• Random Forest
• Adaboost



Training data: Restaurant example

• Examples described by attribute values (Boolean, discrete, 
continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)



A decision tree to decide whether to wait

• imagine someone talking a sequence of decisions.
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Learning Ensembles

• Learn multiple classifiers separately
• Combine decisions (e.g. using weighted voting)
• When combing multiple decisions, random errors 

cancel each other out, correct decisions are 
reinforced. Training Data

Data1 Data mData2 × × × × × × × ×

Learner1 Learner2 Learner m× × × × × × × ×

Model1 Model2 Model m× × × × × × × ×

Model Combiner Final 
Model



Homogenous Ensembles

• Use a single, arbitrary learning algorithm 
but manipulate training data to make it 
learn multiple models.
§ Data1 ¹ Data2 ¹ … ¹ Data m
§ Learner1 = Learner2 = … = Learner m

• Methods for changing training data:
§ Bagging: Resample training data
§ Boosting: Reweight training data
§ DECORATE: Add additional artificial training data

Training Data

Data1 Data mData2 × × × × × × × ×

Learner1 Learner2 Learner m× × × × × × × ×
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Bagging

• Create ensembles by repeatedly randomly resampling 
the training data (Brieman, 1996).

• Given a training set of size n, create m sample sets
§ Each bootstrap sample set will on average contain 63.2% of 

the unique training examples, the rest are replicates.
• Combine the m resulting models using majority vote. 

• Decreases error by decreasing the variance in the 
results due to unstable learners, algorithms (like 
decision trees) whose output can change dramatically 
when the training data is slightly changed.



Random Forests

• Introduce two sources of randomness: “Bagging” 
and “Random input vectors”
§ Each tree is grown using a bootstrap sample of 

training data
§ At each node, best split is chosen from random 

sample of m variables instead of all variables  M.
• m is held constant during the forest growing
• Each tree is grown to the largest extent possible
• Bagging using decision trees is a special case of random 

forests when m=M 



Random Forests



Random Forest Algorithm

• Good accuracy without over-fitting
• Fast algorithm (can be faster than growing/pruning a 

single tree); easily parallelized
• Handle high dimensional data without much problem



Boosting:   AdaBoost

Yoav Freund and Robert E. Schapire. A decision-
theoretic generalization of on-line

learning and an application to boosting. Journal of 
Computer and System Sciences,

55(1):119–139, August 1997.
§ Simple with theoretical foundation
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Adaboost - Adaptive Boosting

• Use training set re-weighting
§ Each training sample uses a weight to determine the 

probability of being selected for a training set.

• AdaBoost is an algorithm for constructing a 
“strong” classifier as linear combination of 
“simple” “weak” classifier 

• Final classification based on weighted sum of weak 
classifiers



AdaBoost: An Easy Flow

Data set 1 Data set 2 Data set T

Learner1 Learner2 LearnerT… ...

… ...

… ...

training instances that are wrongly 
predicted by Learner1 will be weighted 
more for Learner2

weighted 
combination

Original training set
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Adaboost Terminology

• ht(x) … “weak” or basis classifier 
• … “strong” or final classifier

• Weak Classifier: < 50% error over any distribution

• Strong Classifier: thresholded linear combination 
of weak classifier outputs



And in a Picture

training case
correctly
classified

training case
has large weight
in this round

this DT has 
a strong vote.



• Given training set X={(x1,y1),…,(xm,ym)}
• yiÎ{-1,+1} correct label of instance xiÎX
• Initialize distribution D1(i)=1/m; ( weight of training cases)
• for t = 1,…,T:

• Find a weak classifier (“rule of thumb”)
ht : X ® {-1,+1}

with small error et on Dt:
• Update distribution Dt on {1,…,m}. 𝛼t = log(1/𝜀t-1)

• output final hypothesis

AdaBoost.M1
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=

T

t tt xhsignxH
1

))(()( a

yi * ht(xi) > 0, if correct
yi * ht(xi) < 0, if wrong



17

Reweighting 

y * h(x) = -1

y * h(x) = 1



Toy Example



Round 1

Weak classifier:   if h1 <0.2 à 1   else -1



Round 2

Weak classifier:  if  h2 <0.8 à 1 else -1



Round 3

Weak classifier:  if  h3 >0.7 à 1 else -1



Final Combination
if h1 <0.2 à 1  else -1

if  h3 >0.7 à 1 else -1

if  h2 <0.8 à 1 else -1
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Pros and cons of AdaBoost

Advantages
§ Very simple to implement
§ Does feature selection resulting in relatively simple 

classifier
§ Fairly good generalization

Disadvantages
§ Suboptimal solution
§ Sensitive to noisy data and outliers
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AdaBoost: Training Error Analysis
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Equivalent 

{i: H(xi)≠yi} is a vector which 
i-th element is [H(xi) ≠ yi].

|{i: H(xi)≠yi}| is the sum of all the 
element in the vector
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n Therefore, we choose
n Let

n The right term is minimized when   

AdaBoost: How to choose 
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Minimize the error 
bound could be done 
by greedily minimizing 
Zt each round.

This equation is obvious 
if we treat ui as a binary-
valued variable.

By setting dz/dα=0 , and 
considering ∑D(i)=1, we can 
easily get this solution.

Actually AdaBoost can just minimize the 
training error.
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