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Abstract

Object-oriented code looks different from procedural code. The main difference is the
increased frequency ofpolymorphic calls. A polymorphic call looks like a procedural call,
but where a procedural call has only one possible target subroutine, a polymorphic call can
result in the execution of one of several different subroutines. The choice is made at run
time, and depends on the type of the receiving object (the first argument). Polymorphic calls
enable the construction of clean, modular code design. They allow the programmer to
invoke operations on an object without knowing its exact type in advance.

This flexibility incurs an overhead: in general, polymorphic calls must be resolved at run
time. The overhead of this run time polymorphic call resolution can lead a programmer to
sacrifice clarity of design for more efficient code, by replacing instances of polymorphic
calls by several single-target procedural calls, removing run time polymorphism. This prac-
tice typically leads to a more rigid program structure and code duplication, increasing the
short term effort required to build a functional prototype, and the long term effort of main-
taining and adapting a program to changing needs.

We study techniques to minimize the run-time cost of polymorphic calls. In the software
domain, we minimize the memory overhead of table based implementations (message
dispatch tables), which are most efficient in terms of number of instructions executed. In the
hardware domain, we reduce the cycle cost of these instructions through indirect branch
prediction. For reasonable transistor budgets, hit rates of more than 95% can be achieved.
As a result, only one out of twenty polymorphic calls incurs significant cost at run time.

Design of clear, maintainable and reusable code, as enabled by object-oriented technology,
can thereby become less restrained by efficiency considerations. Only in very time-critical
program segments should the programmer avoid the use of polymorphism. In other words,
object-oriented code can become the norm rather than the exception. From our own expe-
rience in building software architectures, we consider this a Good Thing.
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1

1 Introduction
“All understanding begins with our not accepting
the world as it appears”,

Alan C. Kay [115]

The object-oriented programming style, and the languages that enable it, have acquired an aura
of respectability. Almost everyone agrees it is a Good Thing. From the adoption of object-
oriented software architectures in high-performance computing, with the expected support of
polymorphic calls in Fortran2000 [1], to the emergence of a binary compatible component
market, enabled by the Java Virtual Machine [61], objects are set to become a pervasive soft-
ware organization paradigm.We therefore expect processors to have to deal with more object
oriented code in the near future.

Object-oriented code looks different from procedural code. The main difference is the increased
frequency ofpolymorphic calls. A polymorphic call looks like a procedural call, but where a
procedural call has only one possible target subroutine, a polymorphic call can result in the
execution of one of several different subroutines. The choice is made at run time, and depends
on the type of the receiving object (the first argument). Polymorphic calls enable the construc-
tion of clean, modular code design. They allow the programmer to invoke operations on an
object without knowing its exact type in advance.

This flexibility incurs an overhead: since the object type is typically unknown at compile time,
polymorphic calls must be resolved at run time. This requires extra instructions, compared to
single-target, or early-bound calls, and therefore implies a cost to the use of the object-oriented
programming style. This overhead can lead a programmer to sacrifice clarity of design for more
efficient code, by replacing instances of polymorphic calls by several single-target procedural
calls, removing run time polymorphism. This typically leads to a more rigid program structure
and code duplication, increasing the short term effort required to build a functional prototype,
and the long term effort of maintaining and adapting a program to changing needs.

We study techniques to minimize the run-time cost of polymorphic calls in order to reduce the
overhead of the object-oriented programming style. In the software domain, we minimize the
memory overhead of table based implementations, which are most efficient in terms of number
of instructions executed. In the hardware domain, we reduce the cycle cost of these instructions
through indirect branch prediction. For reasonable transistor budgets, hit rates of more than
95% can be achieved. As a result, only one out of twenty polymorphic calls incurs some cost at
run time.

Design of clear, maintainable and reusable code, as enabled by object-oriented technology, can
thereby become less restrained by efficiency considerations. Only in very time-critical program
segments should the programmer avoid the use of polymorphism. In other words, object-
oriented code becomes the norm.



2

1.1 Problem statement

The goal of this work is to bring the run-time cost of lately-bound, multiple-target polymorphic
calls as close as possible to the cost of early-bound, single-target procedural calls. In other
words, we minimize the cost of polymorphic call resolution, i.e. the cycles spent on the
mapping of a polymorphic call to a single target at run time. The main focus will lie on single
argument polymorphism in statically and dynamically typed object-oriented languages with
single and multiple inheritance.

We also address related problems, such as the run-time memory cost and responsiveness of
polymorphic call resolution techniques. The hardware techniques we present optimize poly-
morphic calls in object-oriented languages as well as switch statements, dynamically linked
calls, and hand-built polymorphism in procedural languages.

1.2 Background and motivation

Polymorphic calls are programming language constructs that enhance a programmer’s ability to
organize behavior. They allow bundling and encapsulation of groups of operations that work on
a specific type of data, also called anobject. For example, the UCSB web page, shown in

Figure 1, contains three different data types: a picture, a text fragment, and four buttons. These
screen objects respond to common operations. Every object candraw itself on screen at a
certain location. Although the intended effect of thedraw operation (itsfunctionality) is always
same, the actions required to bring about that effect (itsimplementation) can differ between

 

Welcome to UCSB! 

    

Figure 1. Fragment of the UCSB webpagewww.ucsb.edu (Author:Joseph Boisse)
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object types. For example, drawing a picture on screen requires that a given two-dimensional set
of pixels is placed in the screen buffer. Drawing text requires that a string is translated into
pixels by looking up each character in a font map and then writing those pixels to the screen
buffer. Operations that require the execution of different subroutines depending on the type of
object they are applied to, are calledpolymorphic.

Since each object-oriented language provides its own terminology for polymorphic operations,
Table 1 shows the terms used in popular languages for easy translation. We will use the general
terms provided as headings, unless we discuss language-specific techniques.

Polymorphic calls make life easier for the user of an object library, who only has to know what
operations mean in terms of functionality. It becomes easy to manipulate collections of objects
that are different but share functionality such as thedraw operation.To draw a page consisting
of many screen objects, a programmer merely has to calldraw on every object. It is not neces-
sary to know the implementation details of each object’s type (see Figure 2).The run-time
system intercepts the polymorphic call and redirects it to the appropriate implementation.

Language Polymorphic call Implementation
C++, Java Virtual function call Function definition

Smalltalk, SELF Message send Method

CLOS, Dylan Generic function invocation Method

Table 1. Language-specific terms for polymorphic calls
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Figure 2. Object types (classes) and polymorphic calls
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logoUCSB.draw();
“Welcome to UCSB !”.draw();
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1.2.1 Inheritance

1.2.1.1 Subtyping

For the purpose of showing objects on screen, it doesn’t matter what type of object is being
manipulated; they aresubstitutable. Substitutability is a useful concept when you are handling
large numbers of diverse objects, and therefore object-oriented languages provide a language
mechanism to structure its use. For example, to indicate that aButton andText are just like a
Picture, we callButton andText subtypes of Picture, as indicated by the hierarchy graph in
Figure 3.

The user can consult the diagram in Figure 3 to check which objects respond to which opera-
tions. A given object type responds to all operations defined for it and all its super types. In this
manner subtyping enables incremental interface definition. The similarity of subtypes in terms
of functionality is thus structured by the subtype hierarchy.

1.2.1.2 Subclassing

This similarity often carries over into the implementation1, since similar operations on similar
objects are often implemented the same way. For instance, drawing aButton is just like drawing
aPicture (placing the appropriate bitmap on screen). Object oriented languages provide support
for code sharing between similar object types in the form of implementation inheritance or
subclassing. When an object type orclass is a subclass of another class, it not only responds to
the same operations (it is a subtype), but it alsouses the same program code to execute them. A
subclass can change this default behavior byoverriding(a new implementation is defined in the
subclass). For example, in Figure 4, aButton shares code withPicture for drawing purposes, but
overrides (indicated initalics) the implementation provided forclick with code that changes the

1 Subclassing and subtyping run along similar enough lines that many object-oriented languages pretend the two are the same.
Smalltalk only provides subclassing. Deviations for the sake of subtyping must be manually coded on top of the subclass hierarchy,
by giving some operations the default implementation ShouldNotImplementError, to “remove” it from an interface (in the
Collection class hierarchy, for example, where Set inherits from Dictionary). In C++, multiple inheritance combined with the use
of constrained visibility, using the keyword protected, allows a user to inherit separately for implementation and interface.
However, even simple cases of multiple inheritance in C++ inflate the run-time size of objects. In Java, single inheritance
subclassing provides implementation inheritance as in Smalltalk. Interfaces enable the construction of subtype hierarchies, in
which multiple inheritance is allowed. The keywordimplements provides the connection between the two, declaring that a
particular class is a subtype of (multiple) interfaces.

Picture
draw
click

Figure 3. Subtype hierarchy
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user’s perspective to a different web page.Text, on the other hand, inheritsclick but provides its
own drawing implementation and adds theedit operation to its interface and implementation.
Subclassing therefore enables incremental implementation. This is useful for thebuilder of an
object library. Instead of implementing the complete interface of a class, only the difference
between it and an appropriately chosen super class needs to be coded from scratch.

Inheritance requires polymorphic calls. Since objects are substitutable, the programmer is often
unaware of the actual type of the objects that are manipulated. He/she relies on the system to
find and call the correct implementation for a given operation. This enhances maintainability,
since objects may be designed or constructed by a third party long after the code has been deliv-
ered. Only substitutability is required for the existing code to work correctly.

It is the responsibility of the language system builder to make polymorphic calls efficient. A
compiler may be able to replace some polymorphic calls by early-bound single-target calls, if
it can be proven that the call can result in only one target subroutine. However, real polymor-
phism must be resolved at run time. It is our aim to reduce the run time cost of polymorphic call
resolution as much as possible.

1.3 Contributions

We studied techniques, first in software, then in hardware, to reduce the cost, both in time and
space, of run-time polymorphic call resolution. In doing so, we made a number of contributions
to the field.

In software, we made the following contributions:

• Minimization of the memory overhead of dispatch tables. Table-based dispatch, a fast
polymorphic call resolution technique, was formerly restricted to statically typed
programming languages. We increased its application domain by reducing its memory
overhead from 95% to 36% in previous work [40]. Similar efforts by Andre and Royer [9],
resulted in 43% overhead and took hours to compute. As part of the dissertation work we
reduced the overhead to less than 1%, optimized the table construction algorithm to run in
seconds instead of hours for large class libraries (see Section 4), and designed a variant to
handle multiple inheritance hierarchies. This makes table-based dispatch practical for two
additional classes of programming languages: dynamically typed languages and languages
that allow multiple inheritance.

Picture
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click
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edit

Button
click

Figure 4. Subclass hierarchy
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• A qualitative and quantitative analysis of dispatch techniques on modern processor
architectures. We analyzed the assembly instruction call sequences of most polymorphic
call resolution techniques (see Section 3 and Section 5). This study shows that delays
associated with pipelining and superscalar execution can deteriorate the performance of
table-based techniques compared to techniques based on inline caching. Previously it was
assumed that table-based dispatch always performed better than caching methods. We then
measured the performance of virtual function tables, the most widely used table-based
technique, on a variety of processor architectures (see Section 6). This experiment shows
the impact of load latency, superscalar execution, and branch penalty on virtual function
call performance. The results indicate that co-scheduling of surrounding instructions is
insufficient to hide branch penalties.

The main reason for the better performance of inline caches compared to table-based tech-
niques is that they implement a form of software based branch prediction, similar to a Branch
Target Buffer (BTB) of infinite size and unlimited associativity. Such ideal BTBs reach 75%
prediction accuracy on the OOCSB98 benchmark suite. In other words, one out of four poly-
morphic calls takes a branch misprediction penalty.

Since the cost of polymorphic calls in the most efficient software scheme is dominated by
branch misprediction penalties, further optimization must focus on more accurate indirect
branch prediction. This benefits all indirect branches, not only those generated by object-
oriented message dispatch, and therefore its relevance is higher than that of a polymorphic call
resolution technique in software. In particular, switch statements, dynamically linked calls, and
calls through function pointers, often used to hand-build polymorphism in procedural
languages, become more efficient. We therefore proceeded to study indirect branch prediction
in hardware.

In the hardware domain, we made the following contributions:

• An extensive study of two-level prediction for indirect branches.
Two-level predictors, which use the targets of then most recently observed branches
(history path lengthn) to predict the next branch, were first tested on indirect branches by
Chang, Hao and Patt [25]. They measured a linear relationship between branch
misprediction rate (the reciprocal of prediction accuracy) and cycle cost. We measured
prediction accuracy with unlimited hardware resources, varying the amount of sharing of
history buffers and history tables [46]. After determining the best parameters on the
OOCSB98 suite, a large benchmark set of procedural and object-oriented programs, we
studied the effect of hardware constraints such as limited table size and limited associativity
(see Section 8). With appropriate history pattern encoding, the resulting two-level predictor
achieves a prediction accuracy of 90% for a history table with 1K entries.

Next we combined two-level predictors of different path length into a hybrid predictor to
increase the prediction accuracy further. Hybrid predictors were first proposed by McFarling
[98] for conditional branch prediction. To our knowledge, this study is the first to evaluate
hybrid prediction for indirect branches. We studied three classes of hybrid predictors:
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• Classifying predictors, first proposed for conditional branches by Chang, Hao and Patt [23],
assign a class to each branch according to compile-time or profile-based criteria. We
dedicate a separate two-level predictor to each class, with a separately tuned path length
(see Section 9.2). The best of the tested predictors achieves 91% prediction accuracy for 1K
table entries, but requires a change in the instruction set architecture.

• Dual-path hybrid predictors, use two two-level predictors of different path length, update
both for each branch and use the prediction with the highest 2-bit confidence counter (see
Section 9.3). This dynamically updated counter keeps track of the number of successes
among the last 3 predictions of a table entry. After tuning, the best predictor achieves 91%
prediction accuracy for 1K total table entries.

• Cascaded predictors, a new prediction architecture (see Section 9.4), use several stages of
two-level predictors of different path length, and give precedence to the longest path length
prediction available. In addition, pattern filtering reduces the number of table entries
required to reach a particular prediction accuracy. When updating, a cascaded predictor
prevents insertion of a pattern into the longer path length component if the shorter path
length prediction is correct. The best combination with a BTB as first stage resulted in 92%
prediction accuracy for 1K total table entries. A cascaded predictor reduces the cost of a
two-level predictor by a factor four, for similar prediction accuracy. At 6K entries, a 3-stage
cascaded predictor with tuned path lengths reaches 95% prediction accuracy, higher than
the 94% accuracy achieved by a hypothetical two-level predictor with an unlimited, fully
associative predictor table.

Combined, the software contributions minimize the cost of a polymorphic call innumber of
instructions, while the hardware advances minimize the cost of these instructions innumber of
processor cycles.At affordable off-chip memory costs and on-chip transistor budgets, well-
tuned software and hardware support can bring the run-time overhead of polymorphic call reso-
lution down to an insignificant fraction of total run time, as measured on various industry-size
benchmarks.
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1.4 Overview

This dissertation is organized in sections that correspond to the different fields the work touches
upon. Section 2 describes variations of the polymorphic call construct and states the problem
we address in this work. Section 3 presents the major software techniques for efficient polymor-
phic call resolution and compares their memory overhead and program environment
constraints. Section 4 presents and measures a new algorithm for memory overhead reduction
of dispatch tables.

The next two sections evaluate the run-time performance of software techniques by qualitative
and quantitative analysis of the software-hardware interface. In Section 5 we establishes
bounds on the performance of table-based techniques on different processor generations and
estimate average cycle overhead of dynamic techniques. In Section 6 we measure the overhead
of virtual function table dispatch by cycle-level simulation, and study the effect on call resolu-
tion overhead of processor characteristics like instruction issue, load latency, and indirect
branch prediction.

The remaining sections deal with hardware techniques. In Section 7 we discuss the hardware
context, present benchmark programs and our method of investigation. In Section 8 we measure
and reduce history pattern interference misses, capacity and conflict misses of basic path-based
predictors. Section 9 studies three classes of path-based hybrid predictors, and presents the
cascaded predictor, a new architecture which reduces the cost of indirect branch predictor tables
by a factor four. Section 10 discusses related work not mentioned in the survey chapters.
Section 12 concludes. Section 11 discusses open problems and future work.
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2 Polymorphic calls
“Polymorphism: In biology, the coexistence of
two or more genetically distinct forms of an
organism within the same interbreeding popula-
tion, where the frequency of the rarest type is not
maintained by mutation alone. Human eye colour
is an example of a readily observable polymor-
phism, but there are many invisible polymor-
phisms detectable only by special techniques,
such as DNA analysis”,

The Cambridge Encyclopedia[15]

In this section we discuss the polymorphic call construct as it appears in different programming
languages.

2.1 Basic construct

Polymorphism is a powerful programming construct because it allows a programmer to invoke
an operation on a piece of data by specifying the intended effect, without having to worry about
the implementation details on different kinds of datatypes. Using the webpage example intro-
duced in Section 1, non-polymorphic code to draw the page could look as follows:

logoUCSB.drawPicture();
“Welcome to UCSB !”.drawText();
for (i = 0; i < nrOfButtons; i++) {

button[i].drawButton();
}

The programmer has to specify the right drawing operation for each screen object. Polymorphic
code looks like this:

logoUCSB.draw();
“Welcome to UCSB !”.draw();
for (i = 0; i < nrOfButtons; i++) {

button[i].draw();
}

or even simpler:

for (i = 0; i < nrOfScreenObjects; i++) {
screenObject[i].draw();

}

In polymorphic code, the programmer is free of the concern to match the right drawing opera-
tion to each screen object. The run-time system distinguishes different screen objects and
invokes the right implementation of thedraw operation. This allows rapid prototyping, and
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code that is easier to maintain, since the introduction of a new screen object, for example, a
framed picture, does not force rewriting of alldrawPicture invocations. A new implementation
of draw must be provided, and from then on, all program code that manipulates pictures through
the public interface of thePicture class is equally capable of dealing with framed pictures.

2.2 Polymorphic calls in procedural languages

Procedural languages give no support for polymorphism. However, since it is a useful abstrac-
tion tool, hand-crafted polymorphic calls are often found in procedural programs. The key
mechanism is to remove the type-specific procedure invocations from the call point, replacing
them by a single procedure invocation, and resolving the polymorphism in the called procedure.
For example, a polymorphicdraw procedure could be implemented as follows:

draw (screenObject o) {
switch (o.type) {

case picture: drawPicture(o); break;
case text: drawText(o); break;
case button: drawButton(o); break;
default: error(“draw undefined for object”);

}

Though this construction removes implementation concerns from the calling point, the
programmer must hand-craft polymorphism resolution procedures for every polymorphic oper-
ation. Implementation of call resolution on the run-time system level removes this repetitive
burden from the programmer. It also allows more radical optimization because run-time imple-
mentation requires only a one time implementation effort.

Hand-crafted polymorphism has its flaws also from a maintenance perspective. Relationships
between types are encoded ad-hoc in the polymorphic call procedures. When a new data type is
introduced, all polymorphic procedures that handle the type must be augmented, and this code
change is dispersed over many different places in the program. In object-oriented languages, a
more systematic approach allows the programmer to define all the new code in one place, and
take advantage of implementation inheritance to minimize the extra implementation effort.

2.3 Object-oriented message dispatch

Object-oriented languages allow the definition of a datatype and its associated operations in one
place, typically called a class or a prototype object. In our example, the programmer provides
each screen object with adraw implementation, and the system will ensure that the right imple-
mentation is called for each type. In object-oriented languages, like Smalltalk, polymorphic
calls are known asmessage sends and polymorphic call resolution is calledmessage dispatch.
The different class-specific implementations of a message are calledmethods. Implementation
inheritance allows default methods to be defined for sets of classes. For instance, thedraw
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method for abutton is identical to that of a picture, while theclick method is redefined, orover-
ridden(see Figure 5).

The semantics of message dispatch are best explained by the mechanics of the simplest poly-
morphic call technique: Dispatch Table Search (DTS). In this technique, each class stores the
definitions of all the messages it implements (shown in Figure 5), and has a reference to its
super class for the default behavior. For example, when the messagedraw is sent to aButton, its
dispatch table has no implementation fordraw. DTS therefore obtains the super class reference
from Button, and continues the search in classPicture, where the method fordraw is found and
invoked. Though DTS implements the semantics of polymorphic calls in object oriented
languages perfectly, its efficiency leaves much to be desired. We will discuss more efficient
dispatch mechanisms in Section 3.

2.3.1 Static vs. dynamic typing

In a statically typed language, each variable in the program is declared with a type. The
compiler makes sure that the only operations invoked on a certain variable are those defined for
its declared type. For the example in Figure 5, the following code would be legal:

Picture pict;
...
pict = new Button;
pict.draw();

Since the type declaration for variablepict ensures that the object it refers to is an instance of
Picture or any of its subclasses, the programming system isguaranteed to find a method for the
draw message. At compile time the possibility of a “Message Not Understood” - error is
removed. In a dynamically typed system, variables are untyped (but objects still have a type).
The compiler will reject the following code fragment in a statically type language, but will
allow it in a dynamically typed language:

pict = new Picture ;
pict.edit();

However, at run time, the programming system would not find an method foredit, sincePicture
objects lack this operation. A run time error would result.

Figure 5. Single inheritance with multiple root classes
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Statically typed languages make it easier for the programming system to implement message
dispatch efficiently, since the number of different messages that can be sent to a variable is
limited and a method always exists. In a dynamically typed language, any message can be sent
to any object, so the number of possibilities is much larger, and the system must be able to
handle the case where no method can be found. Dynamically typed languages offer greater flex-
ibility, by not requiring that all possible receivers of a given message share a common ancestor
that defines the message. For example, the following code is incorrect in a statically typed
language, but both allowed and error free in a dynamically typed language (assuming the inher-
itance hierarchy in Figure 5):

if (test) {
obj = new Text;

} else {
obj = new Button;

}
obj.draw();

Although bothText andButton understand the messagedraw, static typing would not allow the
assignment of instances of these classes to the same variable, because they do not share a
common superclass in whichdraw is defined1.

2.3.2 Single vs. multiple inheritance

Some object-oriented languages allow a class to inherit from more than one super class. This is
called multiple inheritance. Multiple inheritance complicates message dispatch, since it
becomes possible to reach two or more method for the same message, through different paths
from a class to its ancestors. For example, suppose we extend the hierarchy in Figure 5 by
adding classedFramedPicture andFramedText. The latter inherits from bothText andFramed-
Picture, as depicted in Figure 6. Sendingdraw to aFramedText object now begs the question:
which method is invoked?

1 In Java, one can get around this restriction by declaring an interface with thedraw message and specifying thatButton andText
implement the interface.

Figure 6. Multiple inheritance
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Different programming languages give different answers: in CLOS [107], the programmer lists
the super classes of a class in a certain order, and this tells the programming system which class
takes priority. In C++, this kind of ambiguity causes a compile-time error. The programmer can
specify which path takes precedence, for example by callingText::draw. This practice partially
breaks down the abstraction mechanism provided by polymorphism, since the programmer now
has to limit the choice of method at the calling point. From an implementation perspective the
semantics do not matter much, as long as thedraw call resolves to a unique method.

Multiple inheritance complicates efficient polymorphic call resolution, since a class no longer
extends an existing set of operations with a few extra messages, but merges two or more sets.
Compile-time construction of compact dispatch tables becomes harder in that case, as discussed
in Section 4.

2.3.3 Single vs. multiple dispatch

In most object-oriented languages, the type of one privileged argument, called thereceiver,
determines the method to invoke for a polymorphic call. Languages like CECIL [18] and CLOS
[83] allow the types of other arguments to further refine the choice of method. This can be
useful, for example to allow the draw operation to display graphical objects on different media,
like a screen or a postscript printer. Both the type of the object to be drawn, and the medium on
which it is drawn, determine the procedure to be invoked:

for (i = 0; i < nrOfObjects; i++) {
object[i].draw(medium);

}

The standard solution to multiple dispatch in languages that only provide single argument
dispatch is a technique calleddouble dispatch [75]. The programmer writes each draw opera-
tion in a graphical object class as follows (for example in thePicture andText classes, with
mediaScreen andPostscriptPrinter, and whereTHIS is the object for which the draw operation
was invoked):

class Picture
draw (medium)

medium.drawPicture(THIS);

class Text
draw (medium)

medium.drawText(THIS);
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class Screen
drawPicture (picture)

// code for drawing a picture on a screen

drawText (text)
// code for drawing text on a screen

class PostscriptPrinter
drawPicture (picture)

// code for drawing a picture on a postscript printer

drawText (text)
// code for drawing text on a postscript printer

Dispatch over two arguments is emulated by two successive single-argument dispatches. This
technique has several disadvantages. First, the programmer is responsible for the maintenance
of double dispatch code, similar to the hand-crafted polymorphic call resolution procedures that
implement single argument dispatch in procedural languages. Second, double dispatch is
slower than multiple dispatch. Multiple dispatch executes parameter passing code only once,
and can employ more advanced call sequence optimization. In practice, programmers do not
often employ multiple dispatch, even in languages that support it. Single-argument dispatch
remains the common case (see [44]). We will not explore multiple dispatch techniques in depth
(however, see section 10.1.3 for an analysis).

2.3.4 Predicate dispatch

Ernst, Kaplan and Chambers present a unified model of dispatch [55], based on predicate
expressions that serve as guards to multiple implementations of the same generic function.
Since predicate expressions can be arbitrary side-effect free expressions, this model captures all
variants defined above, as well as ML-style pattern matching, predicate classes, and classifiers.
From a language design perspective, such a powerful dispatch mechanism is ideal, because it
allows the programmer to use the style best fit to model a specific problem, or even to construct
a personal style. From an implementation perspective, predicate dispatch presents a big chal-
lenge. We believe that a combination of compile-time and run-time techniques will be neces-
sary to reduce its cost and make it attractive to performance-conscious practitioners. Single-
argument message dispatch is likely to remain the most frequent operation in most programs,
and a general dispatch mechanism for predicate dispatch must therefore incorporate an efficient
technique for this common case. Chambers and Chen [20] present efficient implementation of
multiple and predicate dispatch, which combines efficient techniques for single dispatching,
multiple dispatching, and predicate dispatching. All these cases are implemented as a series of
single dispatches where each single dispatch is implemented with the technique appropriate for
the type of call. For example, if the number of targets is large, a table based implementation is
chosen instead of a linear search.
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3 Software techniques for efficient polymorphic calls
“Swiss Army Knife. A tool that makes the
common task easy, while providing all the neces-
sary tools for the most general task.”

