WebConf23 05/04/2023

Optimizing Guided Traversal for Fast Learned Sparse Retrieval

Yifan Qiao, Yingrui Yang, Haixin Lin, Tao Yang

Motivation

Problem

Fast top *k* document retrieval with an inverted index using a learned sparse representation: e.g. SPLADE [Formal et al. SIGIR'21 and 22], uniCOIL, DeepImpact Standard retrieval with dynamic index pruning: MaxScore or VBMW

Prior work: GTI [Mallia et al. SIGIR'22]

- Store both BM25 and learned weights of a document in an inverted index
- Uses **BM25** based scoring to **skip documents** while final ranking uses a linear combination of learned neural weights and BM25 weights

$$\sum_{t \in q} w_t \cdot w_{Learned}(t, d) < \theta_{Learned}$$
$$\sum_{t \in q} w_t \cdot w_{BM25}(t, d) < \theta_{BM25}$$

Motivation

Weakness addressed

- When k becomes relatively small, the relevance drops significantly, indicating BM25 based guidance for pruning is too aggressive.
- Token inconsistency in BM25 model and a learned neural model creates un-smoothed weighting and results in significant relevance drop.

Proposed Solution: 2GTI

Two level pruning guidance with different scoring and thresholding

- View pruning in standard MaxScore retrieval algorithm in two levels
 - o **Global level**: partitioning of the non-essential and essential terms
 - Local level: skipping a document selected during possible deep visitation
- Allow different scoring/thresholding at these two levels and at final ranking

• 2GTI on VBMW is similar

Dept. of Computer Science

Proposed Solution: 2GTI

Maintain 3 top k queues with different rankings

- Q_{Gl} uses ranking R_{α} for global pruning: $Global(d) = \alpha \cdot w_{BM25} + (1 \alpha) \cdot w_{learned}$
- Q_{Lo} uses ranking R_{β} for local pruning: $Local(d) = \beta \cdot w_{BM25} + (1 \beta) \cdot w_{learned}$
- Q_{Rk} uses ranking R_{γ} for final ranking: $RankScore(d) = \gamma \cdot w_{BM25} + (1 \gamma) \cdot w_{learned}$

Maintain 3 thresholds for dynamic index pruning

- θ_{Gl} for essential term partitioning based on R_{α}
- $heta_{Lo}$ for minimum top k score based on R_{eta}
- θ_{Rk} for top k thresholding based on final ranking R_{γ} .

Relevance Properties of 2GTI

Objective: Analyze relevance behavior of 2GTI formally and its competitiveness

(GTI is a special case of 2GTI with $\alpha = \beta = 1$)

#1: Top documents agreed by top k of each ranking R_{α} , R_{β} , and R_{γ} are kept on the top k by 2GTI.

Dept. of Computer Science

Relevance Properties of 2GTI

#1: Top documents agreed by top k of each ranking R_{α} , R_{β} , and R_{γ} are kept on the top k by 2GTI.

#2: Properly configured 2GTI can outperform the two-stage algorithm R_2 : retrieval with R_{α} and re-ranking with R_{γ} .

 $d \in R_{2}$

(1) When $\alpha = \beta$ or $\beta = \gamma$, the average rank score of the top k positions produced by 2GTI is equal or higher than this two-stage algorithm R_2 . $\sum RankScore_{(\gamma)}(d) \ge \sum RankScore_{(\gamma)}(d)$

(2) When R_{γ} outmatches R_{β} which outmatches R_{α} , 2GTI retrieves equal or more relevant results at top k positions than R_2 . $Recall@k(2GTI) \ge Recall@k(R_2)$

UC SANTA BARBARA

 $d \in 2GTI$

Evaluation

MS MARCO Passage

MS MARCO Passage	k = 10		k = 1000	
Dev	MRR@10	MRT (<i>P</i> ₉₉)	MRR@10	MRT (<i>P</i> ₉₉)
SPLADE++-Orignal	0.3937	121 (483)	0.3937	278 (819)
-GTI	0.2687	118 (440)	0.2961	332 (1059)
-2GTI-Accurate	0.3939	31.1 (171)	0.3946	109 (478) 🖌
-2GTI-Fast	0.3934	22.7 (116)	0.3937	43.1 (144)

milliseconds

- On MS MARCO Passage Dev, k = 1000
 - 2GTI-Accurate produces slightly higher MRR@10 (due to BM25 interpolation) than the original SPLADE while being 2.6x faster
 - 2GTI-Fast has similar MRR score while being 6.5x faster
- Similar trend observed in TREC DL'19 and DL'20

Evaluation

Token and weight alignment between BM25 index and learned index

For those missing weights in the BM25 model

- $_{\odot}$ /0: do nothing
- $_{\odot}$ /1: fill with 1
- \circ /s: fill with learned scores scaled by ratio of mean values of non-zero weights

SPLADE++. $k = 10$	MRR@10	Recall@10	MRT	P ₉₉	_	
Weight alignment for	-					
GTI/0	0.2687 🔪	0.5209	118	440	Faster &	
GTI/1	0.3036	0.5544	26.7	114	more	
GTI/s	0.3468	0.5774	9.1	36.1	accurate	
Weight alignment for 2GTI-Accurate ($\alpha = 1, \beta = 0, \gamma = 0.05$)						
2GTI/0	0.3933 🔨	0.6799	328	1262	10 5v	
2GTI/1	0.3933	0.6818	89.3	393	fostor	
2GTI/s	0.3939 🖌	0.6812	31.1	171		

Evaluation

Zero-shot performance (13 BEIR datasets)

	k	= 10	k = 1000		
BEIR	nDCG@10	Avg. Speedup	nDCG@10	Avg. Speedup	
SPLADE++-Orignal	0.500	-	0.500	-	
-GTI/s	0.430	6.1x	0.496	2.1x	
-2GTI/s-Fast	0.499	2.0x	0.501	2.5x	

Efficiency-driven SPLADE

• Apply 2GTI on the efficiency-driven SPLADE model [Lassance et al. SIGIR'22] with a relevance tradeoff (k = 10)

BT-SPLADE-L	MRR@10	Recall@10	MRT	
Original MaxScore	0.3799	0.6626	17.4~	2.2x
2GTI/s (α =1, β =0.3, γ =0.05)	0.3772	0.6584	8.0 🛩	[′] faster
GTI/s ($\alpha = \beta = 1, \gamma = 0.05$)	0.3284	0.5520	6.6	

Conclusions

- 2GTI retrieval manages 3 top k queues with 3 linear combinations of neural and BM25 weights to rank/skip docs
 - Pruning decision is more accurate than GTI
 - Can outperform a two-stage retrieval algorithm at least
- Sample configurations for SPLADE++:

$$\circ \quad R_{\alpha}: \alpha \cdot w_{BM25} + (1 - \alpha) \cdot w_{learned}, \text{ with } \alpha = 1$$

$$R_{\beta}: \beta \cdot w_{BM25} + (1 - \beta) \cdot w_{learned}, \text{ with } \beta = 0 \text{ or } 0.3$$

$$\circ \quad R_{\gamma}: \gamma \cdot w_{BM25} + (1 - \gamma) \cdot w_{learned}, \text{ with } \gamma = 0.05$$

- Smooth weight alignment is necessary to address token inconsistency between BM25 and neural models
- For MS MARCO passages with SPLADE++, 5x to 7x faster than original MaxScore and GTI

