
Design Tradeoffs in Query
Processing and Online Architectures

•T. Yang 293S 2017

Content

• Example of design tradeoffs in query processing
optimization

• Experience with Ask.com online architecture
§ Service programming with Neptune.
§ Zookeeper

Query Processing

• Query match to search a document set
§ Document-at-a-time

– Calculates complete scores for documents by processing
all term lists, one document at a time

§ Term-at-a-time
– Accumulates scores for documents by processing term lists

one at a time

Query Processing

RankingQuery match
Document
decription

Document-At-A-Time vs Term-At-A-Time
d1 d2 d3 d4

d1 d1

Term-at-a-time uses more memory
for accumulators, data access is
more efficient.

Less parallelism to exploit for
parallel query processing

Tradeoff for shorter response time

• Early termination of faster query processing
§ Ignore lower priority documents at end of lists in doc-at-

a-time
• List ordering

§ order inverted lists by quality metric (e.g., PageRank) or
by partial score

§ makes unsafe (and fast) optimizations more likely to
produce good documents

§ What about document ID ordering?

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus
Caesar2 8

Distributed Matching

• Basic process
§ All queries sent to a coordination machine
§ The coordinator then sends messages to many index

servers
§ Each index server does some portion of the query

processing
§ The coordinator organizes the results and returns

them to the user
• Two main approaches

§ Document distribution
– by far the most popular

§ Term distribution

Index serverIndex serverIndex serverIndex server

coordinator

Distributed Evaluation

• Document distribution
§ Each index server acts as a search engine for a small

fraction of the total collection
§ A coordinator sends a copy of the query to each of

the index servers, each of which returns the top-k
results

§ Results are merged into a single ranked list by the
coordinator

Index serverIndex serverIndex serverIndex server

Documents

Term-based distribution

• Single index is built for the whole cluster of
machines

• Each inverted list in that index is then assigned to
one index server
§ in most cases the data to process a query is not

stored on a single machine
• One of the index servers is chosen to process the

query
§ usually the one holding the longest inverted list

• Other index servers send information to that server
• Final results sent to director

Index serverIndex serverIndex serverIndex server

Terms/postings

3/7/17 9

Ask.com Search Engine

Neptune

Document
Abstract

Cache

Frontend

Client queriesTraffic load balancer

CacheCacheCache

FrontendFrontendFrontend

Aggregator

Tier 1
Retriever

Document
Abstract
Document
Abstract
Document
description

RankingRankingRankingRankingRankingRank
Server

PageInfoSuggestion
XML
Cache

PageInfoAggregator

PageInfo (HID)

XML
Cache

XML
Cache

Tier 2
Retriever

Multi-tier aggregation for continus query
stream processing

Match

Aggregator

Aggregator

Aggregator

Match

3/7/17Research Presentation 11

Frontends and Cache
• Front-ends

§ Receive web queries.
§ Direct queries through XML cache, compressed result

cache, database retriever aggregators, page
clustering/ranking,

§ Then present results to clients (XML).
• XML cache :

§ Save previously-queried search results (dynamic Web
content).

§ Use these results to answer new queries. Speedup result
computation by avoiding content regeneration

• Result cache
§ Contain all matched URLs for a query.
§ Given a query, find desired part of saved results. Frontends

need to fetch description for each URL to compose the final
XML result.

3/7/17 12

Index Matching and Ranking
• Retriever aggregators (Index match coordinator)

§ Gather results from online database partitions.
§ Select proper partitions for different customers.

• Index database retrievers
§ Locate pages relevant to query keywords.
§ Select popular and relevant pages first.
§ Cache popular index

• Ranking server
§ Classify pages into topics & Rank pages

• Snippet aggregators
§ Combine descriptions of URLs from different

description servers.
• Dynamic snippet servers

§ Extract proper description for a given URL.

3/7/17 13

Programming Challenges for Online
Services

• Challenges/requirements for online services:
§ Data intensive, requiring large-scale clusters.
§ Incremental scalability.
§ 7´24 availability.
§ Resource management, QoS for load spikes.

• Fault Tolerance:
§ Operation errors
§ Software bugs
§ Hardware failures

• Lack of programming support for reliable/scalable
online network services and applications.

3/7/17 14

The Neptune Clustering Middleware

• Neptune: Clustering middleware for
aggregating and replicating application
modules with persistent data.

• A simple and flexible programming model to
shield complexity of service discovery, load
scheduling, consistency, and failover
management

• www.cs.ucsb.edu/projects/neptune for code,
papers, documents.
§ K. Shen, et. al, USENIX Symposium on Internet

Technologies and Systems, 2001.
§ K Shen et al, OSDI 2002. PPoPP 2003.