Jennifer West [132]

In this section, we describe the major techniques in current use for the optimization of polymor-
phic calls. We present the techniques and discuss run-time aspects like estimated memory cost
and responsiveness. Detailed estimates of run-time call cost are delayed until Section 5, where
we bring hardware into the picture.

3.1 Basic message dispatch in object-oriented languages

In object-oriented languages, polymorphic call resolution is calledmessage dispatch. Message
dispatch is a function that takes the message name (selector) and the class of its first argument
(receiver), and matches this pair to the correct implementation, also calledmethod. If method
lookup speed was unimportant, dispatch could be performed by searching class-specific
dispatch tables. When an object receives a message, the object’s class is searched for the corre-
sponding method, and if no method is found the lookup proceeds in the super class(es). Since
it searches dispatch tables for methods, this technique is called Dispatch Table Search (DTS).
The right-hand side of Figure 7 shows the dispatch tables of the class hierarchy on the left. Each
entry in a dispatch table contains the method name and a number representing its address. As in
all other figures, capital letters (A, B, C) denote classes and lowercase letters denote methods.

Since the memory requirements of DTS are minimal (i.e., proportional to the number of
methods in the system), DTS is often used as a backup strategy which is invoked when faster
methods fail. Typically, DTS implementations employ hashing to speed up the table search.

All of the techniques discussed in the remainder of this chapter improve upon the speed of DTS
by precomputing or caching lookup results. The dispatch techniques studied here fall into two
categories.Static techniques precompute all data structures at compile or link time and do not
change those data structures at run-time. Thus, static techniques only use information that can
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be statically derived from the program’s source text.Dynamic techniques may precompute
some information at compile or link time, but they dynamically update data structures at run-
time, i.e., during program execution. Thus, dynamic techniques can exploit run-time informa-
tion as well as static information. Table 2 lists the techniques we studied.

3.1.1 Influence of dynamic typing

In dynamically-typed languages, a program may try to invoke an operation on some object for
which the operation is undefined (“message not understood” error). Therefore, each message
dispatch usually needs to include some form of run-time check to guarantee that such errors are
properly caught and reported to the user. Most techniques that support static typing can be
extended to handle dynamic typing as well. Our study shows the additional dispatch cost of
dynamic typing for all dispatch mechanisms that can support it.

3.1.2 Influence of multiple inheritance

A system using multiple inheritance (MI) introduces an additional difficulty if compiled code
uses hard-coded offsets when addressing instance variables. For example, assume that classC
inherits directly from classesA andB (Figure 8). In order to reuse compiled code of classA,
instances ofC would have to start with the instance variables ofA (i.e.,A’s memory layout must
be a prefix ofC’s layout). But the compiled code in classB requires a conflicting memory layout
(B’s instance variables must come first), and so it seems that compiled code cannot be reused if
it directly addresses instance variables of an object.

Hard-coded offsets can be retained, in a statically typed setting, if the receiver object’s address
is adjusted just before aB method is executed, so that it points to theB sub-object withinC [87,
53] (thecurrent type isB). Within the called method, thecurrent type’s instance variable offsets
and the position of its virtual function table are compile time constants. If the same method is
called from different sub-objects, different pointer adjustments are required. Therefore each

Acronym Full Name Section

st
at

ic
te

ch
ni

qu
es

DTS Dispatch Table Search (used for illustration only) 3.1

STI Selector Table Indexing (used for illustration only) 3.3.1

VTBL Virtual Function Tables, single inheritance 3.3.2

VTBL-MI Virtual Function Tables, full version 3.3.2

SC Selector Coloring 3.3.3

RD Row Displacement 3.3.4

CT Compact Tables 3.3.5

dy
na

m
.

te
ch

n. LC Lookup Caching 3.2.1

IC Inline Caching 3.2.2

PIC Polymorphic Inline Caching 3.2.3

Table 2. Overview of dispatch methods
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sub-object points to its own table, in which an extra entry for each function stores the size of the
adjustment. However, in a dynamically-typed setting, the structure of the object is unknown at
compile time. Therefore we assume that techniques capable of dealing with dynamic typing use
the following approach to access instance variables in the multiple inheritance case:

• always use accessor messages, except to access instance variables from self1.

• use hard-coded offsets for self instance variables, and maintain a different compiled version
for every method of a class that accesses them, whenever it is combined with a different co-
parent.

Under this constraint, all techniques studied here (except VTBL for older processors) show
near-identical performance for single and multiple inheritance. We discuss both a single- and a
multiple inheritance version for VTBL. The space overhead caused by multiple inheritance is
treated, for all techniques, in Section 3.4.2.

Each description of a dispatch technique includes pseudo-code illustrating the run-time
dispatch. Since our analysis separates out the influence of dynamic typing and multiple inher-
itance/hardwired instance variable offsets, two typographical conventions mark code used to
support one of these functions.Italic code supports multiple inheritance, andbold code
supports dynamic typing. Appendix A collects the assembly call sequences and instruction
scheduling.

3.2 Dynamic techniques

Dynamic techniques speed up message lookup by using various forms of caching at run-time.
Therefore, they depend on locality properties of object-oriented programs: caching will speed
up programs if the cached information is used often before it is evicted from the cache. This
section discusses two kinds of caching: global caching (one large cache per system) and inline
caching (one one-entry cache per call site).

1 This is done in SELF [16]. Indirect instance variable access is used in Eiffel and Sather [102].

Figure 8. Memory layout of objects in the case of multiple inheritance.
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3.2.1 Global lookup caches (LC)

First-generation Smalltalk implementations relied on a global cache to speed up method lookup
[60,86]. The class of a receiver, combined with the message selector, hashes into an index in a
global cache. Each cache entry consists of a class, a selector and a method address. If the current
class and selector match the ones found in the entry, the resident method is executed. Otherwise,
a dispatch table search finds the correct method, and the new class-selector-method triple
replaces the old cache entry (direct-mapped cache). Any hash function can be used; to obtain a
lower bound on lookup time, we assume a simple exclusive OR of receiver class and selector.

Even though LC is considerably faster than dispatch table search (DTS), it still has to compute
a hash function for each dispatch. As we shall see, this computation renders LC too slow
compared to other techniques. However, LC is a popular fallback method for inline caching, and
has recently been revived for dispatching of interface messages in Java.

3.2.2 Inline caches (IC)

Often, the type of the receiverat a given call site rarely varies; if a message is sent to an object
of typeX at a particular call site, it is likely that the next send will also go to an object of type
X. For example, several studies have shown that the receiver type at a given call site remains
constant 95% of the time in Smalltalk code [35][127][126]. This locality of type usage can be
exploited by caching the looked-up method address at the call site. Because the lookup result is
cached “in line” at every call site (i.e., no separate lookup cache is accessed in the case of a hit),
the technique is calledinline caching.

The previous lookup result is cached by changing the call instruction implementing the send,
i.e., by modifying the compiled program on the fly. Initially, the call instruction calls the
system’s lookup routine. The first time this call is executed, the lookup routine finds the target
method. Before branching to the target, the lookup routine changes the call instruction to point
to the target method just found (Figure 10). Subsequent executions of the send directly call the
target method, completely avoiding any lookup. Of course, the type of the receiver could have
changed, and so the prologue of the called method must verify that the receiver’s type is correct
and call the lookup code if the type test fails.

Inline caches are very efficient in the case of a cache hit: in addition to the function call, the only
dispatch overhead that remains is the check of the receiver type in the prologue of the target.
The dispatch cost of inline caching critically depends on the hit ratio. In the worst case (0% hit

entry = cache[(object->class ^ #selector) & #mask];
if (entry.class == object->class && entry.selector == #selector) {
entry.func(object, arguments); /* cache hit */

} else { /* cache miss: use DTS to find method, and update cache entry e */; }

Figure 9. Global lookup cache.1
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ratio) it degenerates to the cost of the technique used by the system lookup routine (often, a
global lookup cache), plus the extra overhead of the instructions updating the inline cache.
Fortunately, hit ratios are usually very good, on the order of 90-99% for typical Smalltalk or
SELF code[127], [70] . Therefore, many current Smalltalk implementations incorporate inline
caches.

3.2.3 Polymorphic inline caching (PIC)

Inline caches are effective only if the receiver type (and thus the call target) remains relatively
constant at a call site. Although inline caching works very well for the majority of sends, it does
not speed up a polymorphic call site1 with several equally likely receiver types because the call
target switches back and forth between different methods, thus increasing the inline cache miss
ratio. The performance impact of inline cache misses can become severe in highly efficient
systems. For example, measurements of the SELF-90 system showed that it spent up to 25% of
its time handling inline cache misses [68].

Polymorphic inline caches (PICs) [68] reduce the inline cache miss overhead by caching
several lookup results for a given polymorphic call site using a dynamically-generated PIC
routine. Instead of just switching the inline cache at a miss, the new receiver type is added to the
cache by extending the stub routine. For example, after encountering receiver classes A and B,
a send of messagem would look as in Figure 11.

A system using PICs treats monomorphic call sites like normal inline caching; only polymor-
phic call sites are handled differently. Therefore, as long as the PIC’s dispatch sequence (a
sequence ofifs) is faster than the system lookup routine, PICs will be faster than inline caches.

1 We will use the term “polymorphic” for call sites where polymorphismactually occurs. Consequently, we will use
“monomorphic” for call sites with only a single receiver type for the entire program run.

cached_class = #cached_class;
#method0123(object, cached_class);

/* method code */

Figure 10. Inline cache

calling method body

prologue

target method

if (object->class != cached_class)
goto #system_lookup;

if (object->class == #A)
goto #A::m;

if (object->class == #B)
goto #B::m;

goto #system_lookup;

Figure 11. Polymorphic inline cache

picstub012 (object);

calling method
stub routine

A::M

/* method1 code */

B::M

/* method2 code */
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However, if a send is megamorphic (invokes many different methods), it cannot be handled effi-
ciently by PICs. Fortunately, such sends are the exception rather than the rule.

3.3 Static techniques

Static method lookup techniques precompute their data structures at compile time (or link time)
in order to minimize the work done at dispatch time. Typically, the dispatch code retrieves the
address of the target function by indexing into a table and performing an indirect jump to that
address. Unlike lookup caching (LC), static methods usually don’t need to compute a hash
function since the table index can be computed at compile time. Also, dispatch time usually is
constant1, i.e., there are no “misses” as in inline caching.

3.3.1 Selector table indexing (STI)

The simplest way of implementing the lookup function is to store it in a two-dimensional table
indexed by class and selector codes. Both classes and selectors are represented by unique,
consecutive class or selector codes; if a system hasc classes ands selectors, classes are
numbered0..c-1 and selectors are numbered0..s-1 (Figure 12). Unfortunately, the resulting
dispatch table is very large (O(c*s)) and very sparse, since most messages are defined for only
a few classes. For example, about 95% of the entries would be empty in a table for a Smalltalk
image [40].

STI works equally well for static and dynamic typing, and its dispatch sequence is fast.
However, because of the enormous space cost, no real system uses selector table indexing. All
of the static techniques discussed below try to retain the idea of STI (indexing into a table of
function pointers) while reducing the space cost by omitting empty entries in the dispatch table.

1 Here, “constant time ” means “constant number of instructions executed,” not “constant in real time” (due to processor
implementation effects, such as cache and branch prediction misses).

Figure 12. Selector Table Indexing
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3.3.2 Virtual function tables (VTBL)

Virtual function tables were first used in Simula [32] and today are the preferred mechanism for
virtual function call resolution in Java and C++ [53]. Instead of assigning selector codes
globally, VTBL assigns codes only within the scope of a class. In the single-inheritance case,
selectors are numbered consecutively, starting with the highest selector number used in the
super class. In other words, if a classC understandsm different messages, the class’s message
selectors are numbered0..m-1. Each class receives its own dispatch table (of sizem), and all
subclasses will use the same selector numbers for methods inherited from the super class. The
dispatch process consists of loading the receiver’s dispatch table, loading the function address
by indexing into the table with the selector number, and jumping to that function (non-italic
code in Figure 13).

With multiple inheritance, keeping the selector code correct is more difficult. For the inherit-
ance structure on the left side of Figure 13, functionsc ande will both receive a selector number
of 1 (they share the second column) since they are the second function defined in their respec-
tive class.D multiply inherits from bothB andC, creating a conflict for the binding of selector
number 1. In C++ [53], the conflict is resolved by using multiple virtual tables per class. An
object of classD has two dispatch tables, D andDc (see Figure 13).1 Message sends will use
dispatch tableD if the receiver object is viewed as aB or aD and tableDc if the receiver is

1 Due to limited space, we ignore virtual base classes in this discussion. They introduce an extra overhead of a memory reference
and a subtraction[53].

Figure 13. VTBL dispatch tables and method call code.
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viewed as a C. As explained in Section 3.1.2, the dispatch code will also adjust the receiver
address before calling a method defined inC (theitalic code in Figure 13)

VTBL depends on static typing: without knowing the set of messages sent to an object, the
system cannot reuse message numbers in unrelated classes (such as using 0 for the first method
defined in a top-level class). Thus, with dynamic typing, VTBL dispatch tables would degen-
erate to STI tables since any arbitrary message could be sent to an object, forcing selector
numbers to be globally unique.

3.3.3 Selector coloring (SC)

Selector coloring, first proposed by Dixon et al. [38], and applied to Smalltalk by Andre and
Royer [9], is a compromise between VTBL and STI. SC is similar to STI, but instead of using
the selector to index into the table, SC uses the selector’scolor. The color is a number that is
unique within every class where the selector is known, and two selectors can share a color if
they never co-occur in a class. SC allows more compaction than STI, where selectors never
share colors, but less compaction than VTBL, where a selector need not have a single global
number (i.e., where the selectorm can have two different numbers in unrelated classes).

Optimally assigning colors to selectors is equivalent to the graph coloring problem1 which is
NP-complete. However, efficient approximation algorithms can often approach or even reach
the minimal number of colors (which is at least equal to the maximum number of messages
understood by any particular class). The resulting global dispatch table is much smaller than in

1 The selectors are the nodes of the graph, and two nodes are connected by an arc if the two selectors co-occur in any class.

fc

Figure 14. Selector coloring tables, method call code, and method prologue

entry = object->table[#color];
entry.func(object, #selector , args)

/* method prologue */
if (S != #mySelector)

error(“Message Not Understood”);
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STI but still relatively sparse. For example, 43% of the entries are empty (i.e., contain “message
not understood”) for the Smalltalk system [40]. As shown in Figure 14, coloring allows the
sharing of columns of the selector table used in STI.

Compared to VTBL, SC has an important advantage: since selector colors are global, SC is
applicable to a dynamically-typed environment since any particular selector will have the same
table offset (i.e., color) throughout the system and will thus invoke the correct method for any
receiver. To guard against incorrect dispatches, the prologue of the target method must verify
the message selector, and thus the selector must be passed as an extra argument. Otherwise, an
erroneous send (which should result in a “message not understood” error) could invoke a
method with a different selector that shares the same color. For example, in Figure 14, message
c sent to aE object would invoke b without that check.

3.3.4 Row displacement (RD)

Row displacement, treated in depth in Section 4, is another way of compressing STI’s dispatch
table. It slices thetransposed two-dimensional STI table into rows and fits the rows into a one-
dimensional array so that non-empty entries overlap only with empty ones (Figure 15). Row

offsets must be unique (because they are used as selector identifiers), so no two rows start at the
same index in the master array. The algorithm’s goal is to minimize the size of the resulting

fca b d e

Figure 15. Row displacement tables, method call code, and method prologue

/* method prologue */
if (S != #mySelector) error(“Message Not Understood”);

entry = object->table[#class];
entry.func(object, #selector, arguments);
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master array by minimizing the number of empty entries; this problem is similar to parse table
minimization for table-driven parsers [34]. We first studied row displacement of the non-trans-
posed STI table, a technique which generates a slice per class, using a selector numbering
scheme that leaves only 33% of the entries empty for the Smalltalk image[39]. If the table is
sliced according to selectors (as shown in Figure 15), the number of empty entries is reduced to
0.4% with an appropriate class numbering scheme [43]. We will discuss in depth why selector-
based tables (row displacement of thetransposed STI table) lead to better compression in
Section 4. Like SC, RD is applicable to dynamically-typed languages. As in SC, a check is
needed in the method prologue, this time to ensure that the method actually is part of the
dispatch table of the receiver’s class. Therefore, the selector number is passed as an argument
to the method.

3.3.5 Compact selector-indexed dispatch tables (CT)

The third table compaction method, proposed by Vitek and Horspool [128], unlike the two
previous methods, generates selector-specific dispatch code sequences. The technique separates
selectors into two categories.Standard selectors have one main definition and are only over-
ridden in the subclasses (e.g.,a andb in Figure 16.Conflict selectors have multiple definitions
in unrelated portions of the class hierarchy (e.g.,e in Figure 16 which is defined in the unrelated
classesC andD). CT uses two dispatch tables, a main table for standard selectors and a conflict
table for conflict selectors.

ace
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3B 1

0A

0C
5D 2

0E

6

a b c

Figure 16. Construction of Compact Tables
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Standard selectors can be numbered in a simple top-down traversal of the class hierarchy; two
selectors can share a number as long as they are defined in different branches of the hierarchy.
Such sharing is impossible for conflict selectors, and so the conflict table remains sparse. But
the allocation of both tables can be further optimized. First, tables with identical entries (such
as the conflict tables forC andE) can be shared. Second, tables meeting a certain similarity
criterion—a parameter to the algorithm—can beoverloaded; divergent entries refer to a code
stub which selects the appropriate method based on the type (similar to PIC). In Figure 16 (a),
the entry for selectorsc andb of tables (A, C, E) is overloaded. The required level of similarity
affects the compression rate (stricter requirements decrease the compression rate) as well as
dispatch speed (stricter requirements decrease the number of overloaded entries and thus
improve dispatch speed). Finally, dispatch tables are trimmed of empty entries and allocated
onto one large master array as shown in Figure 16 (b).

Each class needs at least three fields: class identifier (cid), main dispatch table, and conflict
table. Because of compression, all methods need a subtype test in the method prologue in
dynamically-typed languages. For statically-typed languages, only the code stubs of overloaded
entries need such a test. Subtype tests are implemented with a simple series of logical opera-
tions (a bit-wise AND and a comparison) [129]. Figure 17 shows the code for a call through a
CT dispatch table.

This version of the algorithm (from [128]) only handles single inheritance, because of the lack
of fast type inclusion test for multiple inheritance.1

1 Krall, Vitek and Horspool tackle his problem in[85]. Vitek and Horspool[129] present a version of the algorithm which
improves dispatch speed and shortens the calling sequence on average.

class = object->class;
cid = class->cid;
entry = class->table[#selector];
entry.func(object,cid,args);

/* method prologue */
if (cid & #markA != #cidA)
error(“Message Not Understood”);

if (cid & #markA == #cidA)
goto #methodInA;

if (cid & #markB == #cidB)
goto #methodInB;

error(“Message Not Understood”);

MethodInA

Figure 17. CT dispatch code.

MethodInB

The caller code calls a stub for overloaded entries (upper box). Single imple-
mentation entries only require a prologue (lower box) for dynamic typing.
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3.4 Memory cost

The space overhead of method dispatch falls into two categories: program code and dispatch
data structures. Code overhead consists of the instructions required at call sites (see the
assembly code sequences in Appendix A) and in method prologues; stub routines (PIC & CT)
are counted towards the data structure cost. The analysis below ignores per-instance memory
costs (such as keeping a type field in each instance), although such costs can possibly dominate
all other costs (e.g., if more than one VTBL pointer is needed for a class with a million
instances). The space analysis uses the parameters shown in Table 3. Most parameter values are

taken from the ParcPlace Visualworks 1.0 Smalltalk system and thus model a fairly large appli-
cation.

3.4.1 Single inheritance cost

Our analysis assumes that dispatch sequences are compiled in-line; the cost per call site is taken
from the code sequences listed in Appendix A.1 Code for secondary techniques (like LC for IC)
is not counted since it only appears once and thus should be negligible. Table 4 shows the space
cost computation for all techniques. In the formulas, the symbolsD andC refer to data and code
cost;DLC, for instance, refers to the data structure cost of LC inthe same column.

Figure 18 shows the space costs for single inheritance versions of the dispatch techniques, using
the classes and methods of the ParcPlace Visualworks 1.0 Smalltalk system as an example.

1 We choose not to include the subroutine call instruction in each dispatch sequence in the space cost since this
instruction is required for direct function calls as well. To include the call instructions, just add c to each entry
in Table 4.

Variable Value Comments

m 8,540 total number of methods; from Smalltalk

c 35,042 total number of call sites; from Smalltalk

M 178,264 total number of valid (receiver class, selector) pairs; from Smalltalk

e 4096 entries in LC lookup cache

ODTS 133% DTS overhead factor = #total entries / #non-empty entries; from Smalltalk

OSC 175% single inheritance overhead factor for SC; lower bound, from Smalltalk

ORD 101% single inheritance overhead factor for RD; from [43]

OCT 15% single inheritance compression rate for CT [128]

k 3.2 average number of cases in a PIC stub; from SELF [71]

f 7.2% polymorphic call sites, as a fraction of total; from SELF [71]

a 3.49 average number of functions in an overloaded entry (CT)

n 0.07% overloaded entries, as fraction of total (CT)

Table 3. Parameters used for space cost analysis
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Surprisingly, the code space overhead dominates the overall space cost for six of the eight tech-

niques. Most of that overhead consists of the per-call dispatch code sequence. Much of the liter-
ature has been concentrated on the size of dispatch tables, treating call code overhead as
equivalent among different techniques (Dave Ungar’s Smalltalk system evaluation is a notable
exception [127]). As demonstrated by the above data, minimizing dispatch tables may not
reduce the overall space cost if it lengthens the calling sequence, especially in languages with
a high density of message sends, like Smalltalk.1 Code size can be reduced for most techniques
by moving some instructions from the caller to the callee, but only at the expense of a slower
dispatch. (LC’s code size requirements could be dramatically reduced by doing the lookup out-
of-line.)

The size of the immediate field in an instruction significantly impacts the code cost of SC, RD,
and CT. This study assumes a 13-bit signed immediate field, limiting the range of immediates

1 Increased code size can also impair execution performance by causing more instruction cache misses.

static typing dynamic typing
code data code data

DTS 2c 2m*ODTS same as static typing

LC 14c 3e+DDTS same as static typing

IC 3c+2m DLC same as static typing

PIC 3c+2m 3kfc+DLC same as static typing

VTBL 2c M N/A

SC 2c M*OSC 3c+2m M*OSC

RD 5c M*ORD 5c+4m M*ORD

CT 4c M*OCT *(1+an) 4c+7m M*OCT *(1+an)

Table 4. Formulas for approximate space cost (in words)

CT

RD

SC

VTBL

PIC

IC

LC

DTS

0 500 1,000 1,500 2,000 2,500

Kbytes

data and stubs

caller/prologue code

dynamic typing

Figure 18. Space overhead for the Smalltalk system
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to -4096..4095.1 The Smalltalk system measured had 5087 selectors, and thus the selector
number fits into an immediate. SC needs only one instruction to load the selector code into a
register (see Table A-4), but RD takes two instructions for the same action because the selector
number is a memory address, pointing to the beginning of a selector table. The same phenom-
enon increases the method prologue overhead in both RD and CT.2 In RD, the reduction in data
structure size relative to SC is almost offset by a corresponding increase in code size. The data
in Figure 18 are thus relative to the processor architecture. For example, for an architecture with
larger immediates (or for smaller applications), CT’s space advantage over VTBL would
double. Of course, the data also depends on application characteristics such as the proportion of
call sites versus number of classes, selectors, and methods.

Given these admonitions, IC and PIC apparently combine excellent average speed with low
space overhead. The bounded lookup time of SC and RD is paid for with twice as much
memory; VTBL is about one third smaller than those two. CT’s small data structure size is
offset by its code cost.

VTBL, RD, and SC require significantly more data space than DTS because they duplicate
information. Each class stores all the messages itunderstands, instead of all the messages it
defines. For example, in the Smalltalk system a class inherits 20 methods for each one it defines
[40], so the number of entries stored in the class’ dispatch table increases by a factor of 20.

Dynamic typing makes a relatively small difference in space cost. Dynamic techniques have no
extra overhead because each dispatch already contains a run-time check to test for the cache hit.
Static techniques3 perform the run-time type check in the method prologue, so the overhead
grows linearly with the number of defined methods, which is much smaller than the number of
call sites.

3.4.2 Multiple inheritance cost

The space overhead of multiple inheritance is more difficult to measure than single inheritance
space cost. For VTBL-MI, the call sequence consists of two extra instructions, and virtual func-
tion tables have an extra entry which stores the object pointer adjustment (see Section 3.1.2).
This brings the code cost to 4c, and the data structure cost to 2M. However, every time a class
inherits from an ancestor though different paths (the “diamond” problem), all functions inher-
ited through that ancestor are stored twice (with different adjustments). This overhead depends
entirely on the way multiple inheritance is used and is not quantifiable without appropriate code
metrics. In [43], we calculated this overhead for two class libraries that use multiple inheritance
extensively. The generated tables stored, respectively, 215% and 330% of the entries that a

1 The size of immediates varies from architecture to architecture: for example, SPARC has 13 bits, Alpha 8 bits,
and MIPS 16 bits.

2 Here the crucial quantity is the number of bits necessary to represent acid (16 bits for the Smalltalk example).
For the same reason, CT’s dynamic typing cost is higher.

3 Excluding VTBL, which only works for statically-typed languages.
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single table would use (assuming non-hard-coded offsets). Finally, the overhead of having
multiple table pointers in each object can only be calculated for individual program runs, since
it depends on the number of object allocated.

Static techniques (SC, RD) with one table per object (or per message selector), exhibit the
compiled code cost of dynamic techniques, plus an additional overhead because multiple inher-
itance hierarchies generate tables that are harder to compress. For SC, multiple inheritance
introduces conflicts between selector colors that are hard to deal with and that substantially
increase the number of empty entries [9]. For two libraries with extensive use of multiple inher-
itance (Every class has on average two parent classes), the resulting tables contained 71% and
74% empty entries. For RD, multiple inheritance causes more irregular empty regions to appear
in the original two-dimensional table, which makes the rows harder to fit tightly together. RD is
more robust than both VTBL-MI and SC, however, since the resulting tables contained only 9%
and 29% empty entries (see Section 4.3.3).

3.5 Programming environment aspects

The choice of a dispatch technique is influenced by considerations other than space cost and
execution speed (discussed in Section 5). Code organization and demands put upon the
programming environment can preclude some techniques from being used. The following
aspects, though non-comprehensive, give an idea of the issues involved:

• Responsiveness. Some static techniques are less suitable for interactive programming
environments that demand a high level or responsiveness (i.e., immediate feedback to
programming changes). Most static techniques need to recompute some data structures
after a programming change. For example, introducing a new method name forces VTBL
to rearrange the dispatch table of the affected class and all its subclasses. SC, RD and CT
even have to completely recompute their tables from scratch (except in rare cases, e.g., if
the new method fits into an empty slot in the dispatch table). For the Smalltalk system,
complete recomputation can take hours for SC, and seconds for RD and CT.

• Support for run-time extensibility. Many static techniques (e.g., SC, RD, CT) presume
knowledge of the entire program, i.e., knowledge of all classes and methods. With dynamic
link libraries (DLL), the complete set of classes and methods is not known until run time
since the classes contained in dynamic libraries are unknown until they are loaded at
program start-up time or later during the execution of the program. Thus, these techniques
have to recompute the dispatch data structures each time a new library is dynamically
loaded.

• Sharing code pages. Some operating systems (e.g., Unix) allow processes executing the
same program to share the memory pages containing the program’s code. With shared code
pages, overall memory usage is reduced since only one copy of the program (or shared
library) need be in memory even if it is used concurrently by many different users. For code



30

to be shared, most operating systems require the code pages to be read-only, thus
disallowing techniques that modify program code on-the-fly (e.g., IC and PIC).

Many of the dispatch techniques discussed here can be modified to address problems such as
those outlined above. For example, static techniques can be made more incremental by intro-
ducing extra levels of indirection at run-time (e.g., by loading the selector number rather than
embedding it in the code as a constant), usually at a loss in dispatch performance. For this study,
only the simplest and fastest version of each technique was considered, but any variant can be
analyzed using the same evaluation methodology.

3.6 Summary

Instructions (in particular, per-call code) can contribute significantly to the overall space
requirements of message dispatch. In our example system, many techniques spend more
memory on dispatch code sequences than on dispatch data structures. Thus, minimizing
dispatch table size may not always be the most effective way to minimize the overall space cost,
and may in some cases even increase the overall space cost.

Run-time system constraints can limit the choice of dispatch techniques available to practitio-
ners. For static caching techniques, table construction time can be prohibitive. Inline caching
techniques require modifiable code.
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4 Row displacement compression
“I visualize structures, graphs, data structures.
Its seems to come a easier than a lot of other
things”

Robert E. Tarjan [115]

Table-based dispatch is attractive because its cost is bound by a constant. The critical path of
selector table indexing (STI), the simple, fast, but memory-greedy static technique, consists of
two dependent loads and an indirect branch instruction. On older processors, this sequence
takes about 5 cycles, 4 if the branch delay slot can be filled. On newer processors, the sequence
takes in the worst case (branch mispredict), two load latencies plus a branch misprediction
penalty (about 8 cycles on the P96 processor used as state-of-the-art representative in
Section 6).

Therefore, the simplest form of table-based dispatch is fast and reliable. Its main problem is its
prohibitive memory cost. A straightforward implementation uses a two-dimensional table of
size S * C, where S is the number of message selectors (10K for SELF) and C the number of
classes (1.8K in SELF). For mature programming environments, this table simply takes too
much memory (18M addresses = 72Mbytes on a SPARC). Since each class responds to only a
fraction of all message selectors (typically between 2% and 10%), the table could be brought
down to a reasonable size, if only the non-null entries were stored (1M addresses for SELF =
4Mbytes on a SPARC).

In statically typed languages like C++ or Java, virtual function tables (VTBL) avoid storage of
null entries because of a numbering scheme that appends new entries to an existing table. VTBL
dispatch takes no more instructions than STI. With single parent class inheritance, this scheme
is optimal. No null entries are stored. When multiple inheritance is employed, the numbering
scheme does not guarantee zero overhead because of the necessity to merge two or more tables.
However, table compression becomes expedient only with high occurrence of multiple inherit-
ance. Multiple inheritance incurs a small overhead of two extra instructions in the dispatch
sequence, but these instructions are independent of the critical path instructions, and can there-
fore be hidden in the extra instruction issue of a superscalar processor1.

In dynamically typed languages, each class must respond to all messages, since the compiler
does not guarantee that a particular object implements a message sent to it. This “message not
understood” error is caught at run time. Semantically speaking, the default implementation of
all messages isMessageNotUnderstood. Table compression of dispatch tables aims to store
only the non-default implementations (the 2% to 10% non null entries in the STI table).
Absence of an implementation must be detected by the dispatch code at run time, and trigger the
invocation ofMessageNotUnderstood. For the table-based dispatch we discuss in this chapter,

1 However, the dependency of those instructions on the availability of the receiver’s address can incur delays in some programs
(see section 6.4.2)
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one extra instruction in the call sequence is necessary, and two instructions in the target proce-
dure prologue that check for the default case. SinceMessageNotUnderstood is a program bug,
most of the time this check fails, so the conditional branch is very predictable. Therefore, only
a small overhead is usually added to the dispatch cost (one or two cycles), resulting in a bound
of about ten cycles, when a indirect branch misprediction penalty is taken.

The remaining problem in table-based dispatch for dynamically typed languages is how to
achieve a high compression rate. In the asymptotically best case, the tables store no null entries
using only as much memory as VTBL’s in statically typed languages. In this section, we show
how get within 1% of this bound for a broad selection of large single-inheritance class libraries.
The compression scheme is then generalized to handle multiple inheritance, reducing the null-
entry overhead for those libraries to less than 10% for all but one benchmark. Finally, we
discuss implementations of the row displacement algorithm that allow dispatch table construc-
tion of these large samples to take place in a few seconds.

4.1 Class-based row displacement

Class-based row displacement dispatch tables, introduced as “sparse arrays” [39]1, compress
the two-dimensional selector index table of Figure 12 by slicing it according to classes and
fitting the resulting rows into a one-dimensional array. The offset of a row in the compressed
array serves as a class id. After compression, the sum of class offset and selector number gives
the index of the desired entry in the compressed array.

In this setup, we can improve the compression rate by choosing selector numbers (column
numbers) so that the rows become easier to fit together. Initially, we used an ad-hoc heuristic:

1 In [34], the term “row displacement compression” was coined for a very similar approach in parser table
compression. We also want to avoid confusion with[122], where the term “sparse array” is used for a one-dimen-
sional array that is compressed by dividing it in equally large chunks and not storing the empty ones.

A C B E

Figure 19. Class-based row displacement tables.

A
a
0

b c d e f g

B 3 1 2
C 0 4
D 0 1 4 5 6
E 0 7 8 4

A 0
B 3 1 2

C 0 4
D 0 1 4 5 6

E 0 7 8 4

Compressed array0 0 1 0 4 5 6 0 7 2 8 414 3
D
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we numbered the message selectors defined in meta-classes in the Smalltalk library first. These
classes are numerous (half of the total number of classes), and each one understands a large
number of messages (300 on average, compared to 160 for regular classes), taken from a limited
set of selectors (about 1300, compared to 4000 for regular classes). Therefore, first numbering
those selectors sequentially results in a large number of rows with densely packed entries,
making the fitting process efficient. After fitting meta-classes, the wide, sparsely filled regular
class rows caused a resulting overhead of 40% [39].

We then designed a heuristic based on a generalization of this ad-hoc rule for Smalltalk classes.
This results in a better compression rate, but 33% of the table still stores undefined entries [40].

4.2 Selector-based row displacement

Selector-based row displacement functions the same way as class-based row displacement, but
we slice the two-dimensional table up according to selectors, instead of classes. Figure 20 illus-
trates the process on the same class hierarchy as used in Figure 19: the compression algorithm
works on thetransposed selector index table. At run time, the lookup process is similar, with the
role of classes and selectors reversed. However, for the “message not understood”-test, the
method still tests whether the called and definedselector are equal.

In this setup, the numbering of classes determines the shape of the rows to be fitted in the
compressed array. This simple change dramatically improves the fill rate (i.e., reduces the size)
of the compressed array. Selector-based tables have less overhead than class tables for two
reasons: their row size distribution makes it easier to tightly pack rows together and their
message definitions cluster in a more regular way under inheritance, which reduces the amount
of gaps within rows. Both of these aspects can be exploited by an appropriate class numbering
scheme, as explained in the next sections.

fca b d e

Figure 20. Selector-based row displacement tables

a 0 3 0 0 0
b 7
c 1 1
d 8
e 4 4 4
f 2 5
g 6

a 0 3 0 0 0
b 7

c 1 1
d 8

e 4 4 4
f 2 5

g 6

A B C D E

Compressed array0 3 0 0 0 7 1 8 1 4 4 2 6 5
g
4
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4.2.1 Distribution of row sizes

Figure 21a shows the two-dimensional dispatch table for the Smalltalk classMagnitude and its
subclasses. Although this example is an artificial collection of classes (it is not a complete

24
0

18

(a) (b) (c) (d) (e)

Figure 21. Table size distribution forMagnitude(18 classes, 240 selectors).

original table selector-based rows class-based rows

(a) STI table from alphabetically sorted classes and selectors.
(b) selector-based table size: occupied entries in black, intermittent spaces in gray,

leading and trailing spaces in white (not visible). (c) same as (b), but sorted by size
(d) and (e) same as (b) and (c), but class-based
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program), it does demonstrate the characteristic size distributions found in larger, realistic
samples.

To begin with, the number of classes is much smaller than the number of message selectors.
Therefore the average size of class-based rows will be much larger than that of selector-based
rows. In [41], we found that row displacement compression works better, in general, with many
small rows than with few large ones. Thus a selector-based table is likely to be compressed
better than a class-based table. Although not all the cases we tested exhibit as large a difference
asMagnitude, usually the number of selectors is at least twice the number of classes. This
asymmetry accounts for part of the better fill rate of selector tables.

In addition to the average row size, thedistribution of row sizes also has an impact on the fill
rate. Figure 21b illustrates why. Figure 21b is constructed from 21a by squeezing occupied
entries (in black) together.1 The width of the black rows thus indicates the number of occupied
entries of that row. The gray area represents unoccupied space that is not leading or trailing the
row, but is enclosed by occupied entries to its left and right. Thus black and gray area together
give the maximum space that a row can occupy under row displacement. We call this quantity
the width of a row vector. The white area is free because leading and trailing empty space can
overlap with other rows. Figure 21c is the same as 21b, but with selectors reordered by size to
better show the distribution. Figures 21d and 21e show the same for a class-based table, rotated
90 degrees.

The black area represents a lower bound on the size of the compressed array; black and gray
together represent an upper bound. If all rows were placed consecutively, the size of the
compressed array would be the sum of all the row widths. Gray area can thus be considered
potential overhead.

When comparing Figure 21c with Figure 21e, it becomes clear why a selector-based table does
better than a class-based table: almost one third of the selector-based rows have only one occu-
pied entry. These ultra-small rows are ideal to fill up gaps left by other rows. Class-based rows
on the other hand have a minimal size of nine. The difference tends to get worse as libraries
grow larger. For example, in VisualWorks 1.0 every class understands at least 100 messages, but
45% of the messages are only known by one class, and another 39% by less than ten classes.
Furthermore, the potential overhead (gray area) for the selector-based table in Figure 21 is
much smaller than that of a class-based table. Thus a selector-based table has less area to fill up,
and better material to fill it up with.

Without further efforts, selector-based row displacement already outperforms the most sophis-
ticated class-based row displacement schemes. ForMagnitude, the best fill rate reached in [40]
is 80%, while the structure shown in Figure 21b gives a compressed array that is 87% occupied.
This difference becomes larger as class libraries grow larger, as we will see in section 4.3.

1 This figure does not correspond to an actual data structure in the compression algorithm. It is given only to illustrate the
characteristics of rows in a selector-based table.
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4.2.2 Fitting order

The previous section demonstrated that class- and selector-based tables have different row size
distributions. This section and the next explains how to exploit this difference to its fullest in an
actual implementation.

Since it is not practical to look for the best possible configuration, i.e., to look for offsets that
minimize total overhead,1 we fill the compressed array in one pass. Rows are inserted into the
first place that fits, but we still have the freedom to choose the order in which rows are inserted.
Figure 21b shows the alphabetical order, which is an arbitrary one from an algorithmic perspec-
tive; as mentioned before, it achieves 87% fill rate. Figure 21c shows the rows ordered by size.
We start with the largest rows and work from there to the smaller ones. Intuitively, this arrange-
ment gives smaller rows a better chance to fill up holes left by bigger ones. ForMagnitude the
fill rate does indeed improve to 93%. Larger samples exhibit a smaller difference but consis-
tently favor the size-ordered scheme.

Surprisingly, sorting rows according to descending size does not slow down the algorithm.
Because the time needed to fit all rows is proportional to the average number of unoccupied
entries that is checked before a fitting space is found, a denser compression is reached in a
shorter time. Thus the gain in speed caused by the better fill rate compensates for the extra time
needed to sort rows.

4.2.3 Class numbering for single inheritance

Now that we have established the ordering of selectors, this section will show how classes can
be numbered to enhance the fill rate further.

If we look back at Figure 20, exchanging column D and C makes the fitting process trivial,
because no gaps are left in any rows. All empty entries are found either in the beginning or the
end of a row. Merely placing these rows back to back in the compressed array solves the
compression problem. A class numbering scheme that minimizes the number of gaps in a
selector-based table is illustrated in Figure 22.

The aim is to make sure that all classes that understand a certain message have consecutive
numbers. Our scheme numbers classes by traversing the inheritance tree in depth-first pre-
order. This numbering scheme ensures that every subtree in the inheritance structure corre-
sponds to a consecutive block of class numbers. Since most message selectors are understood
by exactly a subtree of classes, most rows in the selector-based table consist of exactly one
consecutive block of occupied entries. For the single-inheritance hierarchy of Figure 22, the
new class numbering reduces the number of gaps from four to one. The only selector with a gap
in its row ise, becausee is defined separately in two classes (D andF), without being defined
in a common super class.

1 This problem is NP-complete[121] and thus takes too long to solve, or even to approximate[41].
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Figure 23 shows the effect of the numbering scheme onMagnitude. Figure 23a shows a
selector-based table, with the rows ordered in increasing size. 35% of the total area is potential
overhead (gray). As mentioned before, this table resulted in 93% fill rate, so 7% of the 35%
became real overhead. After renumbering classes, only 1.6% potential overhead is left
(Figure 23b), and compression reduces this gray area to 0.5% real overhead. Out of an array
with 1388 entries, only 3 are unoccupied, and even these gaps are caused by contention over
row offsets by one-entry rows, not by true fitting conflicts (remember that all rows need to have
unique offsets in the compressed array). Later, in section 4.3, we will present compression
results for several other single inheritance class libraries.

4.2.4 Class numbering for multiple inheritance

The depth-first numbering scheme can easily be applied to a multiple inheritance class library.
The only difference to single inheritance is that a class with more than one direct super class
(a.k.a. base class) will be visited more than once. Since a class is numbered the first time it is
encountered, its number will depend on the order in which subclasses are traversed. We found
that an essentially random choice is good enough if multiple inheritance is not used frequently,
as in theUnidraw/Interviews sample of section 4.3.

However, if multiple inheritance is used extensively, it is worthwhile to spend time on a better
numbering scheme. We construct a single-inheritance hierarchy from the multiple inheritance
hierarchy by considering only the dominant super class link. The dominant super class is the
class that makes the largest contribution to the dispatch table. For example, in Figure 24, class
B is the dominant super class of classE becauseE inherits more messages throughB than
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through any other of its super classes. It is easy to see why this choice produces the fewest
number of gaps: if a class inherits from several classes, it will be numbered out of sequence in
the subtrees of all classes except one.1 Thus it will cause a gap in the rows of all message selec-

1 Exception: if a class number appears at the edge of a consecutive block it may, by pure chance, be adjacent to the number of
another of its base classes.

(a) (b)

Figure 23. Magnitude: selector-based tables
with classes numbered:
(a) alphabetically
(b) depth-first preorder
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tors it inherits, except the ones inherited through its dominant base class. Therefore, choosing
the class through which a class inherits the largest number of messages avoids more gaps than
any other choice.

Figure 24 shows the effect of two different choices for a small example. Note that this rule mini-
mizes thenumber of gaps, not necessarily the sum total of gap space (gray area). In fact, on the
largest multiple inheritance sample,Geode, our method enlarges gap space by 13%, but
increases fill rate by 11.2%.

4.2.5 Summary

In general, row displacement compression is a difficult combinatorial optimization problem.
However, appropriate heuristics exploit the regularities that inheritance imposes on dispatch
tables, and give excellent compression rates in practice. These “rules of thumb” are the
following:

• Slice the class/selector table by selector instead of by class, because there are many more
selectors than classes and most selectors are understood by only a few classes. These
characteristics give rise to many small rows, which are easier to fit tightly together.

• Fit rows by decreasing size, to give small rows the opportunity to fill up gaps left by larger
rows.

Figure 24. Multiple inheritance class numbering
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• Number classes according to a depth-first pre-order traversal of the inheritance structure, to
force occupied entries to cluster together.

• For multiple inheritance libraries: ignore all base classes in the numbering scheme, except
the base class which understands the largest number of messages.

4.3 Compression results

In this section we compare four variants of selector-based row displacement with other table-
based message dispatch techniques on a number of large class libraries. We will first discuss the
way space overhead is calculated, then briefly outline the test samples, and finally discuss the
results.

4.3.1 Methodology

To evaluate the effectiveness of table compression techniques, we measure how close the table
size approachesM: the sum, over all classes, of the number of messages understood by a class.
This sum is the total of legitimate class-selector combinations of a class library. A message
dispatch technique that finds a method in a constant, small amount of time needs to store each
one of these combinations. We define thefill rate of a technique asM divided by the actual
number of entries for which storage is allocated. For instance, dividingM by the product of the
number of classes and the number of selectors calculates the fill rate of the two-dimensional
class/selector table employed by STI (see Section 3.3.1).

Selector coloring (SC) [38][9] expresses table compression as a graph coloring problem. The
graph represents selectors by nodes. An edge between two nodes means that the corresponding
two selectors occur in the same class. The aim of the coloring algorithm is to assign a color to
each node of the graph so that adjacent nodes have different colors, with as few colors as
possible. What this technique boils down to in terms of the two-dimensional dispatch table is
the following: selector coloring compresses the table by overlapping columns. Every selector is
assigned a column number. Two selectors can share a column if none of their occupied entries
have the same index (i.e., they do not occur together in any class).

A lower bound for the number of columns is the size of the largest row. This row corresponds
to the class that understands the largest number of messages. Multiplying this number by the
total number of classes gives a lower bound to the number of entries of the resulting data struc-
ture. DividingM by this lower bound then gives an upper bound to the fill rate, which is the
quantity we show under column SC. It is independent of the coloring algorithm used1.

Virtual function tables (VF) [32], the preferred implementation of message dispatch in C++
compilers [53], have no overhead for single inheritance class libraries. Multiple inheritance
incurs space overhead because every base class requires its own virtual function table, dupli-

1 Since graph coloring is NP-complete, optimal coloring schemes are approximated by polynomial-time algorithms.
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cating entries that are common to two or more base classes. For example, in Figure 24, classE
has two virtual function tables, both of which storea. The size of a class’s virtual function tables
equals the sum of its parents’ virtual tables plus the number of newly defined (not overridden)
messages.

For class-based row displacement (CR) we took the fill rate reached by the heuristic described
in [40]. This heuristic performed best on all samples except Object, where Horn’s algorithm
reached a better fill rate (67% instead of 64%).

Selector-based row displacement is shown for three variations in class numbering: alphabetical
(AL), depth-first pre-order traversal for a single-inheritance hierarchy (SI), and depth-first pre-
order traversal for a multiple-inheritance hierarchy (MI). Fill rates are shown for the fastest
implementation of row displacement, which trades some fitting tightness for speed, as
explained in section 4.4.1.

4.3.2 Samples

We choose sample class libraries taken from real systems for three reasons: it facilitates
comparison with other methods, it eliminates the extra step of verifying whether the real world
behaves the same as the artificial samples, and as an aside it gives us the opportunity to gather
some statistics from programs with hundreds of classes, which is interesting in its own right.

On the other hand, the data points do not cover the realm of possible class libraries as evenly as
we would wish. Self-contained programs are usually large, consisting of several hundred
classes. To get an impression of how the different techniques behave on smaller examples, we
also used subsets of the Smalltalk inheritance structure. These are the first six samples of
Table 5. The next six samples are comprised of all the classes of different Smalltalk images:
Parcplace Visualworks 1.0 and 2.0, Digitalk Smalltalk 2.0 and 3.0, and VisualAge Smalltalk
2.0, kernel and complete library. The next two samples are NextStep, written in Objective-C,
and the SELF system 4.0. The two C++ samples are the ET++ Application Framework [131] and
Unidraw/InterViews [92]. Only the latter uses multiple inheritance, in only 10 classes (the
average number of base classes is smaller than 1 because 147 of the classes in this library have
no base class). The last two samples are from LOV, a proprietary language based on Eiffel.
These two make extremely heavy use of multiple inheritance: on averageevery class inherits
from two super classes.

4.3.3 Compression results

Table 5 shows the result of our measurements. Selector-based row displacement performs very
well on single-inheritance samples (all samples with “-” in column P). Fill rates are higher than
99.5% for all self-contained examples, and more than 98% for the smaller ones. The technique
scales up well: contrary to selector coloring and class-based row displacement, compression
improves as libraries grow in size. The class numbering scheme is partly responsible for this



42

trend, as fill rates decrease similarly to selector coloring, though not as fast, when classes are
numbered alphabetically. For dynamically-typed languages, no other method comes close to
the fill rate of selector-based row displacement with depth-first class numbering.

Multiple inheritance samples come in two kinds. If multiple inheritance is rarely used, the
results are similar to those of single inheritance. Virtual function tables have no overhead for
single inheritance (i.e., a 100% fill rate), and therefore perform best on such samples, with row
displacement a close second. With heavy use of multiple inheritance, fill rates decrease for all
methods, but by different amounts. As anticipated in [39], selector coloring does not handle
multiple inheritance well. Virtual function tables do a little better. Selector-based row displace-

Other tech-
niques

Selector-based
row displace-

ment

System Library C S M m P 2D SC VF CR AL SI MI

Set 9 94 450 144 - 53 65 - 81 90 98.3 -

Stream 16 126 1,122 210 - 56 65 - 82 93 99.7 -

Magnitude 18 240 1,381 568 - 32 52 - 78 93 99.2 -

Parcplace Collection 51 402 4,926 805 - 24 64 - 59 81 99.0 -

Smalltalk VisualComponent 53 529 4,253 875 - 15 60 - 56 91 98.8 -

Object w/o metaclasses 383 4,026 61,775 6,835 - 4.0 62 - 48 95 99.4 -

Object (Parcplace1) 774 5,086 178,230 8,540 - 4.5 57 - 64 77 99.6 -

Parcplace2 1,956 13,474 608,456 23,720 - 2.3 57 - 55 72 99.7 -

Digitalk Digitalk ST/V 2.0 534 4,482 154,585 6,853 - 6.5 43 - 56 78 99.6 -

Smalltalk Digitalk ST/V 3.0 1,356 10,051 613,654 17,097 - 4.5 42 - 50 71 99.8 -

IBM IBM Smalltalk 2.0 2,320 14,009 485,321 25,994 - 1.5 32 - 63 56 99.5 -

Smalltalk VisualAge 2.0 3,241 17,342 1,045,333 37,058 - 1.9 43 - 55 47 99.7 -

Objective-C NextStep 310 2,707 71,334 4,324 - 8.5 53 - 51 89 99.6 -

SELF Self System 4.0 1,801 10,103 1,038,514 29,411 1.02 5.7 60 - 47 67 99.7 99.8

C++ ET++ 370 628 14,816 1,746 0.76 6.4 29 100 78 46 97.6 97.6

Unidraw/Interviews 613 1,146 13,387 3,153 0.78 1.9 23 100 62 44 95.6 95.7

LOV Lov+ObjectEditor 436 2,901 36,052 5,007 1.78 2.9 29 46.5 52 64 75.2 91.1

Geode 1,318 6,555 302,717 14,202 2.11 3.5 26 30.3 45 58 57.9 70.8

Table 5. Compression results (in fill rate %)

C: number of classes S: number of selectors M: total of legitimate class-selector combinations
m: total number of defined methods P: average number of parents per class
Other techniques:
2D: uncompressed 2-dimensional class/selector tableSC: selector coloring
VF: virtual function tablesCR: class-based row displacement
Selector-based row displacement for different class numbering schemes:
AL: alphabetical order SI: single-inheritance scheme MI: multiple-inheritance scheme
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ment has the best fill rate, though it also starts to show substantial overhead for the largest
sample.

To conclude, our experiments show that selector-based row displacement tables have a very low
space overhead compared to other table-based methods. The technique scales up well,
improving the fill rate with larger class libraries. Finally, it also handles multiple inheritance in
a robust way, outperforming other methods by a factor of two if multiple inheritance is heavily
used.

4.4 Optimizing table compression speed

In this section we describe the algorithm used to achieve adequate performance of table
compression.

4.4.1 Compression algorithms

We went through a number of implementations of the dispatch table compression algorithm. In
a nutshell, this algorithm assigns to each row an offseto in the compressed array, so that two
conditions hold:

• o is not shared with any other row

• For every non-empty entry at indexi, o+i  is not shared with any non-empty entry of any
other row

Section 4.2 explained how a class numbering scheme determines the indices within each row.
Rows are fitted in one run in order of decreasing size. Now the problem is to find an offset for
a row in a partially filled compressed array in the least possible amount of time. This problem
is reminiscent of allocating a block of memory in a memory management system (see [8] for an
overview), with the added complication that blocks are fragmented.

Figure 20 suggests a simple algorithm for fitting a row (represented by a collection of indicesi):
start with offseto = 0, check if all entrieso + i are empty. If not, incremento and continue until
a match occurs. Then check if offseto is in the set of offsets that are already used by fitted rows.
If so, continue the search; if not, insert the row ato and addo to the set of used offsets.

A simple improvement of the algorithm hops over used space. Each unused entry in the
compressed array stores the index of the next empty entry. The algorithm follows these links
instead of checking every possible offset. This reuse of free memory is similar to the “freelist”
concept in memory management systems. By utilizing free memory resources to keep track of
free memory, the only cost associated with a smarter algorithm is the time required for mainte-
nance of the freelist. When a row is fitted into the compressed array, the entries it occupies are
removed from the freelist. This saves time, since a used entry is never checked again, while in
the simple algorithm it is checked once for each row that fits to its right. The algorithm outlined
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so far comprises the SIO algorithm in Table 6, which stands for “singly-linked freelist with
index-ordered single-entry rows”. We will explain the latter denotation later.