3/7/17 15

Example: a Neptune Clustered Service:
Index match service

Snippet
generation

Index
matchFront-end

Web Servers

Ranking
Local-
area

Network

HTTP
server

Neptune Client

Neptune
server

Client

Neptune
server

App

3/7/17 16

Neptune architecture for cluster-based
services

• Symmetric and decentralized:
§ Each node can host multiple services, acting as a service

provider (Server)
§ Each node can also subscribe internal services from other

nodes, acting as a consumer (Client)
– Advantage: Support multi-tier or nested service architecture

• Neptune components at each node:
§ Application service handling subsystem.
§ Load balancing subsystem.
§ Service availability subsystem.

Client requests Service provider

3/7/17 17

Inside a Neptune Server Node
(Symmetry and Decentralization)

N
etw

ork to the rest of the cluster

Service
Access Point

Service
Providers

Service Runtime

Service Handling
Module

Service
Availability
Directory

Service
Availability
Publishing

Service
Availability
Subsystem

Polling
Agent

Load
Index Server

Service
Load-balancing

Subsystem

Service
Consumers

3/7/17 18

Availability and Load Balancing

• Availability subsystem:
§ Announcement once per second through IP

multicast;
§ Availability info kept as soft state, expiring in 5

seconds;
§ Service availability directory kept in shared-

memory for efficient local lookup.
• Load-balancing subsystem:

§ Challenging: medium/fine-grained requests.
§ Random polling with sampling.
§ Discarding slow-responding polls

3/7/17 19

Programming Model in Neptune

• Request-driven processing model: programmers
specify service methods to process each request.

• Application-level concurrency: Each service
provider uses a thread or a process to handle a new
request and respond.

Service
method

Data

Requests

RUNTIME

3/7/17 20

Cluster-level Parallelism/Redudancy

• Large data sets can be partitioned and replicated.
• SPMD model (single program/multiple data).
• Transparent service access: Neptune provides

runtime modules for service location and consistency.

Service
method

Request

Provider
module

Provider
module

…

Service cluster

Clustering by
Neptune

Data

3/7/17 21

Service invocation from consumers to
service providers

• Request/response messages:
§ Consumer side: NeptuneCall(service_name, partition_ID,

service_method, request_msg, response_msg);
§ Provider side: “service_method” is a library function.

Service_method(partitionID, request_msg, result_msg);
§ Parallel invocation with aggregation

• Stream-based communication:Neptune sets up a bi-
directional stream between a consumer and a service provider.
Application invocation uses it for socket communication.

Consumer
Neptune

Consumer
module

Neptune
Provider
module

Service
provider

3/7/17 22

Code Example of Consumer Program

1. Initialize
Hp=NeptuneInitClt(LogFile);

2. Make a connection
NeptuneConnect (Hp, “IndexMatch”, 0,

Neptune_MODE_READ, “IndexMatchSvc”, &fd, NULL);

3. Then use fd as TCP socket to read/write data

4. Finish. NeptuneFinalClt(Hp);

Consumer
IndexMatch

Service
provider

Partition
0

3/7/17 23

Example of server-side API with stream-
based communication

• Server-side functions

Void IndexMatchInit(Handle)
Initialization routine.

Void IndexMatchFinal(Handle)
Final processing routine.

Void IndexMatchSvc(Handle, parititionID, ConnSd)
Processing routine for each indexMatch request.

IndexMatch
Service
provider

Partition

3/7/17 24

Publishing Index Search Service

• Example of configuration file

[IndexMatch]
SVC_DLL = /export/home/neptune/IndexTier2.so
LOCAL_PARTITION = 0,4 # Partitions hosted
INITPROC=IndexMatchInit
FINALPROC=IndexMatchFinal
STREAMPROC=IndexMatchSvc

3/7/17 25

ZooKeeper

• Coordinating distributed systems as “zoo” management
§ http://zookeeper.apache.org

• Open source high-performance coordination service for
distributed applications
§ Naming
§ Configuration management
§ Synchronization
§ Group services

Data Model

• Hierarchal namespace
(like a metadata file
system)

• Each znode has data
and children

• data is read and written
in its entirety

The znode will be deleted
when the creating client's
session times out or it is
explicitly deleted

Zookeeper Operations

Operation Description

create Creates a znode (the parent znode
must already exist)

delete Deletes a znode (the znode must not
have any children)

exists Tests whether a znode exists and
retrieves its metadata

getACL, setACL Gets/sets the ACL (access control
list) for a znode

getChildren Gets a list of the children of a znode

getData, setData Gets/sets the data associated with a
znode

sync Synchronizes a client’s view of a
znode with ZooKeeper

Zookeeper: Distributed Architecture

• Ordered updates and strong persistence guarantees
• Conditional updates
• Watches for data changes and ephemeral nodes

Start with support for a file API

1) Partial writes/reads
2) Rename