Although rows can be arbitrarily fragmented in principle, in practice they usually consist of a
large block with a few “satellite” pieces if an adequate class numbering scheme is used, as
demonstrated in section 4.2. Therefore, smarter, faster allocation schemes can be adapted from
memory management techniques that deal with variable sized blocks. The key trick is to test
first for the largest consecutive block of a row, and to organize the freelist so that one can easily
enumerate free blocks with a certain minimum size. Then the highly fragmented free space
which tends to accumulate in the filled portion of the compressed array is skipped when fitting
large rows. In [40], we implemented and tested an algorithm (BBBF) built around a freelist
which was actually a binary search tree, ordered by size. The main disadvantage of this tech-
nique is that free blocks must have a size of six or more consecutive entries or they cannot be
linked into the tree. Blocks of size five and smaller are not linked at all. This not only compli-
cates the maintenance of the free list, but, more importantly, renders the algorithm impractical
for selector-based rows. As demonstrated in section 4.2, the majority of selector-based rows is
smaller than six, whereas class-based rows have a minimum size far exceeding that. The algo-
rithm in [40] is also more general than necessary, since it can deal with arbitrarily large blocks.
The maximum block size in this particular problem is equal to the size of the largest row, which
is the number of selectors in the system (10K in Self, a large system).1

Here we use the simpler approach of linking together equally sized blocks. An array indexed by
block size contains pointers to the beginning of each separate freelist. The algorithm proceeds
as follows: to fit a row, first determine the largest consecutive block of indices. We call this the
primary block. The row is represented by the first index and the length of the primary block, and
the list of remaining indices. Start with the non-empty freelist with block size greater than or
equal to the size of the primary block. Run through this freelist and test, for each offset that posi-
tions the primary block within the current free block, whether the remaining indices match. If
no match is found, try the freelist with the next larger block size. Compared to the singly-linked
freelist algorithm, a match test is more efficient since the entries of the primary block do not
need to be checked. Moreover, no time is wasted on free blocks smaller than the primary block.

When a match occurs, the current block is removed from its freelist, and, if it is larger than the
primary block, the space that remains left or right is inserted in the freelist of the appropriate
size. The free blocks over which the remaining indices are positioned are also split up. Then the
row is copied into the compressed array.

To remove them efficiently from their respective freelists, blocks have to be doubly-linked. This
implies that the minimum size for a free block is two. After all tables with primary block size
of two or greater are inserted, the algorithm reverts to the singly-linked freelist algorithm
outlined before, to fit the remaining single-entry tables. In Table 6, the complete algorithm is

1 Except for the huge chunk of free space in the right part of the compressed array, which can be dealt with separately.
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denoted by DIO, which stands for “doubly-linked freelist with index-ordered single-entry
tables”. It performs better than SIO in a number of cases, but for Smalltalk samples in particular,
it is still puzzlingly slow.

Profiling revealed that the algorithm spent an excessive amount of time (up to 80%) checking
uniqueness of row offsets in the Smalltalk samples. This check only happens after a match is

found, and a hash table implementation makes it an efficient operation. Moreover, it should
almost always succeed, since only one in about fifty positions in the compressed array is an
offset. However, the offsets are not spread randomly. Single-entry rows are fitted last to fill the
holes in the occupied part of the compressed array. If there are more of such rows than necessary
to fill the remaining empty space, they cluster at the right end. Finding open space for a one-
entry row is trivial, but finding a unique offset becomes time-consuming, as illustrated in
Figure 25.

We tried reordering the tables in a number of ways to prevent the offsets from clustering prema-
turely. Rows with more than one entry are still sorted in decreasing size, and ties are broken by
putting rows with smaller width first. For single-entry rows, the most spectacular improvement
in speed, for a modest decrease in fill rate, is reached by ordering the single-entry rows in
decreasing index order (of the only non-nil element). In Table 6, the resulting algorithm is indi-
cated by DRO, which stands for “doubly-linked freelist with reverse index-ordered single-entry
rows”.

Figure 25. One-entry row fitting

Entry 0 (offset position)

Single significant entry

Filled portion of array

Rows with entries from 1 to 13, if fitted
in that order, cause a dense packing of
offsets. The last row checks on 8 free
positions before a free offset is found.
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4.4.2 Compression speed

Table 6 shows the fill rates of the three variants, and timings as the average over 20 runs. Cache

effects caused a variation of less than 3%. We omitted the smaller samples because the time was
too small to be reliably measured.

For all but the C++ and LOV samples, the fill rate is largely independent of the particular algo-
rithm used. Fill rates vary slightly because the ordering of single-entry tables trades memory for
speed. The difference between single and doubly-linked freelists, which is most pronounced in
the Geode sample, is caused by the different order in which offsets are checked. SIO puts a row
in the first place that fits, starting from the left edge of the compressed array. DIO and DRO also
go from left to right, but start with the freelist with the smallest block size. There may be larger
blocks to the left of a smaller block, causing a table to be fitted further to the right than strictly
necessary.

The fastest algorithm in almost all cases is DRO. For samples from the same programming envi-
ronment, there seems to be a linear relation between the number of classes and the time needed
to compress the tables. For SIO, the relation appears quadratic (i.e., twice as many classes take
four times as long).

Absolute performance is excellent, especially compared to previous techniques. For example,
the Object sample takes 0.4 seconds to compress (on a SPARCstation-20) compared to the
fastest class-based row displacement algorithm in [40] which took 36 minutes on a Mac IIfx.

Fill rate (in %) Timing (in seconds)

System Library C S M SIO DIO DRO SIO DIO DRO

Parcplace Object w/o metaclasses383 4,026 61,775 99.5 99.5 99.4 0.3 0.9 0.2

Smalltalk Object (Parcplace1) 774 5,086 178,230 99.7 99.7 99.6 1.7 4.3 0.4

Parcplace2 1,956 13,474 608,456 99.7 99.7 99.7 14.6 25.3 2.1

Digitalk Digitalk2 534 4,482 154,585 99.7 99.7 99.6 0.8 3.3 0.7

Smalltalk Digitalk3 1,356 10,051 613,654 99.8 99.8 99.8 5.9 13.5 1.6

IBM Smalltalk 2,320 14,009 485,321 99.8 99.8 99.5 32.3 11.4 5.2

Smalltalk VisualAge2 3,241 17,342 1,045,333 99.7 99.7 99.7 167.3 13.6 12.0

Objective-C NextStep 310 2,707 71,334 99.7 99.7 99.6 0.5 2.1 0.2

SELF Self System 4.0 1,801 10,103 1,038,514 99.8 99.8 99.8 9.4 2.4 2.5

C++ ET++ 370 628 14,816 98.5 98.4 97.6 0.04 0.05 0.04

Unidraw/Interviews 613 1,146 13,387 97.6 95.8 95.7 0.2 0.1 0.05

LOV Lov+ObjectEditor 436 2,901 36,052 95.8 91.1 91.1 0.8 0.3 0.2

Geode 1,318 6,555 302,717 74.9 70.8 70.8 49.0 9.6 9.0

Table 6. Compression speed (in seconds, on a 60Mhz SPARCstation-20)
C: number of classesS: number of selectorsM: total of legitimate class-selector combinations

SIO: singly-linked freelist with index-ordered single-entry rows
DIO: doubly-linked freelist with index-ordered single-entry rows

DRO: doubly-linked freelist with reverse index-ordered single-entry rows
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For Object, selector coloring on a Sun-3/80 took about 80 minutes to build the conflict graph
and 12 minutes to color it [9]. These timings are measured on different hardware and with
different compilers, so that they cannot really be compared directly. However, we believe it is
safe to say that on equivalent hardware, selector-based row displacement compression
constructs dispatch tables at least an order of magnitude faster than these previous techniques.
Furthermore, the data shows that row displacement compression is now a practical technique.
Though compression may still take too long for an interactive environment, it can be postponed,
as outlined in the next section.

4.5 Applicability to interactive programming environments

In an ideal interactive programming environment any change to a program is reflected without
noticeable delay. Subsecond response time is required to optimize programmer productivity. As
discussed above, both selector coloring and row displacement compression are not fast enough
to hide global refitting of dispatch tables from the user.

Selector-based tables improve on class-based tables, since a global reorganization is only neces-
sary when a new class is defined, because this adds a column to the two-dimensional table and
thus affects all rows. The definition of a new message just adds a row. Presuming that the
compressed array has space for it, this does not affect the other rows. For class-based tables, the
situation is similar but reversed: defining a new message can affect all rows and cause reorga-
nization. Since new messages are defined more often than new classes, selector-based row
displacement is better tuned to a development environment.

Still, when it occurs, global reorganization can be painful. As outlined in [39], global refitting
can be postponed until there is time and opportunity, by having a second-stage table that is
searched when the main table would deliver a “message not understood” error. For selector-
based tables, this second table holds the newly defined classes. Message sends to instances of
new classes are slower than normal, until the classes are incorporated in the main table.

Thus selector-based row displacement tables can be employed in an interactive programming
environment, if the table fitting costs are postponed by using a second-stage table, and at the
cost of slower dispatch for recently defined classes.

4.6 Summary

Selector-based row displacement makes table-based message dispatching practical for dynam-
ically-typed languages, due to the following two properties:

• Compact dispatch tables. For large single-inheritance class libraries, row displacement
tables are less than 0.5% larger than virtual function tables. If multiple inheritance is used
extensively, row displacement outperforms virtual function tables by a factor of two on the
tested samples.
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• Fast dispatch table construction. On a 1995 midrange workstation, compression takes less
than 2.5 seconds for most of the large class libraries measured. This performance makes the
technique practical even for interactive programming environments, especially if a second-
stage dispatch table is used to postpone global reorganization.

Thus, row displacement dispatch tables provide the dispatch efficiency of virtual function
tables, with comparable memory cost and low compile time overhead, for dynamically-typed
object-oriented programming languages.

For multiple inheritance languages, row displacement performs better than virtual function
tables by more than a factor two (in remaining overhead)
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5 Analysis of dispatch sequences on modern
processor architectures

“Fallacy: increasing the depth of pipelining
always increases performance.”

Hennessy and Patterson [65]

Dispatch cost is intimately coupled with processor implementation. The same dispatch
sequence may have different cost on different processor implementations, even if all of them
implement the same architecture (e.g., the SPARC instruction set). In particular, processor pipe-
lining and superscalar execution make it impossible to use the number of instructions in a code
sequence as an accurate performance indicator. This section characterizes the run-time perfor-
mance of dispatch mechanisms on modern pipelined processors by determining the perfor-
mance impact of branch latency and superscalar instruction issue. We do this by analyzing call
code sequences, optimally scheduled for the given instruction issue. In addition to providing
specific numbers for three example architectures, our analysis allows bounds on dispatch
performance to be computed for a wide range of possible (future) processors. With the rapid
change in processor design, it is desirable to characterize performance in a way that makes the
dependence on certain processor characteristics explicit, so that performance on a new
processor can be estimated accurately as long as the processor’s characteristics are known.

5.1 Parameters influencing performance

To evaluate the performance of the dispatch mechanisms, we implemented the dispatch instruc-
tion sequence of each technique on a simple RISC-like architecture.1 Then, we calculated the
cost of the dispatch sequences for three hypothetical processor implementations. P92 represents
a scalar implementation as it was typical of processor designs in 1992. P95 is a superscalar
implementation that can execute up to two integer instructions concurrently, representative of
current state-of-the art processor designs. Finally, P97 is an estimate of a 1997 superscalar
processor with four-instruction issue width and a deeper pipeline. Table 7 lists the detailed
processor characteristics relevant to the study.

In essence, these processors are abstractions of current commercial processors that have been
reduced to their most important performance features, namely

• Superscalar architecture. The processor can execute several instructions in parallel as long
as they are independent. Since access paths to the cache are expensive, all but P97 can
execute at most one load or store per cycle.

1 Assuming a RISC architecture simplifies the discussion, but our results are not restricted to RISC architectures since pipelined
CISC machines have similar performance characteristics. For example, the Intel Pentium processor closely resembles P95.
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• Load latency. Because of pipelining, the result of a load started in cyclei is not available
until cyclei + L (i.e., the processor will stall if the result is used before that time).

• Branch penalty. The processor predicts the outcome of a conditional branch; if the
prediction is correct, the branch incurs no additional cost. However, if the prediction is
incorrect, the processor will stall forB cycles while fetching and decoding the instructions
following the branch [65]. We assume that indirect calls or jumps cannot be predicted and
always incur the branch penalty.1

Virtually all processors announced since 1993 exhibit all three characteristics. We also assumed
out-of-order execution for the superscalar machines (P95 and P97). To determine the number of
cycles per dispatch, we hand-scheduled the dispatch instruction sequences for optimal perfor-
mance on each processor. In most cases, a single instruction sequence is optimal for all three
processors.

a To simplify the analysis, we assumed L > 1; to the best of our knowledge, this
assumption holds for all RISC processors introduced since 1990.

b No penalty if the branch’s delay slot can be filled. (To improve readability, the
instruction sequences in Appendix A are written without delay slots.) On P95/97,
delay slots cannot hide branch latency due to multi-cycle branch penalties and
superscalar instruction issue, and thus have no performance benefit.

1 But see section 5.5.

P92 P95 P97

max. integer instructions/ cycle 1 2 4

max. loads or stores / cycle 1 1 2

max. control transfers (branch, call) / cycle 1 1 1

load latency (L)a 2 2 2

branch prediction no yes yes

branch miss penalty (B) 1b 3 6

examples of equivalent commercial CPUs[103][31] [96][63] N/A

Table 7. Processor characteristics

Variable Typical
value Comments

hLC 98% lookup cache hit ratio ([30] lists 93% for a very small cache size)

missLC 250a LC miss cost (find method in class dictionaries); conservative estimate
based on data in [127]

hIC 95% inline caching hit ratio; from [127] and [68]

missIC 80a+L+LC IC miss cost; from [68]

m 66% fraction of calls from monomorphic call sites (PIC) [68][14]

k 3.54 dynamic number of type tests per PIC stub (from SELF [71])

p 10% average branch misprediction rate (estimate from [65])

Table 8. Additional parameters influencing performance
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The performance of some dispatch techniques depends on additional parameters (listed in
Table 8). In order to provide some concrete performance numbers in addition to the formulas,
we chose typical values for these parameters (most of them based on previously published
performance studies). However, it should be emphasized that these values merely represent one
particular data point. Different systems, applications, or languages may well exhibit different
parameter values. Thus, thenumbers below are specific to an example configuration, but the
formulas in Tables 9 to 11 are general.

5.2 Dispatch cost calculation

Appendix A lists all assembly call sequences analyzed in this study, with their delays for opti-
mally scheduled code. Here we demonstrate the methodology on the most popular table-based
technique, VTBL.

5.2.1 VTBL call code scheduling

Figure 26 illustrates the cycle cost calculation forVTBL-MI (which happens to be the same as

VTBL). Data dependencies are indicated with arrows, control dependencies with dashed arrows.
Instructions handling multiple inheritance are enclosed by dashed circles. The figure shows the
order in which instructions are issued into the processor pipeline.1 An instruction with a depen-
dency on a load instruction executing in cyclei cannot execute before cyclei + L  (whereL is the
load latency). For example, in P92 instruction 2 cannot execute before cycleL because it
depends on instruction 1 (Figure 26). Similarly, instruction 5 can execute atL + L orL + 2 (one
cycle after the previous instruction), whichever is later. Since we assumeL > 1, we retain2L.
The schedule for P92 also shows that instruction 3 (which is part of the multiple inheritance
implementation) isfree: even if it was eliminated, instruction 5 could still not execute before2L
since it has to wait for the result of instruction 2. Similarly, instruction 4 is free because it

a Cycles on P92; 20% less on P95 and 33% less on P97.

1 More precisely, the cycle in which the instruction enters the EX stage (this stage calculates the result in arithmetic operations or
the effective address in memory operations and branches). For details on pipeline organization, we refer the reader to[65].

M 1% fraction of calls from highly polymorphic call sites (> 10 receiver
types); conservative estimate (in SELF, M < 0.1% [71])

missPIC 150a+L+LC PIC miss cost; based on missIC (overhead for updating the PIC)

s 99.93% percentage of single (non-overloaded) entries in CT [128]

a 2.25 number of tests per overloaded entry in CT

Variable Typical
value Comments

Table 8. Additional parameters influencing performance
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executes in the delay slot of the call (instruction 5).1 As a result, VTBL incurs no overhead for
multiple inheritance: both versions of the code execute in2L + 2 cycles (see Table 9).

P95 (middle part of Figure 26) can execute two instructions per cycle (but only one of them can
be a memory instruction, see Table 7). Unfortunately, this capability doesn’t benefit VTBL
much since its schedule is dominated by load latencies and the branch latencyB. Since VTBL
uses an indirect call, the processor does not know its target address until after the branch
executes (in cycle2L). At that point, it starts fetching new instructions, but it takesB cycles until
the first new instruction reaches the EX (execute) stage of the pipeline [65], resulting in a total
execution time of2L+B+1. Finally, P97 can execute up to 4 instructions per cycle, but again
this capability is largely unused, except that instructions 2 and 3 (two loads) can execute in
parallel. However, the final cycle count is unaffected by this change.

5.2.2 Other techniques

Table A-2 to 8 in Appendix A list call code sequences in assembly for all dispatch techniques,
and corresponding optimal code schedules on P92 and P97. We used these schedules to derive
the formulas in Tables 9 to 11: we express dispatch cost as a function of processor parameters
(L and B) and algorithmic parameters such as miss ratios, etc. Table 12 contains the raw
dispatch times in cycles.

1 Recall that P92 machines had a branch latency B = 1, which can be eliminated using explicit branch delay slots; see[65] for
details. Since we use a fixed branch penalty for P92, B does not appear as a parameter in Table 4.

1: load [object + #tableOffset], table
2: load [table + #selectorOffset], method
3: load [table + #deltaOffset], delta
4: add object, delta, object
5: call method
6: <first instruction of target>
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Figure 27a shows the execution time (in processor cycles) of all dispatch implementations on
the three processor models, assuming static typing and single inheritance. Not surprisingly, all
techniques improve significantly upon lookup caching (LC) since LC has to compute a hash
function during dispatch. The performance of the other dispatch mechanisms is fairly similar,
especially on P95 which models current hardware. VTBL and SC are identical for all proces-
sors; RD and VTBL are very close for all but the P92 processor. Among these techniques, no
clear winner emerges since their relative ranking depends on the processor implementation. For
example, on P92 VTBL performs better than IC, whereas on P97 IC is better. (Section 5.4 will

static typing dynamic typing

LC hLC*(9+max(7,2L))+(1-hLC)*missLC

VTBL 2+2L N/A

VTBL-MI 2+2L N/A

SC 2+2L 4+2L

RD 3+L + max(L, 3) 7+L+max(3,L)

CT s*(2+3L)+(1-s) *(3+3L+7a) s*(8+3L)+(1-s) *(3+3L+7a)

IC hIC * (2+max(3,L)) + (1-hIC) * missIC
PIC m * (2+max(3,L)) + (1-m) * (2+L+2k) + M * missPIC

Table 9. P92

static typing dynamic typing

LC hLC * (7+2L+B) +(1-hLC) * missLC

VTBL 1+2L+B N/A

VTBL-MI 1+2L+B N/A

SC 1+2L+B 3+2L+B

RD 1+2L+B 3+2L+B

CT s*(1+3L+B)+(1-s)* (2+3L+B+a(4 +pB)) s*(5+3L+B)+(1-s)* (2+3L+B+a(4 +pB))

IC hIC * (1+L) + (1-hIC) * missIC
PIC m * (1+L)+(1-m)*(2+L+k(1 +pB)) + M * missPIC

Table 10. P95

static typing dynamic typing

LC hLC * (6+2L+B) +(1-hLC) * missLC

VTBL 1+2L+B N/A

VTBL-MI 1+2L+B N/A

SC 1+2L+B 2+2L+B

RD 1+2L+B 3+2L+B

CT s*(1+3L+B)+(1-s)* (2+3L+B+a(3 +pB)) s*(4+3L+B)+(1-s)* (2+3L+B+a(3 +pB))

IC hIC * (1+L) + (1-hIC) * missIC
PIC m * (1+L) + (1-m) * (1+L+k(1 +pB)) + M * missPIC

Table 11. P97
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examine processor influence in detail.) For dynamic typing, the picture is qualitatively the same
(Figure 27b).

5.3 Cost of dynamic typing and multiple inheritance

A closer look at Tables 9 to 11 and Figure 27 shows that supporting dynamic typing is surpris-
ingly cheap for all dispatch methods, especially on superscalar processors like P95 and P97. In
several cases (LC, IC, PIC), dynamic typing incurs no overhead at all. For the other techniques,
the overhead is still low since the additional instructions can be scheduled to fit in instruction
issue slots that would otherwise go unused. Typical overheads are two cycles per dispatch on
P95 and one or two cycles on P97. Thus, on superscalar processors dynamic typing does not
significantly increase dispatch cost.

The cycle cost of supporting hard-coded offsets for multiple inheritance in VTBL-MI is zero.
However, recall that we have simplified the discussion of VTBL-MI for C++ by ignoring virtual
base classes. Using virtual base classes can significantly increase dispatch cost in VTBL-MI.
For all other techniques, the cost of multiple inheritance appears not as overhead of message
dispatch, but when referencing an instance variable (see section 3.1.2).

Table 12 shows timings as calculated according to the formulas. Since the performance varia-
tions between the two scenarios are so small and do not qualitatively change the situation, we
will only discuss the case using static typing and single inheritance. Of course, dynamic typing
and multiple inheritance can affect other aspects of dispatch implementation, as discussed in
section 3.4 and 3.5.

Figure 27. Performance of dispatch mechanisms (single inheritance)
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5.4 Influence of processor implementation

According to Figure 27, the cost (in cycles) of many dispatch techniques drops when moving
from a scalar processor like P92 to a superscalar implementation like P95. Apparently, all tech-
niques can take advantage of the instruction-level parallelism present in P95. However, when
moving to the more aggressively superscalar P97 processor, dispatch costrises for many
dispatch techniques instead of falling further as one would expect.1

Figure 28a shows that the culprit is the penalty for mispredicted branches. It rises from 3 cycles
in P95 to 6 cycles in P97 because the latter processor has a deeper pipeline in order to achieve
a higher clock rate and thus better overall performance [65]. Except for the inline caching vari-
ants (IC and PIC), all techniques have at least one unpredictable branch even in the best case,
and thus their cost increases with the cost of a branch misprediction. IC’s cost increases only
slowly because it has no unpredicted branch in the hit case, so that it suffers from the increased
branch miss penalty only in the case of an inline cache miss. PIC’s cost also increases slowly
since monomorphic calls are handled just as in IC, and even for polymorphic sends its branches
remain relatively predictable.

Based on this data, it appears that IC and PIC are attractive dispatch techniques, especially since
they handle dynamically-typed languages as efficiently as statically-typed languages. However,
one must be careful when generalizing this data since the performance of IC and PIC depends
on several parameters. In particular, the dispatch cost of IC and PIC is variable—unlike most of
the table-based techniques such as VTBL, the number of instructions per dispatch is not
constant. Instead, dispatch cost is a function of program behavior: different programs will see
different dispatch costs if their polymorphism characteristics (and thus their inline cache hit
ratios) vary. The data presented so far assume a hit ratio of 95% which is typical for Smalltalk
programs [127] but may not represent other systems. For example, Calder et al. [14] report

1 Even though the number of cycles per dispatch increases, dispatch time will decrease since P97 will operate at a higher clock
frequency. Thus, while the dispatch cost rises relative to the cost of other operations, its absolute performance still increases.

P92 P95 P97
static dyn. static dyn. static dyn.

LC 20.7 17.8 21.1

VTBL 6.0 N/A 8.0 N/A 13.0 N/A

VTBL-MI 6.0 N/A 8.0 N/A 13.0 N/A

SC 6.0 8.0 8.0 10.0 13.0 14.0

RD 8.0 12.0 8.0 10.0 13.0 15.0

CT 8.0 14.0 10.0 14.0 16.0 19.0

IC 9.8 7.1 7.8

PIC 8.8 6.3 7.2

Table 12. Dispatch timings (in cycles)
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inline cache hit ratios for C++ programs that vary between 74% and 100%, with an average of
91%. Thus, the performance characteristics of IC and PIC deserve a closer investigation.

Figure 28b compares VTBL with PIC and IC for several inline cache miss ratios. As expected,
IC’s cost increases with decreasing hit ratio. If the hit ratio is 90% or better, IC is competitive
with static techniques such as VTBL as long as the processor’s branch miss penalty is high
(recall that P97’s branch miss penalty is 6 cycles). In other words, if a 91% hit ratio is typical
of C++ programs, IC would outperform VTBL for C++ programs running on a P97 processor.

PIC outperforms VTBL independently of the processor’s branch penalty, and it outperforms IC
with less than a 95% hit ratio. The performance advantage can be significant: for P97’s branch
miss penalty of 6 cycles, PIC is twice as fast as VTBL. Again, this result is dependent on addi-
tional parameters that may vary from system to system. In particular, PIC’s performance
depends on the percentage of polymorphic call sites, the average number of receiver types
tested per dispatch, and the frequency and cost of “megamorphic” calls that have too many
receiver types to be handled efficiently by PICs. On the other hand, PIC needs only a single
cycle per additional type test on P97, so that its efficiency is relatively independent of these
parameters. For example, on P97 PIC is still competitive with VTBL if every send requires 5
type tests on average. As mentioned in section 3.2.3, the average degree of polymorphism is
usually much smaller. Therefore, PIC appears to be an attractive choice on future processors
like P97 that have a high branch misprediction cost.

Nevertheless, the worst-case performance of PIC is higher than VTBL, and PIC doesn’t handle
highly polymorphic code well, so some system designers may prefer to use a method with lower
worst-case dispatch cost. One way to achieve low average-case dispatch cost with low worst-
case cost is to combine IC with a static technique like VTBL, SC, or RD. In such a system, IC
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would handle monomorphic call sites, and the static technique would handle polymorphic sites.
(Another variant would add PIC for moderately polymorphic call sites.) The combination’s effi-
ciency depends on the percentage of call sites that are handled well by IC. Obviously, call sites
with only one target fall in this category but so do call sites whose target changes very infre-
quently (so that the rare IC miss doesn’t have a significant performance impact). The scheme’s
dispatch cost is a linear combination of the two techniques’ cost. For example, Calder’s data
[14] suggest that at least 66% of all virtual calls in C++ could be handled without misses by IC,
reducing dispatch cost on P97 from 13 cycles for a pure VTBL implementation to 13* 0.34 + 4
* 0.66 = 5.6 cycles for VTBL+IC. In reality, the performance gain might be even higher since
calls from call sites incurring very few misses could also be handled by IC. Even though this
data is by no means conclusive, the potential gain in dispatch performance suggests that imple-
mentors should include such hybrid dispatch schemes in their list of dispatch mechanisms to
evaluate.

5.5 Limitations

The above analysis leaves a number of issues unexplored. Three issues are particularly impor-
tant: cache behavior, application code surrounding the dispatch sequence, and hardware predic-
tion of indirect branches.

We do not consider memory hierarchy effects (cache misses); all results assume that memory
references will always hit the first level memory cache. If all dispatch techniques have similar
locality of reference, this assumption should not distort the results. However, without thorough
benchmarking it remains unsubstantiated.

Application instructions surrounding the dispatch sequence (e.g., instructions for parameter
passing) can be scheduled to fit in the “holes” of the dispatch code, lowering the overall execu-
tion time, and thus effectively lowering dispatch overhead. Therefore, measuring dispatch cost
in isolation (as done in this study) may overestimate the true cost of dispatch techniques. Unfor-
tunately, the effect of co-scheduling application code with dispatch code depends on the nature
of the application code and thus is hard to determine. Furthermore, the average basic block
length (and thus the number of instructions readily available to be scheduled with the call) is
quite small, usually between five and six [65]. On superscalar processors (especially on P97)
most dispatch sequences have plenty of “holes” to accommodate that number of instructions.
Thus, we assume that most techniques would benefit from co-scheduled application code to
roughly the same extent. In Section 6 we will study two variants of VTBL in order to determine
the effect of co-scheduling.

A branch target buffer (BTB) [65] allows hardware to predict indirect calls by storing the target
address of the previous call, similar to inline caching. The study in this section assumes that
processors do not use BTBs. Therefore, the formula’s for table-based techniques calculate a
bound on the cost of message dispatch (ignoring memory effects). This worst case cost demon-
strates the importance of accurate indirect branch prediction in hardware. BTBs are relatively
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expensive (since they have to store the full target address, not just a few prediction bits).
However, future processors are likely to incorporate BTBs since they will have enough transis-
tors available to accommodate a reasonably-sized BTB, and because indirect calls can occur
frequently in procedural programs as well1 (see Section 7). Some processors (most notably,
Intel’s Pentium processor and its successor P6) have small BTBs today. Interestingly, BTBs
behave similar to inline caches—they work well for monomorphic call sites but badly for highly
polymorphic call sites. For example, the performance of VTBL on such a processor would be
similar to the VTBL+IC scheme discussed above. The impact of BTBs on dispatch performance
can be estimated by reducing the value of branch penalty B in the formulas of Tables 10 and 11,
but the extent of the reduction depends on the BTB miss ratio (i.e., inline cache miss ratio) of
the application. We also explore this effect in Section 6.

5.6 Summary

We have evaluated the dispatch cost of a range of dispatch mechanisms, taking into account the
performance characteristics of modern pipelined superscalar microprocessors. On such proces-
sors, objectively evaluating performance is difficult since the cost of each instruction depends
on surrounding instructions and the cost of branches depends on dynamic branch prediction. In
particular, some instructions may be “free” because they can be executed in parallel with other
instructions, and unpredictable conditional branches as well as indirect branches are expensive
(and likely to become more expensive in the future). On superscalar architectures, counting
instructions to estimate performance is highly misleading. We have studied dispatch perfor-
mance on three processor models designed to represent the past (1992), present (1995), and
future (1997) state of the art in processor implementation.

We have analyzed the run-time performance of dispatch mechanisms as a function of processor
characteristics such as branch latency and superscalar instruction issue, and as a function of
system parameters such as the average degree of polymorphism in application code. The
resulting formulas allow dispatch performance to be computed for a wide range of possible
(future) processors and systems. In addition, we also present formulas for computing the space
cost of the various dispatch techniques. Our study has produced several results:

• The relative performance of dispatch mechanisms varies with processor implementation.
Whereas some mechanisms become relatively more expensive (in terms of cycles per
dispatch) on more aggressively superscalar processors, others become less expensive. No
single dispatch mechanism performs best on all three processor models.

• Mechanisms employing indirect branches (i.e., all table-based techniques) may not perform
well on current and future hardware since indirect branches incur multi-cycle pipeline
stalls, unless some form of indirect branch prediction is present. Inline caching variants

1 Procedure returns occur frequently even in non-polymorphic programs, but these can be handled more efficiently by a return
address prediction buffer[63].
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pipeline very well and do not incur such stalls. On deeply pipelined superscalar processors
like the P97, inline caching techniques may substantially outperform even the most efficient
table-based techniques.

• Hybrid techniques combining inline caching with a table-based method may offer both
excellent average dispatch cost as well as a low worst-case dispatch cost.

• On superscalar processors, the additional cost of supporting dynamic typing is small (often
zero) because the few additional instructions usually fit into otherwise unused instruction
issue slots.

Even though selecting the best dispatch mechanism for a particular system is still difficult since
it involves many factors, the data presented here should allow dispatch cost bounds to be esti-
mated for a wide range of systems. Therefore, we hope that this study will be helpful to system
implementors who need to choose the dispatch mechanism best suited to their needs.
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6 Measurement of virtual function call overhead on
modern processors

“This virtual call mechanism can be made essen-
tially as efficient as the ‘normal function call’
mechanism.”

Bjarne Stroustrup [119]

In this section we measure the direct cost of virtual function table lookup for a number of real-
istic C++ programs running on superscalar processors employing co-scheduling and simple
indirect branch prediction, and identify the processor characteristics that most affect this cost.
In Section 5.2 we saw that, when analyzed in isolation, the cost of dispatch sequences of table-
based techniques are similar to virtual function tables. Therefore VTBL serves as a representa-
tive technique for table-based dispatch in this quantitative analysis.

6.1 Virtual function tables and the thunk variant

Figure 29 shows the five-instruction code sequence that a C++ compiler typically generates for

a virtual function call. The first instruction loads the receiver object’s VFT pointer into a
register, and the subsequent two instructions index into the VFT to load the target address and
the receiver pointer adjustment (delta) for multiple inheritance. The fourth instruction adjusts
the receiver address to allow accurate instance variable access in multiple inherited classes.
Finally, the fifth instruction invokes the target function with an indirect function call.

Instructions 2 and 4 (initalics) in Figure 29 are only necessary when the class of the receiver
has been constructed using multiple inheritance. Otherwise, the offset value loaded into the
registerdelta_reg in instruction 2 is zero, and the add in instruction 4 has no effect. It would be
convenient if we could avoid executing these useless operations, knowing that the receiver’s
class employs only single inheritance. Unfortunately, at compile time, the exact class of the
receiver is unknown. However, the receiver’s virtual function table, which stores the offset
values, “knows” the exact class at run time. The trick is to perform the receiver address adjust-
ment only after the virtual function table entry is loaded. In the GNU GCC thunk implementa-
tion, the virtual function table entry contains the address of a parameterless procedure (a thunk),
that adjusts the receiver address and then calls the correct target function (see Figure 30). In the

Figure 29. Instruction sequence for VFT dispatch

1: load [object_reg + #VFToffset], table_reg
2: load [table_reg + #deltaOffset], delta_reg
3: load [table_reg + #selectorOffset], method_reg
4: add object_reg, delta_reg, object_reg
5: call method_reg
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single inheritance case, the virtual function table entry points directly to the target function.
Instead of always loading the offset value and adding it to thethis pointer (the address of the
receiver object), the operation only happens when the offset is known to be non-zero. Since
multiple inheritance occurs much less frequently than single inheritance, this strategy will save
two instructions for most virtual function calls1. Therefore, barring instruction scheduling
effects, thunks should be at least as efficient as standard virtual function tables.

6.2 Superscalar processors

How expensive is the virtual function call instruction sequence? A few years ago, the answer
would have been simple: most instructions execute in one cycle (ignoring cache misses for the
moment), and so the standard sequence would take 5 cycles. However, on current hardware the
situation is quite different because processors try to exploit instruction-level parallelism with
superscalar execution. Figure 31 shows a simplified view of a superscalar CPU. Instructions
are fetched from the cache and placed in an instruction buffer. During every cycle, the issue unit
selects one or more instructions and dispatches them to the appropriate functional unit (e.g., the
integer unit).

The processor may contain multiple functional units of the same type. For example, the
processor in Figure 31 has three integer units and thus can execute up to three integer instruc-
tions concurrently. The number of instructions that can be dispatched in one cycle is called the
issue width. If the processor in Figure 31 had an issue width of four (often called “four-way
superscalar”), it could issue, for example, two integer instructions, one load, and a floating-
point instruction in the same cycle.

1 In the GNU GCC implementation for SPARC executables, one of the offset instructions is usually replaced by a register move.
The latter is necessary to pass thethis pointer in register %o0 to the callee.

add #offset to object_reg

jump #method

target

Figure 30. Thunk virtual function tables

target

thunk
vf-table

vf-table

Multiple inheritance case (above)
Single inheritance case (below)
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Of course, there is a catch: two instructions can only execute concurrently if they are indepen-
dent. There are two kinds of dependencies: data dependencies and control dependencies.Data
dependencies arise when the operands of an instruction are the results of previous instructions;
in this case, the instruction cannot begin to execute before all of its inputs become available. For
example, instructions 2 and 3 of the VFT dispatch sequence can execute concurrently since they
are independent, but neither of them can execute concurrently with instruction 1 since they both
use the VFT pointer loaded in instruction 1.

The second form of dependencies,control dependencies, result from the fact that some instruc-
tions influence the flow of control. For example, the instructions following a conditional branch
are not known until the branch executes and determines the next instruction to execute (i.e.,
whether the branch is taken or not). Therefore, even if an instruction after the branch has no data
dependencies, it cannot be executed concurrently with (or before) the branch itself.

Both forms of dependencies may carry an execution time penalty because of pipelining.
Whereas the result of arithmetic instructions usually is available in the next cycle (for a latency
of one cycle), the result of a load issued in cyclei is not available until cyclei+2 or i+3  (for a
load latency L of 2 or 3 cycles) on most current processors even in the case of a first-level cache
hit. Thus, instructions depending on the loaded value cannot begin execution until L cycles after
the load. Similarly, processors impose abranch penalty of B cycles after conditional or indirect
branches: when a branch executes in cyclei (so that the branch target address becomes known),
it takes B cycles to refill the processor pipeline until the first instruction after the branch reaches
the execute stage of the pipeline and produces a result.

To summarize, on ideal hardware (with infinite caches and an infinite issue width), the data and
control dependencies between instructions impose a lower limit on execution time1. If N
instructions were all independent, they could execute in a single cycle, but if each of them
depended on the previous one they would take at least N cycles to execute. Thus, the number of

1 A new technique,value prediction [93], which is currently still in a research stage, can remove this limit. A correct prediction
allows the instruction that uses a value to execute before the instruction that produces the value, thus bypassing data-dependencies.

load/store unit

instruction buffer

issue unit

branch unitinteger unit FPU

Figure 31. Simplified organization of a superscalar CPU
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instructions becomes only an approximate predictor of execution time on superscalar proces-
sors. Even though actual processors do not have infinite resources, this effect still is significant
as we shall see later in this paper.

In a previous study Section 5.2 we approximated the dispatch cost of several techniques by
analyzing the call sequence and describing their cost as a function of load latency and branch
penalty, taking into account superscalar instruction issue. However, this approximation (2L + B
+ 1 for VFT dispatch) is only an upper bound on the true cost, and the actual cost might be
lower. The next few sections explain why.

6.2.1 BTB branch prediction

Since branches are very frequent (typically, every fifth or sixth instruction is a branch [65]) and
branch penalties can be quite high (ranging up to 15 cycles on the Intel Pentium Pro processor
[101]), superscalar processors try to reduce the average cost of a branch with branch prediction.
Branch prediction hardware guesses the outcome of a branch based on previous executions and
immediately starts fetching instructions from the predicted path. If the prediction is correct, the
next instruction can execute immediately, reducing the branch latency to one cycle; if predicted
incorrectly, the processor incurs the full branch penalty B. Predictions are based on previous
outcomes of branches. Typically, the branch’s address is used as an index into a prediction table.
For conditional branches, the result is a single bit indicating whether the branch is predicted
taken or not taken, and typical prediction hit ratios exceed 90% [65].

For indirect branches, the prediction mechanism must provide a full target address, not just a
taken/not taken bit. Abranch target buffer (BTB) accomplishes this by storing the predicted
address in a cache indexed by the branch address (very similar to a data cache). When the
processor fetches an indirect branch, it accesses the BTB using the branch instruction’s address.
If the branch is found, the BTB returns its last target address and the CPU starts fetching instruc-
tions from that address before the branch is even executed. If the prediction is wrong, or if the
branch wasn’t found, the processor stalls for B cycles and updates the BTB by storing the
branch and its new target address.

BTBs affect the cost of the VFT dispatch sequence: if the virtual call was executed previously,
is still cached in the BTB, and invokes the same function as in the previous execution, the
branch penalty is avoided, reducing the sequence’s cost to 2L + 1. We explore more sophisti-
cated and accurate branch prediction schemes in Section 7 and beyond.

6.2.2 Advanced superscalar execution

To improve performance, modern processors employ two additional techniques that can
decrease the performance impact of dependencies.

First, instructions may be executedout of order: an instructionI that is waiting for its inputs to
become available does not stall all instructions after it. Instead, those instructions may execute
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before Iif their inputs are available. Additional hardware ensures that the program semantics are
preserved; for example, if instructions I1 and I2 write the same register, I1 will not overwrite the
result of I2 even if I2 executes first. Out-of-order execution increases throughput by allowing
other instructions to proceed while some instructions are stalled.

Second,speculative execution takes this idea one step further by allowing out-of-order execu-
tion across conditional or indirect branches. That is, the processor may speculatively execute
instructions before it is known whether they actually should be executed. If speculation fails
because a branch is mispredicted, the effects of the speculatively executed instructions have to
be undone, again requiring extra hardware. Because branches are so frequent, speculating
across them can significantly improve performance if branches can be predicted accurately.

Of course, the processor cannot look arbitrarily far ahead in the instruction stream to find
instructions that are ready to execute. For one, the probability of fetching from the correct
execution path decreases exponentially with each predicted branch. Also, the issue units must
select the next group of instructions to be issued from the buffer within one cycle, thus limiting
the size of that buffer. The most aggressive designs available today select their instructions from
a buffer of about 30-40 instructions [100][101], so that instructions have to be reasonably
“near” the current execution point in order to be issued out-of-order.

6.2.3 Co-scheduling of application code

With speculative, out-of-order execution the cost of the VFT dispatch sequence is not only
highly variable (depending on the success of branch prediction), but it cannot be computed in
isolation from its surrounding code. For example, if many other instructions precede the
dispatch sequence, they could execute during the cycles where the processor would otherwise
lay idle waiting for the loads to complete. Or vice versa, the dispatch instructions could fit into
empty issue slots of the rest of the basic block. This co-scheduling of the application and
dispatch code may reduce the overall cost significantly, possibly to the point where completely
removing the dispatch code would not speed up the program at all (since all dispatch instruc-
tions fit into otherwise empty issue slots). Thus, at least in theory, a dispatch implementation
may reach zero overhead (i.e., add no cycles to the execution time) even though it does intro-
duce extra instructions.

6.2.4 Summary

While all of the processor features discussed above improve performance on average, they also
increase the variability of an instruction’s cost since it depends not only on the instruction itself
(or the instruction and its inputs), but also on the surrounding code. Most processors sold today
(e.g., the Intel Pentium and Pentium Pro processors, as well as virtually all RISC processors
introduced since 1995) incorporate several or all of these features. As a result, it is hard to
predict how expensive the average C++ virtual function call is on a current-generation PC or
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workstation. The experiments described in the rest of this paper aim to shed some light on this
question.

6.3 Method

It is hard to measure virtual function call cost directly since we cannot usually run program Pideal

(the program without any dispatch code). Although it is fairly easy to count the number of
instructions executed on behalf of dynamic dispatch, this measure does not accurately reflect
the cost in processor cycles. On modern pipelined processors with multiple instruction issue the
cost of an instruction may vary greatly. For example, on a 4-way superscalar processor with a
branch penalty of 6, an instruction can take anywhere between 0.25 and 7 cycles1.

Therefore we measure the direct cost of virtual function table lookup bysimulating the execu-
tion of P and Pideal. Using an executable editor and a superscalar processor simulator, we
compute the execution times of both programs, thus arriving at the direct cost of dispatch. In
addition to allowing dispatch cost to be measured at all, simulation also facilitates exploring a
broad range of possible processor implementations, thus making it possible to anticipate perfor-
mance trends on future processors.

6.3.1 Simulation scheme

Figure 32 shows an overview of our experimental approach: first, the C++ program compiled by
an optimizing compiler (we used GNU gcc 2.6.3 and 2.7.2 with options -O2 -msupersparc).
Then, an application that uses the EEL executable editing library [88] detects the dispatch
instructions and produces a file with their addresses. Using this file as well as a processor
description, the superscalar processor simulator then runs the benchmark.

The simulator executes SPARC programs using theshade tracing tool [29]. Shade always
executes all instructions of the program so that programs produce the same results as if they
were executed on the native machine. Each instruction executed is then passed to a superscalar
processor simulator that keeps track of the time that would be consumed by this instruction on
the simulated processor. Optionally, the simulation of dispatch instructions can be suppressed
(i.e., they are executed but not passed to the timing simulator), thus simulating the execution of
Pideal , the program using the perfect, zero-cost dynamic dispatch scheme.

The cycle-level simulator schedules instructions from a 32-entry instruction window. As soon
as an instruction is eligible for execution (the instructions it depends on have been executed and
an appropriate functional unit is available), its latency is calculated, taking into account caching
an branch prediction effects. For this purpose we adapted the PowerSim simulator (for the
PowerPC ISA) used by Adam Talcott [120], to the SPARC architecture.

1 In the absence of cache misses.
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Although we currently use only benchmarks for which we have the source, this is not strictly
necessary. Provided that the vf-call marker program detects all virtual calls correctly, any
executable can be measured. The source language does not even have to be C++, as long as the
language under consideration uses VFT dispatch for its messages. Compared to a tool that
detects dispatches at the source code level, a tool based on binary inspection may be harder to
construct, but it offers a significant advantage even beyond its source, compiler, and language
independence. In particular, it is non-intrusive, i.e., does not alter the instruction sequence, and
is thus more accurate.

The vf-call marker program detects the virtual function call code sequence discussed in
section 3.3.2. This code sequence consists of the five instructions in Figure 29 and any inter-
vening register moves. They may appear in different orderings (but with the correct dependen-
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Figure 32. Overview of experimental setup
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cies), possibly spread out over different basic blocks. Since the code sequence is highly
characteristic, the marker program is very accurate, detecting virtual calls exactly for most
programs.1 For three benchmarks the marker is slightly imprecise, erring by 0.4% or less. Only
in ixx, 2.3% of the calls went undetected so that our measurements slightly underestimate the
direct dispatch cost for this benchmark.

6.3.2 Benchmarks

We tested a suite of two small and six large C++ applications totalling over 90,000 lines of code
(Table 13). In general, we tried to obtain large, realistic applications rather than small, artificial
benchmarks. Two of the benchmarks (deltablue andrichards) are much smaller than the others;
they are included for comparison with earlier studies (e.g., [72][62]).Richards is the only
synthetic benchmark in our suite (i.e., the program was never used to solve any real problem).
We did not yet test any programs for which only the executables were available.

For every program exceptporky2 we also tested an “all-virtual” version (indicated by “-av”
suffix) which was compiled from a source in which all member functions except operators and
destructors were declared virtual.  We chose to include these program versions in order to simu-
late programming styles that extensively use abstract base classes defining virtual functions
only (C++’s way of defining interfaces). For example, the Taligent CommonPoint frameworks
provide all functionality through virtual functions, and thus programs using CommonPoint (or
similar frameworks) are likely to exhibit much higher virtual function call frequencies. Lacking
real, large, freely available examples of this programming style, we created the “all virtual”
programs to provide some indication of the virtual function call overhead of such programs.

1 We cross-checked this by using VPROF, a source-level virtual function profiler for GCC[5].
2 Porky cannot be compiled as “all virtual” without a large effort of manual function renaming.

name description lines

deltablue incremental dataflow constraint solver 1,000

eqn type-setting program for mathematical equations 8,300

idl SunSoft’s IDL compiler (version 1.3) using the demonstration back end which
exercises the front end but produces no translated output.

13,900

ixx IDL parser generating C++ stubs, distributed as part of the Fresco library (which
is part of X11R6). Although it performs a function similar to IDL, the program
was developed independently and is structured differently.

11,600

lcom optimizing compiler for a hardware description language developed at the Uni-
versity of Guelph

14,100

porky back-end optimizer that is part of the Stanford SUIF compiler system 22,900

richards simple operating system simulator 500

troff GNU groff version 1.09, a batch-style text formatting program 19,200

Table 13. Benchmark programs
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These versions can also be used to approximate the behavior of programs written in languages
where (almost) every function is virtual, e.g., Java or Modula-3.

For each benchmark, Table 14 shows the number of executed instructions, the number of virtual
function calls, and the average number of instructions between calls. All numbers are dynamic,
i.e., reflect run-time execution counts unless otherwise mentioned. All programs were simulated
in their entire length as shown in Table 14. Simulation consumed a total of about one CPU-year
of SPARCstation-20 time.

6.3.3 Processors

Table 16 shows an overview of recently introduced processors. Since we could not possibly
simulate all of these processors and their subtle differences, we chose to model a hypothetical
SPARC-based processor that we dubbed P96 because it is meant to resemble the average
processor introduced today.

program version instructions virtual
calls

instructions per
virtual call

deltablue
original 40,427,339 615,100 65

all-virtual 79,082,867 5,145,581 15

eqn
original 97,852,301 100,207 976

all-virtual 108,213,587 1,267,344 85

idl
original 91,707,462 1,755,156 52

all-virtual 99,531,814 3,925,959 25

ixx
original 30,018,790 101,025 297

all-virtual 34,000,249 606,463 56

lcom
original 169,749,862 1,098,596 154

all-virtual 175,260,461 2,311,705 75

richards
original 8,119,196 65,790 123

all-virtual 15,506,753 1,146,217 13

troff
original 91,877,525 809,312 113

all-virtual 114,607,159 3,323,572 34

porky original 748,914,861 3,806,797 196

Table 14. Basic characteristics of benchmark programs (dynamic counts)
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For our experiments, we ran all benchmarks on P96 to obtain the base results for the dispatch
overhead. To examine the effects of the most important processor features, we then varied each
parameter while keeping all others constant. Finally, we also measured a few individual config-
urations that resemble existing processors (Table 16). P96-noBTB resembles the UltraSPARC
in that it lacks a BTB, i.e., does not predict indirect branches. P96-Pro resembles the Pentium
Pro in its branch configuration, in that it has a high branch penalty. Finally, P2000 is an ideal-
ized processor with essentially infinite hardware resources; we use it to illustrate the impact of
the branch penalty on a processor that has virtually no other limitations on instruction issue.

a BTB = branch target buffer size; BHT = branch history table size (branch
histories are used to predict the direction of conditional branches)

b In the Pentium, BTB and BHT are joined. Each entry in the table stores the
branch target and 16 2-bit counters, one for each possible 4-bit local history

c 16Kx2 means the cache is 16K bytes, and 2-way associative

Processor Ultra
SPARC

MIPS
R10K

DEC
Alpha
21164

Power
PC 604

Intel
Pentium

Pro

Shipping date 95 95 95 95 95

Size of BTB 0 0 0 64 512

Size of BHTa 2048 512 2048 512 8192b

Branch Penalty 4 4 5 1-3 11-15

Issue Width 4 5 4 4 3

Load Latency 2 2 2 2 3

Primary I-cachec 16Kx2 32Kx2 8Kx1 32Kx4 8K

Primary D-cache 16Kx1 32Kx2 8Kx1 32Kx4 8K

Out-of-order? Y Y Y Y Y

Speculative? Y Y Y Y Y

Table 15. Characteristics of recently introduced processors

Processor P96 P96-noBTB P96-Pro P2000/bp1 P2000/
bp10

Size of BTB 256 0 512 1024 1024

Size of BHT 1024 1024 0 1024 1024

Branch Penalty 4 4 15 1 10

Issue Width 4 4 4 32 32

Load Latency 2

Primary I-cache 32K, 2-way associative

Primary D-cache 32K, 2-way associative

Out-of-order? Y

Speculative? Y

Table 16. Characteristics of simulated processors
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It should be noted that none of these processors is intended to exactly model an existing
processor; for example, the Intel Pentium Pro’s instruction set and microarchitecture is very
different from P96-Pro, and so the latter should not be used to predict the Pentium Pro’s perfor-
mance on C++ programs. Instead, we use these processors to mark plausible points in the
design space, and their distance and relationship to illustrate particular effects or trends.

6.4 Results

This section first examine the cost of dynamic dispatch on the baseline architecture, P96, and
then examines the impact of individual architectural parameters (branch penalty/prediction,
load latency, and issue width).

6.4.1 Instructions and cycles

First, we will examine the cost of dynamic dispatch on the baseline architecture, P96. Recall
that we define the cost as the additional cycles spent relative to a “perfect” dispatch implemen-
tation that implements each dispatch with a direct call. Figure 33 and Figure 34 show the

results. On the standard benchmarks, the cost varies from 1.4% foreqn to 29% fordeltablue,
with a median overhead of 5.2%. For the all-virtual versions, the overhead increases to between
4.7% and 47% with a median overhead of 13%. The standard benchmarks spend a median 3.7%
of their instructions on dispatch, and the all-virtual versions a median of 13.7%. For the stan-
dard benchmarks the cycle cost is larger than the cost in the number of instructions executed; on

Figure 33. Direct cost of standard VFT dispatch (unmodified benchmarks)
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average, it is a median 1.7 times larger. This difference confirms that the VFT dispatch sequence
does not schedule well on a superscalar processor, compared to non-dispatch code. However,
this effect varies substantially between benchmarks. The largest difference is found ineqn (2.8
times) and deltablue (3.8 times). Since the dispatch sequence is always the same, this indicates
that the instructions surrounding a call can significantly affect the cost of virtual function
lookup, or that virtual calls are more predictable in some programs than in others. We will
explore these questions shortly.

6.4.2 Thunks

Figure 35 compares the cycle cost of standard and thunk implementations for the unmodified
benchmarks1. Thunks have a smaller cycle overhead than regular tables for all benchmarks,
using a median of 79% of the cycles of the regular implementation. Figure 36 shows the cycle
cost for the all-virtual benchmarks. Here, thunks have 72% of the regular overhead. The exact
amount of the gain varies greatly between benchmarks. For example, the thunk overhead forixx
anddeltablue is only 15% and 47% of the regular overhead, while fortroff, thunks use almost
as many cycles as standard tables (98%).

How can thunks, in some cases, improve dispatch performance by more than a factor of two?
One reason for the difference is the unnecessary receiver address adjustment that is avoided
with thunks (instructions 2 and 4 in Figure 29). In the thunk implementation, instructions that

1 Since GCC cannot compileidl, idl-av, andlcom-av with thunks, these benchmarks are missing from Figure 35 and Figure 36.
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depend on the receiver’s address do not have to wait for the virtual function call to complete, if
the target is predicted accurately. In contrast, in the standard implementation instructions 2 and
4 create a dependency chain from instruction 1 to any instruction that needs the receiver’s
address. Indeltablue, the added dependencies stretch the inner loop from 9 cycles (thunks) to
12 cycles (standard), where a direct called implementation would use 8 cycles (all times
exclude cache misses). Thus the overhead of thunks is only 25% of the overhead of standard
tables for a large part of the execution, so that the removal of only two instructions out of five
can avoid more than half the virtual function call overhead in particular cases. This effect is
particularly pronounced in all-virtual benchmarks that contain many calls to accessor functions
(i.e., functions that just return an instance variable).

Another part of the difference is due to memory hierarchy effects: with perfect caching1, thunk
overhead forixx anddeltablue rises to 48% and 54%.

6.4.3 Generalization to other processors

How specific are these measurements to our (hypothetical) P96 processor? Figure 37 compares
the relative dispatch overhead of standard tables on P96 with that of the other processors listed

1 By perfect caching we mean that there are no cache miss, not even for cold starts.

Figure 35. Cycle cost of standard and thunk variants (unmodified benchmarks)
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in Table 16. Clearly, the processor configuration affects performance: longer branch penalties
combined with less ambitious branch prediction (P96-Pro) and the absence of a BTB (P96-
noBTB) both impact dispatch performance negatively so that all programs spend a larger
percentage of their time in dispatch code. Even P2000 with its 32-instruction issue CPU shows
relative overheads that are a median 28% higher than in P96, due to its higher branch penalty
(10 instead of 4 cycles). Thus, we expect future processors to exhibit higher dispatch overheads
for most C++ programs

To explain these differences in more detail, the next few sections present the effects of several
processor characteristics on the direct cost of dynamic dispatch. In particular, we will investi-
gate the impact of the branch penalty, the size of the branch target buffer (BTB), and the issue
width. In each experiment, we vary the feature under investigation while keeping all other char-
acteristics constant. To illustrate the trends, we show cost in two ways, each of them relative to
P96. The first graph in each section compares absolute cost, i.e., the number of dispatch cycles
relative to P96. The second graph compares relative cost, i.e., the percentage of total execution
time (again relative to P96) spent in dispatch. The two measurements arenot absolutely corre-
lated: if the absolute overhead increases, the relative cost may decrease if the rest of the appli-
cation is slowed down even more than the dispatch code. Similarly, the absolute cost may

Figure 36. Cycle cost of standard and thunk variants (all-virtual benchmarks)
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decrease while the relative cost increases because the absolute cost of the rest of the application
decreases even more. .

6.4.4 Influence of branch penalty

Since one of the five instructions in the dispatch sequence is an indirect branch, the branch
misprediction penalty directly affects the cost of virtual function dispatch. Since each dispatch
contains a single indirect branch, we would expect the absolute overhead to increase propor-
tionally to the number of mispredicted branches. And since the number of mispredictions is
independent of the branch penalty, the cost should increase linearly with the branch penalty.

Figure 38 confirms this expectation. For small branch penalties, the actual penalty can be
smaller than expected if the branch penalty is filled with instructions preceding the branch
which have not yet completed (e.g. because they are waiting for their inputs to become avail-
able). This effect appears to be small.

The slope of the overhead lines increases with the BTB miss ratio, i.e., the fraction of mispre-
dicted calls.Richardsandtroff have large BTB miss ratios (54% and 30%), which account for

Figure 37. Dispatch overhead in P96 vs. P96-noBTB and P96-Pro
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their steep cost curves. Most of the other benchmarks have a misprediction rate of 10% or less,
which dampens the effect of branch penalty on cycle cost.

Figure 39 shows that thefraction of execution time spent in dispatch can actually decrease with
increasing branch penalty. For example,ixx has many indirect calls that are not part of virtual
function calls, and these branches are very unpredictable (with a BTB miss ratio of 86%).
Consequently, the relative overhead of virtual calls inixx decreases with larger branch penalties
since the cost of the rest of the program increases much faster.

However, for most benchmarks the relative overhead differs less than 20% between the extreme
branch penalty values (0 and 10), indicating that the VFT branches are about as predictable as
the other branches in the applications. Thus, the relative dispatch costs given earlier in
Figure 33 and Figure 34 are quite insensitive to branch penalty variations.

6.4.5 Influence of branch prediction

As discussed in section 6.2.1, branch target buffers (BTBs) predict indirect (or conditional)
branches by storing the target address of the branch’s previous execution. How effective is this
branch prediction? Our baseline processor, P96, has separate prediction mechanisms for condi-
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tional and indirect branches since the former can better be predicted with local history-based
two-level predictors [135]. The BTB is used exclusively to predict indirect branches. Thus,
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varying the size of the BTB will affect only indirect branches, thus directly illustrating the
BTB’s effect on dispatch overhead.

In general, smaller BTBs have lower prediction ratios because they cannot store as many indi-
vidual branches. Recall that the processor uses the branch instruction’s address to access the
BTB (just like a load instruction uses the data address to access the data cache). If the branch
isn’t cached in the BTB, it cannot be predicted. Naturally, the smaller the BTB, the fewer
branches it can hold, and thus the larger the fraction of branches that can’t be predicted because
they aren’t currently cached in the BTB. Figure 40 confirms this expectation: in general, smaller
BTBs increase dispatch overhead. Apparently, a BTB size of 128 entries is large enough to
effectively cache all important branches, as the dispatch overhead does not decrease signifi-
cantly beyond that BTB size.
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Figure 41 shows the dispatch overhead as a fraction of execution time. In general, the relative
overhead varies in tandem with the absolute overhead, i.e., smaller BTBs increase dispatch
overhead. For processors with BTBs with 128 or more entries, P96 should accurately predict the
BTB’s impact on dispatch performance.
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Finally, Figure 42 shows the prediction ratio as a function of the BTB size. The ratio starts at
zero (without a BTB, indirect branches cannot be predicted) and asymptotically reaches a final
value around a BTB size of 128. Generally, smaller benchmarks need fewer BTB entries to
reach asymptotic behavior since they have fewer active call sites.

The asymptotic prediction ratio corresponds to the hit ratio of an inline cache1 [35]. For some
benchmarks, prediction works very well, with 90% or more of the calls predicted correctly. But
several benchmarks (especiallyrichards, ixx, eqn, andtroff) show much lower prediction ratios
even with very large BTBs because their calls change targets too frequently. For example, the
single virtual call inrichards frequently switches between four different receiver classes, each
of which redefines the virtual function. No matter how large the BTB, such calls cannot be
predicted well. The median prediction ratio for the standard benchmarks is only 76% vs. 92%

1 Since an inline cache stores a target separately for each call site, its hit rate mirrors that of a branch target buffer of infinite size
with no history prediction bits.
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for the all-virtual versions; the latter are more predictable because many calls only have a single
target and thus are predicted 100% correctly after the first call.

Indirect branch prediction substantially reduces the average cost of virtual function calls. In
section 6.4.8 we compare average call cost between different prediction regimes.

6.4.6 Influence of load latency

Load latency influences dispatch cost since the VFT dispatch sequence contains two dependent
load instructions. Thus, higher load latencies should lead to higher dispatch overhead. Our
measurements confirm this assumption: compared to the baseline load latency of two,
increasing the load latency to three increases absolute dispatch cost by a median of 51%; the
relative cost increases by 31%. Similarly, with a load latency of one the absolute overhead
decreases by 44% and the relative overhead by 37%. (Processors are unlikely to have load laten-
cies larger than three, so we did not simulate these.)

Clearly, load latency affects the efficiency of dispatch code more than that of “normal” code
sequences. Furthermore, it appears that there are not enough surrounding application instruc-
tions to effectively hide the latency of the loads in the dispatch sequence, even for small load
latencies.

6.4.7 Influence of issue width

The final factor, issue width (i.e., the number of instructions that can be issued to the functional
units in one cycle) can also influence dispatch performance. Figure 43 shows that issue width
has a strong impact for small values. On a scalar processor (issuing at most one instruction per
cycle), programs spend a much smaller fraction of their time in dispatch. Of course, absolute
performance would be worse than on P96 since execution would consume many more cycles
(for example,lcom is three times slower on the one-issue processor than on the four-issue
processor). With larger issue widths the relative overhead increases more slowly, reaching an
asymptotic value of 26% (median) more than on P96. Thus, on wider-issue processors, the rela-
tive cost of dynamic dispatch will increase slightly because the application code benefits more
from the additional issue opportunities than the dispatch code1

1 For a few benchmarks (e.g.,richards) the relative overhead decreases with high issue widths. We assume that these benchmarks
benefit from higher issue rates because they allow critical dispatch instructions to start earlier, thus hiding part of their latency.
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.

6.4.8 Cost per dispatch

In Section 5.2 we predicted the cost of a single VFT dispatch to be 2L + B + 1, i.e., two load
delays plus a branch penalty; for P96, this adds up to 9 cycles. How accurate is this prediction?
Figure 44 shows the cost in cycles per dispatch for all benchmarks under different BTB predic-
tion schemes (no prediction, prediction by a 16-entry BTB, by a 128-entry BTB and with
perfect prediction1). No prediction of indirect branches, as in the analytical model, gives a
median overhead of 8.6 cycles, very close to the analytical model, which ignored co-scheduling
of non-dispatch instructions. This means that less than one cycle is saved by co-scheduling. In
other words, the virtual function call sequence forms a critical path in the code. Indirect branch
prediction can side-step this path, allowing instructions from the predicted target subroutine to

1 The perfect prediction cost was not measured, but estimated from the BTB256 miss rate and the overhead in cycles for BTB256
and Noprediction., assuming that the reduction in overhead is proportional to the reduction in miss rate.

Figure 43. Overhead in % of execution time (relative to P96) for varying issue widths
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execute speculatively, in parallel with the call itself. In this section, we studied this effect for
BTB prediction.

A BTB reduces the effective branch penalty since the full penalty B is only incurred upon a
misprediction. The analytical cost model could be improved by using the effective branch
penalty Beff = B * btb_misprediction_ratio. For the standard benchmarks, with a median
misprediction ratio of 24%, this model predicts a cost of 6.0 cycles, which still overestimates
the real cost (median 3.9 cycles). Considering all benchmarks, the median misprediction ratio
of 8% results in an estimated cost of 5.3 cycles per dispatch, which overestimates the actual
median of 2.8 cycles / dispatch by about a factor two.

Figure 44 demonstrates the importance of indirect branch prediction. Even a small BTB with 16
entries reduces the median cost of the standard benchmarks from 8.5 to 4.2 cycles, a factor two
improvement. A BTB of 256 entries reduces this cost slightly to 3.9 cycles. Beyond 256 entries,
a BTB no longer improves prediction accuracy. More sophisticated prediction mechanisms
have the potential to reduce call cost by another factor two, as shown by the median 1.6 cycles
per call that results from a perfect (i.e. 100% accurate) predictor.

Dispatch cost varies widely over the different benchmark programs: a single dispatch costs 2.1
cycles inlcombut 11.4 cycles indeltablue, a difference of a factor of 5.4. This variation illus-
trates the combined effects of the factors discussed previously, such as the BTB hit ratio and the

Figure 44. Cycles per dispatch under various BTB prediction regimes
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co-scheduling of application code. The dispatch cost of the all-virtual programs varies much
less since the average cost is dominated by very predictable monomorphic calls (i.e., call sites
invoking the same function every time).

6.5 Discussion

What does this detailed dispatch performance analysis tell us? Will dispatch performance
improve with future hardware? Should programmers write their applications differently to
improve performance?

First, the median dispatch overheads we observed for P96 (5.2% for the standard benchmarks
and 13.7% for the all-virtual versions) can be used as a bound on the dispatch performance
improvements one can hope to obtain. Thus, no matter how good a dispatch mechanism is, we
cannot hope for much more than a performance improvement of around 5-10% for the C++
measured here. Java programs, where all member functions are declared virtual, can gain
between 5% and 50%. Any further improvement must come from other optimizations such as
customization or inlining [16][70]. Given that better optimizing compilers are possible [6], it
hardly seems appropriate for programmers to compromise the structure of their programs to
avoid dispatch.

Many object-oriented systems use or could use VFT-like dispatch mechanisms (e.g., implemen-
tations of Java, Modula-3, Oberon-2, and Simula), and thus this study bears some significance
for those languages as well. While the characteristics of typical programs may differ from the
C++ programs measured here, the general trends should be similar. Together, the standard and
all-virtual programs represent a wide spectrum of program behaviors and call frequencies, and
thus we expect many programs written in other languages to fall somewhere within that spec-
trum. Furthermore, the dependency structure (and thus performance on superscalar processors)
of many other dispatch mechanisms (e.g., selector coloring or row displacement) is similar to
VFT, as we have shown in section 5.2. Therefore, the measurements presented here should
apply to these dispatch mechanisms as well.

Although simulations provide accurate numbers, they are inordinately expensive and compli-
cated. As discussed in section 6.4.8, the analytical model for VFT dispatch cost developed in
section 5.2 already establishes abound on dispatch cost fairly well using only two parameters.

Finally, will dispatch overhead increase in the future? We believe so. As Figure 43 showed, the
relative overhead will increase as processors issue more instructions per cycle. At an issue
width of 16, the median overhead increases by about 26%. Future processors might also have
longer load latencies, further increasing dispatch cost. General compiler optimizations may also
influence dispatch performance. Much current research focuses on compilation techniques to
increase instruction-level parallelism. If compilers successfully reduce execution time on wide-
issue processors, the effective dispatch overhead could further increase for programs with
unpredictable VFT calls. The most important aspect of future hardware designs, when it comes
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to virtual function call cost, is the optimization of indirect branch execution by branch target
prediction. Without target prediction, virtual function calls are twice as expensive, compared to
a processor with a sufficiently large BTB. In summary, over the next few years, we expect the
relative dispatch cost to rise, though the exact extent is hard to predict.

6.6 Summary

We have analyzed the direct dispatch overhead of the standard virtual function table (VFT)
dispatch on a suite of C++ applications with a combination of executable inspection and
processor simulation. Simulation allows us to precisely define dispatch overhead as the over-
head over an ideal dispatch implementation using direct calls only. On average, dispatch over-
head is significant: on a processor resembling current superscalar designs, programs spend a
median overhead of 5.2% and a maximum of 29% executing dispatch code. However, many of
these benchmarks use virtual function calls quite sparingly and thus might underrepresent the
actual “average” C++ program. For versions of the programs where every function was
converted to a virtual function to simulate programming styles that extensively use abstract base
classes defining virtual functions only (C++’s way of defining interfaces), the median overhead
rose to 13.7% and the maximum to 47%. On future processors, this dispatch overhead is likely
to increase moderately.

On average, thunks remove a fourth of the overhead associated with the standard implementa-
tion of virtual function calls. For some programs the difference is much higher since thunks
remove a data dependency chain that inhibits instruction level parallelism.

To our knowledge, this study is the first one to quantify the direct overhead of dispatch in C++
programs, and the first to quantify superscalar effects experimentally. In addition to measuring
bottom-line overhead numbers, we have also investigated the influence of specific processor
features. Although these features typically influence the absolute dispatch cost considerably
(i.e., the number of cycles spent in dispatch code), the relative cost (the percentage of total
execution time spent in dispatch code) remains fairly constant for most parameters except for
extreme values. Thus, the overheads measured here should predict the actual overhead on many
current processors reasonably well.

Since many object-oriented languages use virtual function tables for dispatch, and since several
other dispatch techniques have identical execution characteristics on superscalar processors, we
believe that our study applies to these languages as well, especially if their application charac-
teristics fall within the range of programs studied here.

Since indirect branch prediction, studied here in the form of a BTB branch target predictor, has
such a large impact on virtual function call cost (see section 6.4.8), we study indirect branch
prediction mechanism in the remainder of this work.
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7 Hardware techniques for efficient polymorphic
calls

“We should give up the attempt to derive results
and answers with complete certainty”

Michael O.Rabin [115]

In the previous section we established the importance of indirect branch misprediction in the
call cost of virtual functions in C++. Superscalar processors are likely to hide most of the cost
of table-based polymorphic call resolution by co-scheduling surrounding instructions, but only
when the indirect branch is predicted correctly. Since the performance of a branch target buffer
maxed out at about 128 entries, more accurate prediction cannot be bought even if a larger tran-
sistor budget is available, unless better prediction techniques can be implemented in hardware.
Therefore we studied more complex prediction mechanisms in the remainder of this work

7.1 Software vs. hardware prediction

When prediction of indirect branches is unavailable in hardware, software techniques that adapt
to observed behavior and predict that it will reoccur can outperform static table-based tech-
niques like Virtual Function Table dispatch (VTBL). The latter offer better worst-case perfor-
mance but fail to exploit temporal locality at a call site. The simple form of prediction
implemented in an inline cache (jump to the last observed target) is sufficient to achieve better
performance on average than all forms of dispatch tables on a high-frequency, deeply pipelined
processor without indirect branch prediction (Section 5.2).

However, when indirect branch prediction is implemented in a processor’s micro-architecture,
table-based techniques become competitive with inline caches. They expose the polymorphism
of the call to the hardware prediction architecture in the form of an indirect branch, where the
inline cache provides its own prediction in the form of a direct jump. The hardware counterpart
of an inline cache is a Branch Target Buffer (BTB). A BTB stores the most recent target address
of a branch.

Inline caching has several advantages over a BTB:

• No cache size limitation: since the predicted target addresses are stored inline, the cache
grows with the program. A BTB is limited in size by the transistor budget allocated to
branch prediction.

• No conflict misses: in an inline cache, every polymorphic call site has its own predicted
target. A BTB has limited associativity, and will therefore suffer from interference on the
branch address.

• Ease of implementation: an inline cache can easily be combined with other dispatch
techniques. Especially in dynamically typed languages, a slow call resolution technique can
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be optimized dramatically by placing it as backup technique to an inline cache, with a
relatively small programming effort. A BTB requires a static, table-based dispatch
technique in order to work. In dynamically typed languages, such techniques require
substantial implementation effort. They also incur a compile time cost in the form of a table
compression algorithm (see Section 4).

A BTB, on the other hand, has the following advantages over an inline cache:

• A potentially higher hitrate: if the class of the receiver object of a polymorphic call is not
identical to the last observed class, an inline cache will treat this as a misprediction,even if
the actual target method is the same (for instance, when the class is a subclass of the last
observed class and does not override the message definition). A BTB will treat this as a hit
(in the absence of conflict and capacity misses).

• A faster miss case: if the inline cache misses, a backup call resolution technique finds the
correct target and replaces the inlined direct jump target. The instructions that accomplish
this execute in competition with regular code, where hardware-based prediction will update
a call target in parallel, without interfering with regular program execution. A miss
therefore incurs a cost bound only by the branch misprediction penalty.

• Greater potential for hit rate improvement: hardware-based prediction can use history-
based information, such as the trace of recently executed calls, without slowing down
regular execution. As shown in Sections 8 and 9, this information can reduce the
misprediction rate by a large factor. Though an inline cache can also use history information
to obtain more accurate prediction, the instructions that maintain this information run in
competition with regular code, implying an extra overhead for every polymorphic call (not
just the miss cases). This does not seem cost-effective.

• Wider applicability: hardware-based indirect branch prediction also speeds up polymorphic
calls in non-object oriented languages (for instance, large switch statements or calls
through a function pointer table). Even object-oriented programs often execute indirect
branches that are not generated by message dispatch instructions. For example, 52% and
66% of the indirect branches inixx and eqn are generated by switch statements (see
Table 17).

In summary, if hardware-based prediction is unavailable or inadequate because of large
program working sets, software-based prediction is a good, easy to implement alternative. With
adequate hardware-based prediction, software-based prediction is to be avoided, since it denies
the hardware the opportunity to do a more accurate prediction with a faster miss case.
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7.2 Hardware indirect branch prediction

Prediction has a long history in hardware. Caches, filebuffers, RAM disks, virtual memory
systems, disk drivers, all use the principle: what has occurred in the past is likely to occur again,
usually pretty soon.

Indirect branch prediction is nothing more than target address caching and prefetching. It is
only a little more specialized than an instruction cache, which, in current practice, already
incorporates conditional branch prediction. For example, the UltraSparc I-cache associates a 2-
bit counter and a “next” field with every 4 instructions [124]. This field points to the next I-
cache line to be fetched if a conditional branch is predicted as taken. The UltraSparc therefore
merges functionality of a BTB with the I-cache. Many of problems we encountered in the
course of this work resemble problems encountered in cache design. For example, many of the
solutions in Section 8 come straight out of cache design literature [65]. Others are inspired by
good conditional branch designs, for example the GSHARE predictor [98].

To see which of these solutions carry over to indirect branch predictors, we have to measure
their predictor performance on real programs. We use misprediction rate, defined as branch
misprediction/frequency, as the metric to evaluate designs. Minimization of misprediction rate
ensures that often executed branches carry more weight.

7.3 Indirect branch frequency

How important are indirect branches? We answered this question partly in the previous section,
since every virtual function call in C++ has an indirect branch as its core instruction. The over-
head of 5% and 14%, was mostly due to mispredicted indirect branches, since the other instruc-
tions have no large impact on performance. However, not all indirect branches correspond to
virtual function calls. Of the seven C++ programs in our benchmark suite, discussed in the next
section, two execute more switch statements than virtual function calls. In non-object oriented
languages, the only way to have polymorphic calls is to hand-code polymorphic call resolution
procedures, which use large switch statements or function pointer tables, both of which
generate indirect branches.

7.3.1 Benchmark overview

Our main benchmark suite consists of large object-oriented C++ applications ranging from
8,000 to over 75,000 non-blank lines of C++ code each (see Table 17), andbeta, a compiler for
the Beta programming language [90], written in Beta. We also measured the SPECint95 bench-
mark suite with the exception ofcompress  which executes only 590 branches during a
complete run. Together, the benchmarks represent over 500,000 non-comment source lines.

All C and C++ programs exceptself 1 were compiled with GNU gcc 2.7.2 (options -O2 -
multrasparc plus static linking) and run under theshade  instruction-level simulator [29] to
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obtain traces of all indirect branches. Procedure returns were excluded because they can be
predicted accurately with a return address stack [82]. All programs were run to completion or
until six million indirect branches were executed.1 In jhm  andself  we excluded the initializa-
tion phases by skipping the first 5 and 6 million indirect branches, respectively.

For each benchmark, Table 17 lists the number of indirect branches executed, the number of
instructions executed per indirect branch, the number of conditional branches executed per indi-
rect branch, and the percentage of indirect branch executions that correspond to the branch
classes used in Section 9.2.1 and Section 9.2.2, as well as the number of branch sites respon-
sible for 99%, and 100% of the branch executions. For example, only 5 different branch sites are
responsible for 99% of the dynamic indirect branches ingo. The SPECint95 programs are
dominated by very few indirect branches, with less than ten interesting branches for all
programs exceptgcc . Four of the SPEC benchmarks execute more than 1,000 instructions per
indirect branch. Since the impact of branch prediction will be very low for the latter four bench-
marks, we exclude them when optimizing predictor performance (by minimizing the AVG
misprediction rate).

1 self  does not execute correctly when compiled with -O2 and was thus compiled with “-O” optimization. Also,self  was not
fully statically linked; our experiments exclude instructions executed in dynamically-linked libraries.
1 We reduced the traces of three of the SPEC benchmarks in order to reduce simulation time. In all of these cases, the BTB
misprediction rate differs by less than 1% (relative) between the full and truncated traces, and thus we believe that the results
obtained with the truncated traces are accurate.
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7.3.2 Branch frequency measurements

Programs with the highest average branch frequency, as shown in Table 17, execute 47 instruc-
tions per indirect branch. However, in some program phases, indirect branches occur much
more frequent. Figure 45 shows the portion of indirect branches executions that occurs less than
five instructions apart, between five and nine, and so on in steps of five instructions. The histo-
grams show that although the average number of instructions between branches is 113, the
mean distance between branches is much less than that. Only 29% of indirect branches execute
more than 100 instructions apart. 25% execute within 20 instructions.

a SunSoft version 1.3
b Java High-level Class Modifier
c hardware description language compiler
d SUIF 1.0
e Fresco X11R6 library
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idl IDL compilera OO 14 1,883,641 47 6 93.2 3.2 3.6 97.1 0.1 2.8 70 543
jhm JHMb 6-12M OO 15 6,000,000 47 5 93.6 1.2 5.2 58.7 1.4 39.9 34 155
self Self-93 VM: 5-6M OO 77 1,000,000 56 7 76.0 4.4 19.6 40.1 31.6 28.3 848 1855
xlisp SPEC95 C 55 6,000,000 69 11 0.0 0.1 99.9 38.9 9.0 52.1 4 13
troff GNU groff 1.09 OO 19 1,110,592 90 13 73.7 12.5 13.8 41.9 13.6 44.5 61 161
lcom HDLc compiler OO 14 1,737,751 97 10 63.2 36.8 0.0 33.5 54.0 12.5 87 328
AVG-100: instr/indirect < 100 24 2,955,331 68 9 66.6 9.7 23.7 51.7 18.3 30.0 184 509
perl SPEC95 C 21 300,000 113 17 0.0 31.7 68.3 41.2 0.0 58.8 7 24
porky scalar optimizerd OO 23 5,392,890 138 19 70.6 23.8 5.6 15.6 8.1 76.3 89 285
ixx IDL parsere OO 12 212,035 139 18 46.5 52.2 1.3 37.1 6.4 56.5 91 203
edg C++ front end C 114 548,893 149 23 0.0 62.4 37.6 7.9 29.6 62.5 186 350
eqn equation typesetter OO 8 296,425 159 25 33.8 66.2 0.0 4.2 37.8 58.0 58 114
gcc SPEC95 C 131 864,838 176 31 0.0 31.5 68.5 0.8 1.7 97.5 95 166
beta BETA compiler OO 72 1,005,995 188 23 0.0 2.3 97.7 18.7 28.1 53.2 135 376
AVG-200: 100 < instr/indirect < 200 55 1,231,582 152 22 21.6 38.6 39.9 17.9 16.0 66.1 94 217
AVG: instr/indirect < 200 40 2,027,158 113 16 42.4 25.3 32.4 33.5 17.0 49.5 136 352
AVG-OO: OO, instr/indirect < 200 28 2,071,037 107 14 61.2 22.5 16.3 38.5 20.1 41.3 164 447
AVG-C: C, instr/indirect < 200 68 1,928,433 127 21 0.0 31.4 68.6 22.2 10.1 67.7 73 138
m88ksim SPEC95 C 12 300,000 1.8K 233 0.0 46.2 53.8 2.9 10.3 86.8 5 17
vortex SPEC95 C 45 3,000,000 3.5K 525 0.0 30.7 69.3 23.1 16.9 60.0 10 37
ijpeg SPEC95 C 17 32,975 5.7K 441 0.0 97.8 2.2 96.7 3.2 0.1 7 60
go SPEC95 C 29 549,656 56K 7123 0.0 99.0 1.0 0.2 0.0 99.8 5 14
AVG-infreq: instr/indirect > 200 26 970,658 17K 2081 0.0 68.4 31.6 30.7 7.6 61.7 7 32

Table 17. Benchmarks and commonly shown averages (arithmetic means)
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For the indirect branch prediction architectures discussed in later sections, this may reduce the
actual hitrate attained in practice. These architectures use the resolved targets of the most
recently executed indirect branches before the current branch. The most recent branch may not
be resolved, on a deeply pipelined superscalar processor, when the next branch is predicted. A
possible solution entails the use of thepredicted target of recent branches, instead of the
resolved target (predict ahead). However, this practise may reduce the hitrate. The loss in
prediction accuracy due to the use of predicted targets in the history buffer has been explored for
conditional branches, by Hao, Chang and Patt [64]. They report that using speculatively targets
in the branch history decreases performance less than omitting unresolved branches from the
history buffer.

We optimize prediction accuracy by using the indirect branch trace, without simulating other
instructions, because this allows us to explore about two orders of magnitude more points in the
predictor design space. Unfortunately, this rules out cycle-level simulation, making it hard to
estimate the impact of indirect branch clustering

Figure 46 shows the average distance between executions of the same branch. Here the instruc-
tion distance is usually large enough to allow a predictor to update its prediction table in time
for the next branch execution.

Branch frequency histograms for individual benchmarks can be found in Appendix B.
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7.4 Experimental setup

The current experimental setup is shown in Figure 47. To explore a part of the predictor design
space, we first decide the range of parameters (if necessary, the branch predictor simulator must
be extended in C++). Subsequently, a dedicated perl script generates all the simulation jobs.
These jobs are distributed over a collection of workstations by a processor farmer shell script.
After they are executed (the main computation cost), specific misprediction rate measurements
are extracted from the result files and organized into tables.

7.5 Problem statement

In the next two sections, we look at hardware techniques to reduce the average overhead of indi-
rect branches by reducing branch misprediction rates. Indirectly, this will reduce the overhead
of polymorphic calls by avoiding the branch penalty associated with mispredicted branches. We
aim to answer the following questions:

• For a given branch prediction technique, what is the limit of prediction accuracy reachable
in the absence of hardware constraints?
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• In the presence of hardware constraints such as limited table size and limited associativity,
how close can a technique approach this ideal?

• Given a particular hardware budget, how do we maximize prediction accuracy?

• Given a particular desired prediction accuracy, how can we minimize its cost?

Our aim is to reach adequate (+90%) prediction accuracy for predictor architectures that use a
limited, practical transistor budget (64Kbit tables with simple logic).

Predictor
description

Branch
trace

Branch predictor simulator
(C++)

Resulting
miss%

Jobmaker
(perl)

Predictor
ranges

Processor Farmer
(tcsh)

Selection and averaging preprocessor
(perl)

Tables of
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Rough visualization, checksums and
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Selected design space visualization
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Figure 47. Experimental setup
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8 Basic indirect branch predictors
“Many existing branch prediction schemes are
capable of accurately predicting the direction of
conditional branches. However, these techniques
are ineffective in predicting the targets of indirect
jumps...”,

Po-Yung Chang, Eric Hao, Yale Patt [25]

We investigate a wide range of two-level predictors dedicated exclusively to indirect branches.
We first study the intrinsic predictability of indirect branches by ignoring any hardware
constraints on memory size or logic complexity. Then we progressively introduce hardware
constraints and minimize the loss of predictor performance at each step. Thus, we initially
assume unconstrained, fully associative tables and full 32-bit addresses (unless indicated other-
wise).

8.1 Branch target buffer

Current processors use a branch target buffer (BTB) to predict indirect branches (see
Section 6.2.1 for more detail). The predictor uses the branch address as a key into a table (the
BTB) which stores the last target address of the branch (Figure 48).

8.1.1 2-bit counter update rule

We simulated two variants: “BTB” is a standard BTB which updates its target address after each
branch execution. “BTB-2bc” is a BTB with two-bit counters which updates its target only after
two consecutive mispredictions1. BTB-2bc predictors perform better in virtually all cases, with
an average of 24.9% misprediction rate, compared to 28.1% for a standard BTB. Polymorphic
branches occasionally switch their target but are often dominated by one most frequent target,
a situation observed in object-oriented programs [6][36]. But even with two-bit counters BTB
accuracy is quite poor, ranging from average misprediction ratios of 20% in OO programs to

1 In conditional branch predictors, the latter strategy is implemented with a two-bit saturating counter (2bc), hence the name. For
an indirect branch, one bit suffices to indicate whether the entry had a miss the last time it was consulted.

Figure 48. Branch target Buffer

Branch Target Buffer

Branch Address

Predicted Target
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37% for C programs. Infrequent indirect branches (AVG-200) are less predictable, with a
misprediction average of 38% vs. 10% for the programs in AVG-100.

8.2 Two-level predictor

Two-level predictors improve prediction accuracy by keeping information from previous
branch executions in a history buffer. Combined with the branch address, this history pattern is
used as a key into the History Table which contains the predicted target addresses. As in BTBs,
the entries can be updated on every miss or after two consecutive misses (2-bit counters). We
tested every predictor in this section with both variants, and always saw a slight improvement
with 2-bit counters. I.e., ignoring a stand-alone miss when updating seems to be a good strategy
in general. Thus, we will only show 2-bit counter results in the rest of the paper.

Figure 49. Indirect branch misprediction rates for an unconstrained BTB
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For conditional branches, a branch history of lengthp consists of the taken/not-taken bits of the
p most recently executed branches [135]. In contrast, most indirect branches are unconditional,
and thus keeping a history of taken/not-taken bits would be ineffective. Instead, the history must
consist of previous target addresses or bits thereof. Such a path-based history could also be used
to predict conditional branches, but since taken/not-taken bits succinctly summarize the target
addresses of a conditional branch, conditional branch predictors usually do not employ target
address histories (but see [105]).

8.2.1 First level: history pattern

Branch predictors can use one or more history buffers. Aglobal history uses a single history
buffer (correlation branch prediction), and all branches are predicted using the outcomes of the
p most recently executed branches. In contrast, aper-address history keeps a separate history
for each branch, so that branches do not influence each other’s prediction. Finally,per-set
history prediction forms a compromise by using a separate history for each set of branches,
where a set may be determined by the branch opcode, a compiler-assigned branch class, or a
particular address range (see Yeh and Patt’s comprehensive study [135]).

To investigate the impact of global vs. local histories, we simulated per-set histories where a set
contains all branches in a memory region of size 2s bytes, i.e., all branches with the same values
in bitss..31 fall into the same set (Figure 51). With this parametrization, a global history corre-

sponds tos=31, and per-branch histories correspond tos=2. Using the results of the exhaustive

History Patterns

Figure 51. History pattern sharing

Branch Address

Key (concatenate)

s
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run on a limited benchmark suite, we obtained good initial values for the other parameters (path
length p=8, per-branch pattern entries in the history table). The results are shown in Figure 52.

In general, a global history outperforms local histories for all benchmark groups exceptAVG-

infreq . AVG declines from 9.4% with per-address paths down to 6.0% with a global path. The
OO programs benefit most from sharing paths, with misprediction rates falling from 8.7% to
5.6%. This result indicates a substantial correlation between different branches (i.e., inter-
branch correlation) in our benchmark suite, a correlation not limited by code distance. This
result is analogous to the results for conditional branches in Yeh and Patt’s study [135], where
a global predictor generally performs better than a per-address scheme.

The C benchmarks show a pronounced dip for s=9 (i.e., if branches within 512-byte code
regions share paths). On closer observation, the dip is caused byxlisp where only three indi-
rect branches are responsible for 95% of the dynamic indirect branch executions. Forxlisp ,
moving from s=8 to s=9 reduces mispredictions by a factor of three. Similarly, at s=10go ’s
misprediction ratio jumps from 26% to 33% (go is dominated by two indirect branches), which
causesAVG-infreq to jump at s=10.

The programs inAVG-infreq (which execute indirect branches very infrequently) are the only
ones benefiting from per-address histories (AVG-infreq). Apparently, the targets of different
branches do not correlate well with each other since they occur very far apart. Since these
programs use indirect branches only sparingly, we can safely ignore their different behavior
when designing branch predictors.

Figure 52. Influence of history sharing for path length p=8, per-branch entries
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8.2.2 Second level: history table sharing

A two-level predictor uses the history pattern to index into a history table that stores predicted
targets. Again, we have a choice of per-branch, per-set, or global prediction. We simulated per-
set tables that grouped all branches with identical address bitsh..31 into the same set (see
Figure 53). Thus,h=2 implies per-branch history tables (each branch has its own history table)

andh=31 implies a single shared history table (i.e., all branches with the same history share the
same prediction). Figure 54 shows that the branch address matters: The misprediction average

for all benchmarks increases from 6.0% for per-address history tables to 9.6% for a globally
shared history table, the rate of the OO programs increases from 5.6% to 8.6%, and that of the
C benchmarks rises from 6.8% to 11.8%. (Again,xlisp changes dramatically ath=9, causing a
sharp increase for some averages.) Therefore, we will only consider per-address tables (h=2) in
subsequent experiments.

Global History Pattern

Figure 53. History Table sharing

Branch Address

h

Key (concatenate)

Figure 54. Influence of history table sharing for path length 8 with a global history pattern.
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8.2.3 Path length

The history pattern consists of target addresses of recently executed branches. The history
buffer is shared (global), so all indirect branches influence each other’s history. Concatenation
with the branch address results in the key used to access the history table. The path lengthp
determines the number of branch targets in the history pattern. In theory, longer paths are better

since a predictor cannot capture regularities in branch behavior with a period longer thanp.
Shorter paths have the advantage that they adapt more quickly to new phases in the branch
behavior. A long path captures more regularities, but the number of different patterns mapping
to a given target is larger, so it takes longer to fill in the table. This long “warm-up”-time for long
patterns can prevent the predictor from taking advantage of longer term correlations before the
program behavior changes again. We studied path lengths up to 18 target addresses in order to
investigate both trends and see where they combine for the best prediction rate.

Figure 56 shows the impact of the history path length on the misprediction rate for all path
lengths from 0 to 18. (A path length of 0 reduces the two-level predictor to a BTB predictor
since the key pattern consists of the branch address only.) The average misprediction rate drops
quickly from 24.9% for a BTB to 7.8% forp=3 and then slowly reaches a minimum of 5.8% at

Figure 55. Two level branch prediction
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path length 6. Then the misprediction rate starts to rise again and keeps rising for larger path
lengths up to the limit of our testing range atp=18. All benchmark suites follow this pattern,
although programs with infrequent branches show uniformly higher misprediction rates.

This result indicates that most regularities in the indirect branch traces have a relatively short
period. In other words, a predictable indirect branch execution is usually correlated with the
execution of less than three branches before it. Increasing the path length captures some longer
term correlations, but at path length six cold-start misses begin to negate the advantage of a
longer history. At this point, adding an extra branch target to the path may still allow longer-
term correlations to be exploited, but on the other hand it will take the branch predictor longer
to learn a full new pattern association for every branch that changes its behavior due to a phase
transition in the program. A hybrid branch predictor combining both short and long path
components should be able to adapt quickly to phase changes while still exploiting longer-term
correlations; we experiment with such hybrid predictors in Section 9.

8.3 History buffers

8.3.1 Trace information

We explored a few other choices for the history pattern elements. In the first variant we used
both branch address and target, and in the second we included targets of conditional branches
in the history. Both resulted in inferior prediction accuracy1 for any pattern lengthp (see [46]).

8.3.2 History pattern compression

The global history pattern is a very long bit pattern. For p=8, it consists of 8 * 32 = 256 bits, and
concatenation with the branch address results in a total of 288 bits. The information content of
this bit pattern is quite low: the number of different patterns that occur during program execu-
tion is much smaller than 2288. Since a tag in an associative table includes most of the pattern,
long patterns inflate the size of the predictor table. We need to compress the pattern for each
path length into a short bit pattern, ideally without compromising prediction accuracy. As a first
step towards smaller history patterns, we will only consider path lengths up to sizep=12, since
longer path lengths result in higher misprediction rates (as seen in Figure 56)

8.3.2.1 Target pattern projection

A straightforward approach for history pattern compression is to select a limited number of bits
from each target and concatenate these partial addresses into the history pattern. We explored a

1 This result is often misunderstood. It does not say that conditional branches are irrelevant to indirect branch prediction. It says
that, given a the choice of tracing the last n indirect branches or the last n conditional branches, the indirect branches predict the
next indirect branch better. For some individual branches this may be wrong (as suggested by Kalamatianos and Kaeli [81], who
dynamically choose a pure indirect or a mixed conditional/indirect trace for each branch), but over the whole benchmark suite, this
trend holds.
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number of choices by using a range [a..A] of the address bits. We varieda from 2 to 10, andA
from a to a+(b-1), whereb is the largest number of bits that still allows the history pattern to fit
within a total of 24 bits (i.e.b * p <= 24). Starting with bita=2 worked best on average, and thus
we will not show data for other values of a.

Figure 57 shows the misprediction ratios resulting from the selection of bits [2..2+(b-1)], for b
values of 1,2,3,4 and 8, as well as the misprediction rate for full-precision addresses. The curve
for b=8 almost completely overlaps with the full-address curve, indicating that 8 bits are enough
even for short path lengths. For decreasing address precision, shorter path lengths suffer most.
For example, for path length p=10, 2 bits achieve a misprediction rate of 6.77% vs. 6.53% for
full addresses, while for path length p=3, the miss ratio decreases from 10.6% (2 bits) to 7.1%
(full addresses). A total bit length of 24 bits suffices for the history pattern to approach the full-
address performance for all path lengths. Thus, in the rest of the paper we always choose the
largest numberb of bits from each address that keepsb * p <= 24. For example, for path length
2 we choose 12 bits for each history entry, and for path length 6 we choose 4.

We also tried two other schemes for target address compression:

• Fold the new target address into the desired number ofb bits by dividing it into chunks of
b bits and xor-ing them all together.

• Shift the history patternb bits to the left and xor with the complete new target address.

Figure 57. Limited Precision misprediction rates.
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These variants were intended to use more information of the target address but did not reliably
result in better prediction rates and were sometimes even worse. Since they require more logic
than the bit selection discussed above, we decided to drop them from further tests1.

8.3.2.2 Address folding

As mentioned in section 8.2.2, omitting the branch address reduces the performance of a two-
level predictor (for p=8, the misprediction rate increased from 6.0% to 9.6%). However, concat-
enating the branch address with the history pattern results in a key of 24 + 30 = 54 bits. In
analogy with theGshare predictor used in conditional branch prediction [24], we can reduce the
number of bits in the key pattern to 30 by xor-ing the branch address with the history pattern.
Table 18 shows the misprediction rate averages for both alternatives. Compared to the increase

in misprediction rate due to limited table size and associativity in the next section, the reduction
of the key pattern from 54 to 30 bits by xor causes a very small increase in misprediction rate.
For example, for path length 8, misprediction rate increases by 0.03%, from 6.16% to 6.19%
Since this operation reduces the table space used for tag bits by more than half, we use this
scheme in the remainder of this study.

8.4 History tables

In this section we introduce limited table sizes and limited associativity in order to obtain prac-
tical indirect branch predictors.

8.4.1 Capacity misses

Limited tables introduce a new source of branch misses: capacity misses. When the table is too
small to store the history patterns of all branches in its working set, some patterns will be
evicted from the table, resulting in capacity misses.

Longer path lengths generate more patterns for a given set of branches. For example,ixx gener-
ates 203 different patterns for path lengthp=0, 402 forp=1, 865 forp=2, 1469 forp=3, and ends

1 Since the difference in prediction accuracy between partial bit-selected addresses and full-precision addresses is already very
small, there is not much to be gained by sophisticated hashing schemes. We measured a difference of 0.2%, when going from a
fullprecision path length 6 to a 4-bit path length 6 predictor. One could hope for positive interference, but this is much less likely
to occur in indirect branch prediction than in conditional branch prediction, since the predicted value is a 32bit address, not just a
bit (which is 50% likely to positively interfere on a miss).

Operation p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10 p=11 p=12

Xor 24.91 13.58 8.84 7.09 6.49 6.27 6.01 6.18 6.19 7.44 7.34 7.49 7.67

Concat 24.91 13.08 8.78 7.08 6.48 6.22 5.99 6.13 6.16 6.62 6.77 7.02 7.27

difference 0.00 0.50 0.06 0.01 0.01 0.05 0.02 0.05 0.03 0.82 0.57 0.47 0.40

Table 18. Concatenation versus Xor of history pattern with branch address (AVG)
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up with 9403 patterns forp=12. Though not all patterns are used more than once (some only
occur once in the warm-up phase), for longer path lengths capacity misses will occur fairly
soon. A predictor with a longer path length may be more accurate than a predictor of shorter
path length for an unlimited table, but the capacity misses caused by a small table size can affect
the longer path length predictor enough to negate this advantage.

To estimate the effect of capacity misses we simulate fully-associative tables with LRU replace-
ment policy. Figure 58 shows the average misprediction rate for various fully-associative tables
for predictors with path length p=0-4,6,8,10 and 12. The misprediction rate of some path
lengths reaches its minimum in the explored range. For p=0 (BTB), the miss rate decreases with
increasing table size and reaches its minimum at 256 entries. Since there are no capacity misses
left, increasing the table size beyond this point will not lower the miss rate for p=0. Increasing
the path lengths pushes this point out to 1024 entries (p=1), 2048 entries (p=2), and 8192 entries
(p=3 and p=4). Longer path lengths never completely recover from capacity misses in the
explored range. A longer path’s ability to detect longer-term regularities can pay off, although
the best predictor for each table size is still affected by capacity misses. For instance, p=2 wins
at table size 256 with a misprediction rate of 12.5%, 3.6% of which is due to capacity misses.
For size 1024, p=3 takes over with a misprediction rate of 8.5%, with 1.4% due to capacity
misses. For a 8192-entry table, p=6 (which achieved the lowest misprediction rate for an unlim-
ited table) has a misprediction rate of 6.6%, with 0.6% due to capacity misses.

8.4.2 Conflict misses

In practice, a fully-associative LRU table of sufficient size requires too much logic to imple-
ment in hardware, and thus we will explore limited-associative tables in this section.
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Limited associativity means that part of the key pattern is used as an index into a table to access
a limited set of entries. Each entry in the set has a tag that is checked for equality to the rest of
the key pattern. The index part of the key determines how a working set of branch patterns is
spread out over the sets, and how many patterns share the same set. For instance, if one only
used the high-order 8 bits of the branch address as index in a BTB of 256 sets, most of the
patterns would have to share the same set. This can cause conflict misses; these are similar to
capacity misses, but it is the capacity of the set instead of the table that is the limiting factor.
Conflict misses can be reduced without changing the total size of the table by increasing the
associativity or by choosing a different index scheme, so that different patterns share the same
sets.We start out choosing the lower order bits of the key pattern as index. In a two-level
predictor, this part contains the lower order branch address bits, xor-ed with the target address
bits of the recent targets in the history pattern (see section 8.3.2).

We test 1, 2 and 4-way associativity, and tagless tables, which is like 1-way associativity but
without tags. Where a one-way associative table will register a miss if the search pattern is not
in the table, a tagless table will simply return the target corresponding to the index part of the
pattern. We compare misprediction rates for equal table sizes, i.e. a table with 256 sets of one
entry each (1-way associative) is compared to a table with 64 sets of four entries each (4-way
associative).

We tested all table sizes of the previous section, but will show only selected examples for this
analysis to reduce the amount of cluttering in the graphs. Figure 59 (a) shows the misprediction
rate of different associativities for a 4096-entry table, for all path lengths.

8.4.2.1 Interleaving

The saw-tooth curve for associativities 1, 2 and 4 indicates that there is something wrong with
the way the history pattern is assembled from the target address bits. In particular, for associa-
tivity one, the misprediction rate of a p=2 predictor is much higher than a p=1 predictor.

Figure 59. Misprediction rates using concatenation (4K entries)
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Figure 60 shows an example for p=2. Since the index part of the pattern is identical for target
sequence t2t1 and t3t1, both paths will occupy the same set in the table. The predictor assigns
sets in the same way as a predictor of path length one. If the two patterns alternate often, the
path length two predictor will incur frequent conflict misses with a one-way associative table
and not return a prediction, while the path length one predictor will return the predicted target
address. To a lesser degree, the same effect applies to larger path lengths and higher associativ-
ities1, explaining the saw-toothed lines for concatenation in Figure 59. Interleaving remedies
this problem by ensuring that the index part of a pattern contains the lower order bits of all target
addresses, rather than all bits of a subset of the target addresses. When the target bits are inter-
leaved, target sequences t2t1 and t3t1 will likely differ in the index part of the pattern and will
therefore not interfere with each other.

1 Also note that since concatenation places the oldest targets completely in the tag, they are invisible to a tagless table. A path
length 12 pattern, with two bits per target in a predictor with a tagless, 4096-entry table will use only the 6 most recent targets, so
its effective path length is only 6.

target2 target1

Concatenation t2 t1

indextag

Interleaving t3 t1

Figure 60. Concatenation and interleaving of target address bits

target3

Concatenation t3 t1

Interleaving t2 t1

for path length 2 for a 4096-entry table

Figure 61. Misprediction rates using reverse interleaving (4K-entries)
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Interleaving of target bits is effective because it spreads patterns over more different sets than
concatenation. For example, interleaving increases table utilization forixx from 50% to 79% for
a 1024 entry, one-way associative table for path length four. Figure 61 shows that interleaving
dramatically improves predictor performance compared to concatenation.

We experimented with three variants of interleaving schemes. Figure 62 shows the interleaving
schemes for path length 4 and index length 10. The index part of the pattern contains low order
bits from all targets, but two targets are more precisely represented with three bits, and two
contribute only their two lower order bits. Straight interleaving represents the most recent
targets with higher precision (target 1 and 2), while reverse interleaving represents the older
targets most precise (target 3 and 4). Ping-pong interleaving represents both the oldest and
youngest target more precise (1 and 4). Suppose the current branch depends only on the address
of target4, and some of the possibilities are equal in their two lower order bits. With straight
interleaving, the two patterns will conflict. With reverse interleaving, they will use entries in
different sets.

We found that reverse interleaving performs slightly better on average than the two other
schemes. For shorter path lengths, the order does not make much difference since the index part
of the pattern contains many bits from every target. For longer path lengths the difference in
precision becomes more important. Reverse interleaving gives longer path length predictors the
opportunity to use more exact information from older targets, which is their main advantage
compared to shorter path lengths. In the remainder of the paper we use reverse interleaving.

8.4.2.2 Associativity

Figure 63 shows that for any given table size and path length, higher associativity results in
lower misprediction rates. The only exception is the tagless table, which obtains a lower mispre-
diction rate than a four-way associative table for path length 7 to 12. This effect is caused by
positive interference. Since these longer path lengths generate a larger set of distinct patterns,

Figure 62. Interleaving schemes
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conflict misses occur frequently even in four-way associative tables. The tagless table returns its
stored target as a prediction even though it may belong to a different pattern, while the associa-
tive table registers a miss. Since many patterns map to a small number of targets, the prediction
is better than random so that a tagless table can outperform the associative table. Even where
tagless tables do worse than two- or four-way associative tables, the difference in miss rate
remains relatively small. Since associative tables require tags and tag checking logic, the hard-
ware implementation of a tagless table is smaller and faster than its associative counterpart, so
that it may be the preferable choice under many circumstances.

Figure 63 shows the AVG misprediction rates for practical associativities. The best predictor for
a given table size changes depending on associativity. For tagless tables, p=3 is best for table
sizes 128 to 8192. For 2-way associative tables, p=1 wins for size 128, then p=2 is best for sizes
256 to 1024, after which p=3 performs better. For 4-way associativity, the best predictor for
every size up to 1024 is the same as for a fully-associative table (see Figure 58). Then p=3
remains the best choice up to table size 4096. At size 8192, p=4 has a slight edge. P=6 retains
too many conflict misses even for large table sizes and therefore loses its status as best practical

0
0 0 0 0 0 0 01

1

1
1

1 1 1 1

2

2

2

2
2

2 2 2

3

3

3

3
3

3
3 3

4

4

4

4

4
4

4 4

6

6

6

6

6
6

6

8

8

8

8

8
8

8

a

a

a

a
a

a

c

c

c

c

c
c

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0%

5%

10%

15%

20%

25%

30%
0

0
0 0 0 0 0 0

1

1

1
1 1 1 1 1

2

2

2

2
2

2 2 2

3

3

3

3
3 3 3

4

4

4

4

4
4

4

6

6

6

6

6
6

8

8

8

8

8

a

a

a

a

c

c

c

c
32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0%

5%

10%

15%

20%

25%

30% 0
0

0 0 0 0 0 0 0
1

1

1
1 1 1 1 1 1

2

2

2
2

2 2 2 2

3

3

3

3
3

3 3 3

4

4

4

4
4

4 4

6

6

6

6
6

6

8

8

8

8
8

a

a

a

a

a

c

c

c

c

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0%

5%

10%

15%

20%

25%

30%

1
1 1 1 1

2

2

2
2 2

3

3

3

3
3

4

4

4

4

6

6

6

8

a

51
2

10
24

20
48

40
96

81
92

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%1
1 1 1

2

2

2
2

2

3

3

3

3
3

4

4

4

4

6

6

6

6

8

8

8

a

a

c

c

51
2

10
24

20
48

40
96

81
92

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%
1

1 1 1 1

2

2
2

2 2

3

3

3
3

3

4

4

4

4
4

6

6

6

6

8

8

a

51
2

10
24

20
48

40
96

81
92

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

Tagless Associativity 2 Associativity 4

Figure 63. AVG misprediction rates for various table sizes and associativity
Numbers indicate path length, a = 10, c = 12
Bottom graphs enlarge cut-out section



109

predictor. Limited table size and associativity prevent the predictor from taking full advantage
of the longer-term regularity detection capability of longer path length predictors (however, see
the next section). Table A-1 in the appendix shows the exact misprediction rates for the best
predictors for all table sizes, and Table A-2 contains their path lengths.

8.5 Summary

We have explored a wide range of two-level indirect branch predictors, starting with uncon-
strained predictors with full-precision addresses and unlimited hardware resources. For a suite
of large C++ and C programs totalling more than half a million lines of source code, the best
unconstrained predictor achieved a misprediction rate of 5.8%, indicating that indirect branches
are intrinsically predictable even though current hardware predictors (BTBs) do not predict
them well. An exhaustive search of the design space established that a global history and per-
address predictors perform best.

Subsequent experiments introduced resource constraints in order to evaluate whether realistic
predictors could approach this performance with a limited hardware budget. Introducing
limited-precision addresses (for a history buffer of 24 bits) increased the misprediction rate to
6.0%. Limiting table size (thus causing capacity misses) resulted in a further increase to a 8.5%
misprediction rate for a 1K-entry table and 6.6% for a 8K-entry table. Restricting table associa-
tivity resulted in 11.7% and 8.5% misprediction rates for 1K and 8K tagless tables, respectively.
Four-way associative tables of the same sizes reduce the misprediction rates to 9.8% and 7.3%,
respectively. In comparison, an infinite-size fully-associative branch target buffer achieves a
best-case misprediction rate of 24.9%. In other words, two-level prediction improves prediction
accuracy by more than a factor three.

We also explored a variety of alternatives that resulted in inferior performance. In particular:

• Per-address or per-set history buffers perform worse than a global, shared history buffer.

• Updating targets on every miss lowers the performance, compared to updating only after
two consecutive misses.

• Including conditional branch targets in the history pattern lowers prediction performance
by pushing the more relevant indirect branch information out of the history buffer.

• Using bits other than the lower-order bits of target addresses results in lower performance.

• For limited-associative tables, the index part of the key pattern should contain bits from as
many targets as possible, i.e., interleaving of target address bits performs better than
concatenation.

The difference in performance between a BTB and the best practical two-level predictor
becomes significant only for history tables larger than 64 entries. As the hardware budget allows
larger history tables to be implemented, the path length of the best predictor grows.
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9 Hybrid indirect branch predictors
“I’ll get by with a little help from my friends,
I’ll get high with a little help from my friends,
Going to try with a little help from my friends.”,

The Beatles [11]

As discussed in the previous section, predictors with short path lengths adapt more quickly
when the program goes through a phase change because it doesn’t take much time for a short
history to fill up. Longer path length predictors are capable of detecting longer-term correla-
tions but take longer to adapt and suffer more from table size limitations because a larger pattern
set is mapped to the same number of targets. In this section we combine basic predictors into a
hybrid predictor in order to obtain the advantages of both.

9.1 Hybrid prediction

When constructing a hybrid predictor, one has two separate but related problems to solve:

• Component selection: which component predictors work well together?

• Metaprediction: given more than one target prediction for a branch, which one do we use?

9.1.1 Components

Ideally, a hybrid predictor’s components do not overlap. Each one should specialize on a subset
of all branches which it predicts well. If components cover the same area of expertise, resources
are wasted, since double work is performed. In this study, we use component predictors that
differ in the path length of the history buffer, and in the size of the history table they employ.
Each component is an instance on the global history two-level predictor class studied in the
previous section. It uses only indirect branch targets in the history. We call such a component a
monopredictor.

This monopredictor serves as the basic building block for more advanced predictors. Figure 64
shows the setup for path length 8. A 24-bit global history buffer stores three bits of the most
recent eight targets1. The branch address is xor-ed with this pattern, giving a 24-bit key pattern.
This pattern is used to access a history table storing the most recently observed target address
of each pattern. Longer path lengths use fewer bits of each target address, so that the length of
the pattern remains constant. Unless mentioned otherwise, we use 4-way associative history

1 Using reverse interleaving, the most accurate projection mechanism tested in Section 8.3
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tables1, and table entries are updated only after two consecutive mispredictions. We will refer
to this setup as amonopredictorof path length p.

9.1.2 Meta prediction

A hybrid branch predictor combines two or more component predictors that each predict a
target for the current branch. The hybrid predictor therefore needs a selection mechanism to
predict which of the predictors is likely to be most accurate. We call this prediction of prediction
accuracymetaprediction. In the literature, at least two metaprediction mechanism are explored.
A Branch Predictor Selection Table (BPST), proposed my McFarling [98], associates a two-bit
counter with each branch to keep track which of two component predictors is more accurate.
After resolving a branch, the counter is updated to reflect the relative accuracy of the two
components. Alternatively, branches can be partitioned into different classes based on run-time
or compile-time information, and each class is associated with the component predictor best
suited to handle it, as proposed by Chang, Hao and Patt [23].

The hybrid predictors presented in this chapter differ mainly by their meta prediction technique.
Component predictor path lengths are tuned by varying their separate path lengths until the
prediction accuracy, averaged over the benchmark suite (AVG), is maximized.

1 We show tags in figures only where they are required for correct operation of the predictor, as in the cascaded predictor. However,
in the simulations we measure all setups with 4-way associative (tagged) tables in order to remove the noise of extensive conflict
misses.

Branch Address

History Table

XOR

History Buffer

8 recent targets
3 lower order bits per target

Pattern projector for path length 8

Figure 64. Basic component predictor.

24 bit key pattern

For each path length between 0 and 12, the pattern projector constructs a key
of 24 bits, which is then used to access a history table that stores target
addresses.



113

9.2 Branch classification

A classifying hybrid predictor, first explored by Chang, Hao and Patt [23] for conditional
branch prediction, assigns to each branch a branch class. All branches that belong to a class use
the same component predictor. Classification therefore implements a kind of off-line metapre-
diction. Before the program is run, it is determined for each branch which component delivers
a target prediction. This means that only one component executes for every branch, allowing
components to share resources such as a prediction table.

In our experiments, component predictors differ only by global history path length. While every
component predictor’s history pattern is updated by all branches, only one is selected for
prediction based on the branch class. The classifying predictor can use a shared history table for
all component predictors (as shown in Figure 65) or several separate tables.

First, we study classification based on a branch’s source-level origin (indirect call, virtual call,
or switch statement). Then we classify branches based on the number of different targets
encountered in a program run (thearity of a branch).

9.2.1 Opcode-based classification

In a first experiment, we classified branches into three classes: switch, virtual call, and indirect
call. The GNU compiler translates switch statements with more than seven cases into an indi-
rect jump; no other C/C++ constructs use an indirect jump1, and thus this class is easy to recog-
nize. To recognizevirtual function calls, we used EEL [89] to look for the characteristic five-
instruction sequence generated by gcc and marked the corresponding call instruction accord-

1 They use jump and link (JMPL) instead of jump (JMP), in order to return to the call point.

Branch Address

History Table

Branch ClassBranch Target

Class1 History

Class2 History

Class3 History

Branch
Class?

XOR

Key pattern

Figure 65. Classifying hybrid predictor with shared history table
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ingly. All other indirect calls were classified as indirect calls (i.e., calls through function
pointers).1

For each branch class, Table 19 shows the average dynamic frequency, static frequency, and
average number of targets. Not surprisingly, virtual function calls dominate in OO programs
(61% of all branches) whereas indirect calls dominate in C programs (69%). The branch classes
differ substantially; in particular, switch branches have a much higher number of targets than
the other branches. We hope to exploit this difference by fitting a monopredictor to each class
and combining these in a hybrid predictor.

We first determined the path length that results in the lowest misprediction rate for each branch
class. The best path length varies according to table size and associativity, since longer paths
require larger tables to be effective (see Section 8). Figure 66 shows AVG misprediction rates
per branch class and path length for a 1K-entry, 4-way associative table.

Switch branches behave similarly toindirect branches even though they have more targets; both
classes reach minimal prediction rates at path length three.Virtual branches differ from the

1 Obviously, the distinction between virtual and indirect in hardware would require the introduction of a new opcode or special
register usage conventions.

OO C

Class Source structure Detection dyn% stat% #targets dyn% stat% #targets

switch switch statements, >7 cases by opcode (JMP in SPARC) 22.5 2.6 12.7 31.4 35.6 4.9

virtual virtual function calls in C++ with EEL (5-instr. sequence) 61.2 69.4 2.1 N/A N/A N/A

indirect all other indirect branches by opcode (JMP and link) 16.3 28.0 2.2 68.6 64.4 5.1

Table 19. Indirect branch classes with dynamic and static frequency, and number of targets
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Figure 66. Misprediction rates per opcode-based branch class
for a 1K-entry 4-way associative history table
path lengths 0 (BTB) to 12
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other classes in that their ideal path length is slightly shorter, i.e. they correlate with more
recently executed branches.

After finding the best path length for each branch class separately, we calculated the mispredic-
tion rate of a classifying predictor using separate tables for each class. For a given total table
size T, one of the component predictors uses a table of T/2 entries, the other two components
use T/4 entries1. From the three possible configurations we selected the one with the lowest
miss rate. We then used the best path lengths for separate component predictors of size T, 2T
and 4T, to run a simulation of a shared-table classifying predictor of size T.

Table 20 and Figure 67 show the resulting predictor performances in comparison with a non-
classifying monopredictor of equal size. Path lengths for the indirect and switch branch class
are nearly identical over all table sizes. Virtual branches are better predicted by shorter path
lengths.

Clearly, classifying predictors with separate tables don’t perform well, having uniformly higher
misprediction rates than a monopredictors. These predictors do not utilize their table space effi-
ciently since the relative frequency of the different branch classes varies widely across bench-
marks. For instance, C programs do not have virtual branches, so at least a quarter of the total
table space is unused. A shared-table classifying predictor performs better, obtaining a
uniformly lower misprediction rate than a monopredictor of equivalent size. This result demon-
strates that per-class path length determination does pay off, although the gain is quite small so
that the higher hardware cost of opcode-based prediction does not seem justified.

1 In these and later experiments, the total number of table entries is a power of two, in order to make point-to-point comparisons
with two-level monopredictors.
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9.2.2 Arity-based classification

In a second experiment, we classified branches according to the number of different targets
encountered in a program run, or brancharity. Thearity of a branch can be determined in a
profiling run, or estimated by source code analysis. Annotation of this arity in the branch
opcode would allow a classifying hybrid predictor to function in the same manner as the
opcode-based classifying predictor shown earlier.

After some experimentation, we chose to form three classes (one target, two targets, and more
than two targets). Branches with only one target (monomorphic branches) constitute 67% of all
branches but are executed only 34% of the time. 18% of all branches jump to two targets, for
17% of all branch executions. Branches with three or more targets constitute 15% of all
branches but are executed 49% of the time.

Figure 68 shows AVG misprediction rates per branch class and path length. Monomorphic
branches are perfectly predicted by a monopredictor without history, i.e., a BTB. Longer path
lengths increase the number of mispredictions since every different path leading to the branch
causes an extra cold-start miss. Also, each monomorphic branch may occupy multiple table
entries, thus increasing capacity misses. Branches with two targets have an optimal path length

Table
size

Separate Hybrid Shared
Hybrid

Mono

Class
with T/2

P
I.V.S

miss
%

P
I.V.S

miss
%

P miss
%

64 Indirect 2.0.2 25.4 2.0.2 19.7 1 19.8

128 Indirect 2.0.2 19.5 2.0.2 15.5 1 17.0

256 Switch 2.0.2 15.6 2.0.2 13.0 2 13.7

512 Indirect 2.0.2 13.0 3.1.2 11.0 2 11.3

1024 Indirect 3.1.2 11.0 3.2.3 9.5 3 9.8

2048 Switch 3.1.3 9.7 3.2.3 8.4 3 8.5

4096 Switch 3.2.3 8.5 4.2.3 7.8 3 7.8

8192 Indirect 4.2.3 7.8 4.3.4 7.2 4 7.3

16384 Switch 4.3.4 7.2 5.3.5 6.7 5 6.8

Table 20. Misprediction rates for separate and shared opcode-based classifying predictors.
Also shown are the branch class with the largest table (for classifying predictors with
separate tables), and the best path length combinations (indirect/virtual/switch) for
opcode-based classifying hybrid predictors.
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of two and cause few mispredictions. The bulk of mispredictions comes from branches with
three or more targets, with optimal path length three.

Table 21 shows the best arity-based predictor per table size for both separate and shared table
predictors. The best path length for monomorphic branches is always zero, but path lengths for
the other branches increase with table size. In a component predictor with separate tables, the
largest table always goes to polymorphic branches, and the best path length for these branches
is nearly always the same as the best path length for a monopredictor.

Figure 69 illustrates that the misprediction rate of a separate component hybrid is nearly the
same as that of a monopredictor. These predictors benefit from shorter path lengths which

Table
size

Separate Hybrid Shared Hybrid Mono

Class T/2 P
1.2.>2

miss% P
1.2.>2

miss% P miss%

64 > 2 targets 0.0.1 23.3 0.0.2 18.8 1 19.8

128 > 2 targets 0.0.2 17.3 0.0.2 14.7 1 17.0

256 > 2 targets 0.0.2 13.5 0.0.2 12.1 2 13.7

512 > 2 targets 0.1.2 11.3 0.1.2 10.5 2 11.3

1024 > 2 targets 0.2.3 9.7 0.2.3 8.9 3 9.8

2048 > 2 targets 0.2.3 8.4 0.2.3 8.0 3 8.5

4096 > 2 targets 0.2.3 7.8 0.2.4 7.4 3 7.8

8192 > 2 targets 0.2.4 7.3 0.2.4 6.9 4 7.3

16384 > 2 targets 0.3.5 6.9 0.3.5 6.5 5 6.8

Table 21. Misprediction rates for separate and shared arity-based classifying predictors.

Figure 68. Misprediction rates per arity-based branch class
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opcode-based classifying hybrid predictors.
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generate fewer different patterns per branch, so that fewer table entries are used for branches of
arity 1 and 2. On the other hand, polymorphic branches are restricted to use half of the total
table size. Both effects appear to nearly cancel each other out, as shown in Figure 69. With a
shared table, the latter restriction is removed, and the misprediction rate is always lower than
that of a monopredictor.

Although an arity-based classifying hybrid predictor performs significantly better than a mono-
predictor, especially for smaller tables, it has significant practical disadvantages:

• Branch instructions need to be annotated with an arity counter, requiring an instruction set
extension.

• Arity must be determined by profiling, which may not remain accurate over different
program runs, or program analysis, which may not be precise enough to lower the overall
misprediction rate.

For these reasons, arity-based classification may not be practical. However, its performance
shows that classification on the number of targets is more promising than opcode-based classi-
fication. In particular, arity-based classification helps reduce the load on a path-based predictor
by removing monomorphic branches. This effect significantly reduces capacity misses: for
example, forjhm the 256-entry predictor of a separate-table classifying predictor of size 512
experiences a table miss rate of only 0.9% versus 2.3% for a 256-entry monopredictor. To
exploit this effect, we will use a form of dynamic classification in Section 9.4. Dynamic classi-
fication is more adaptive and does not require changes to the instruction set architecture
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119

9.2.3 Discussion

Classifying predictors match branches to predictor components in a round-about way: first the
branch is assigned to a class, and then a predictor component is tuned (by varying path length)
to a branch class. Much depends on the uniformity of branches within a class. If classes are too
coarsely defined, as in the opcode classification experiment, then there is no class-specific
behavior to take advantage of. In the arity-based classification experiment, the per-class
behavior is much more distinct, allowing a closer match between a branch and a predictor
component. However, some branches may still be misclassified. A duomorphic branch may
jump to the same target most of the time1, and could therefore benefit from classification into
the monomorphic class. The classification mechanism could take this into account by classi-
fying branches according to the number of times they undergo a target change. Many such alter-
native classification criteria can be conceived. However, a branch whose behavior (and thus its
classification) varies according to program input, will be misclassified in some program runs.
Ideally, a branch should be classified according to its current behavior, i.e. if the behavior varies
between program runs or between program phases in the same run, then the branch should be
re-classified. Dynamic classification at run time can deliver more accurate metaprediction (and
thus prediction), because it uses more up to date information.

In the next section, we cut out the classification step and match a branch directly to a compo-
nent, based on its run-time behavior.

1 For instance, if it tests for exceptions or end conditions in a loop
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9.3 Dual-path hybrid prediction

In this section we combine two monopredictors with different path length into a hybrid
predictor that adjusts its meta prediction dynamically. A given branch is always predicted by
both components. The success of a component in predicting the branch in the past then deter-
mines whether its target prediction will be chosen for the current branch.

9.3.1 Meta prediction

We attach a “confidence” counter to each table entry to keep track of the number of times the
table entry predicted the correct target. The counter is a n-bit saturating counter which tracks the
success rate over the last 2n-1 times the entry was consulted. (Replacing an entry resets the
counter to zero). The hybrid predictor selects the target with the highest confidence value; ties
are resolved using a fixed ordering (we test different orders in the next section).

This metaprediction scheme is a natural generalization of the McFarling Branch Predictor
Selection Table [98]. A BTB (path length 0) per-branch confidence information, like a McFar-
ling table. A two-level predictor with path length n stores a confidence for eachpath of length
n rather than each branch, so it is more fine-grained. A branch has a confidence attached to each
path of length n that leads up to it. This could lead to higher prediction accuracy, since some
paths to a branch may be very predictable, some not, and the misses of one path could penalize
the confidence in another if they shared a confidence counter. From an implementation point of
view, per-entry counters add two bits to all tables, but do not require an extra, separate table.
Looking up the pattern and its confidence requires only one table access. A McFarling table
requires two table accesses: the per-branch confidence table and the per-path prediction table.

We tested 1,2,3 and 4-bit confidence counters for all configurations in the next section.
Although the performance difference between 2,3 and 4 bit counters was small, 2-bit counters
usually performed best and are used for all results shown.

Figure 70. Dual-path hybrid predictor scheme

Branch Address Short Path Length Predictor

Long Path Length Predictor

Branch Target Update

Prediction
Meta Prediction:
use entry with
highest confidence
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9.3.2 Component predictors

We simulate hybrid predictors with two component predictors of equal table size and associa-
tivity but different path lengths1. The component table sizes vary from 32 entries to 16K entries,
and we simulate all combinations of path lengths in the range 0..12.

Figure 71 shows the AVG hit ratios for two component table sizes with representative behavior
(2048 and 8192); more details are given in Table 22. The best hit rates are obtained by the
combination of a short path length predictor (p=1..3) with a longer path length predictor
(p=5..12). Since the curve is fairly symmetrical with respect to the diagonal, it appears that the
order of the predictors (which is used to break ties in component predictor selection) does not
matter much. For smaller tables, the curve is sharper and peaks at shorter path lengths, i.e., it the
choice of the short path length component is more important, and very short path lengths do
much better.

1 Chronologically, this study was performed before the branch classification study. Therefore we still test different associativities.
As this section shows, a hybrid predictor suffers from conflict misses to the same extent as its component predictors do. In later
studies we only consider 4-way associative tables in order to remove most of the noise of conflict misses, and to cut down on the
number of different configurations to be run through our simulation engine.

Figure 71. Prediction hit rates for dual-path hybrid predictors, all path length combinations.
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122

9.3.3 Results

Figure 72 shows the misprediction rates of the best non-hybrid and hybrid predictors for each
table size and associativity. We compare predictors based on total table size, i.e., we treat a
hybrid predictor with two component predictors of size N as a predictor of size 2N and compare
it against the non-hybrid predictor of that size. In all but one case (64 entry, associativity 4),
hybrid predictors obtain lower misprediction rates than equal-sized non-hybrid predictors, even
though each component separately suffers more from capacity and conflict misses than the non-
hybrid predictor. For smaller table sizes (between 64 and 512 entries), the effect of increased
associativity remains stronger than that of hybridization. For example, a non-hybrid 4-way
associative table of size 256 achieves a lower misprediction rate than a hybrid predictor with
two 2-way associative components of size 128 each. For larger table sizes (between 1K and 32K
entries), a hybrid predictor with 2-way associative components performs better than a non-
hybrid 4-way associative predictor of the same size. For 2- and 4-way associative non-hybrid
predictors with tables larger than 2K entries, the prediction rate improves more by changing to
a hybrid predictor than by doubling the total table size. For tables larger than 4K entries, a 4-
way associative hybrid predictor outperforms even a fully-associative table of the same size.

Figure 72. Misprediction rates per table size, associativity and predictor type
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Table 22 shows the misprediction rate of the best predictor for each table size as well as the
component path lengths for which the misprediction rate was achieved. The trend towards
longer path lengths with increasing table size is very pronounced; clearly, long paths are inef-
fective for small predictor tables. We also show the misprediction rate and path length per class
for the shared-table arity-classifying predictor from Section 9.2.2 (with table associativity
four), the most accurate classifying predictor. For total table entry sizes of 1K entries or smaller,
classifying prediction wins, while for larger tables, dual-path hybrid prediction performs better.

A dual-path hybrid predictor stores two different path length target predictions for each branch,
while a classifying predictor uses only one path length for each branch, reducing the amount of
storage required (reducing the number of capacity misses). For small tables, this effect seems
more important than the capability of a dual-path hybrid predictor to adapt its metaprediction to
individual branches. In the next section, we will study a hybrid predictor that combines both
these aspects: it employs dynamic metaprediction, but does not require a branch to be predicted
by all the predictor components.

a A non-hybrid predictor outperforms all hybrid predictors in this case.

size tagless assoc2 assoc4 Arity-
classification

miss% p1.p2 miss% p1.p2 miss% p1.p2 miss% P 1.2.>2

64 23.89% 0.2 22.76% 1.0 19.77% 1a 18.80 0.0.2

128 19.28% 1.4 17.81% 1.4 16.66% 2.0 14.70% 0.0.2

256 15.89% 1.3 14.31% 2.1 13.29% 2.0 12.14% 0.0.2

512 13.64% 3.1 11.65% 3.1 10.90% 3.1 10.50% 0.1.2

1024 11.42% 3.1 9.56% 3.1 8.98% 3.1 8.87% 0.2.3

2048 9.98% 3.1 8.42% 4.1 7.82% 5.1 7.98% 0.2.3

4096 8.95% 3.7 7.24% 5.2 6.72% 6.2 7.42% 0.2.4

8192 7.76% 3.7 6.40% 6.2 5.95% 6.2 6.92% 0.2.4

16384 6.94% 3.9 5.84% 7.2 5.53% 7.2 6.45% 0.3.5

32768 6.31% 3.9 5.50% 7.2 5.21% 8.2 6.28% 0.3.5

Table 22. Misprediction rates and path lengths for dual-path hybrid predictors
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9.4 Cascaded prediction

A cascaded predictor classifies branches dynamically by observing their performance on a
simple first-stage predictor. Only when this predictor fails to predict a branch correctly is a more
powerful second-stage predictor permitted to store predictions for newly encountered history
patterns of that branch. By preventing easily predicted branches to occupy history table space
in the second-stage predictor, the first-stage predictor functions as afilter. By filtering out easily
predicted branches, the first-stage prevents them from overloading the second-stage table,
thereby increasing its effective capacity and overall prediction performance. As a result, the
second-stage predictor’s history table space is used to predict only those branches that actually
need more sophisticated and costly prediction.

9.4.1 Metaprediction

Figure 73 shows the prediction and update scheme for a cascaded predictor. If both predictors
have a prediction, the second-stage predictor takes precedence. If the second stage has no
prediction (a table miss), then the first stage prediction is used. Therefore, the second-stage
predictor’s history table must have tagged entries, so that table misses can be detected.

This metaprediction rule by itself already increases prediction accuracy compared to dual-path
hybrid prediction, as shown in later sections. If the first stage is a short path length monopre-
dictor, and the second a long path monopredictor, then it always seems to pay to trust the longer
one. In a sense, the longer path match is a more specialized case of the short path match. We still
need the short path length predictor while the long path length predictor is warming up, since
the latter suffers more from cold start misses. In a cascaded predictor, the short path predictor
also serves a second purpose: it functions as a filter for tableupdates.

Filter update rule:
add new entry only if first-
stage prediction is incorrect

Branch Address

First-stage predictor

Second-stage predictor

Branch Target Update

Figure 73. Cascaded predictor scheme

Prediction
Meta predict rule:
use second stage
if no table miss
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9.4.1.1 Table update filtering

If the first-stage predictor predicts a branch correctly, we do not allow the second-stage
predictor to create anew entry for the branch. Only if the first stage predictor misses do we enter
the pattern and its target in the second stage table. Old entries in the second stage are always
updated. Since they have been entered before, there was at least one case in which the first stage
mispredicted the branch. In contrast, the first-stage predictor is always allowed to update its
table.

Update filtering has a precursor in conditional branch prediction: Chang, Evers and Patt
propose to use the BTB to detect heavily biased branches [22]: a saturating counter keeps track
of the number of times that a branch goes into the biased direction. If the counter overflows,
then history patterns for the branch are no longer updated in a separate Pattern History Table
(PHT). The difference with the filtering rule we employ (explained in more detail in the next
section) is subtle: we assume a branch is biased (monomorphic) until misprediction in a BTB
proves otherwise, Chang, Evers and Patt assume it is non-biased until proven otherwise, i.e.
until enough successful predictions occur in the BTB to overflow the counter. For heavily
biased branches, that always go to the same target, our scheme avoids the storage of new
patterns from the beginning1. Using a bias counter does not prevent the storage of new patterns
until the counter overflows. After the bias is detected, the two filtering rules behave the same
way.

9.4.2 Cascaded prediction with a BTB as first stage

To simplify our analysis, we first perform experiments in which the first stage is a BTB (0 path
length monopredictor), and vary its size as well as the path length and type of the second stage
component. This allows us to precisely determine the optimal table update rule, which is then
employed in the more general experiments of Section 9.4.3.

A BTB does not employ history. It stores at most one entry per branch, which suffices for mono-
morphic branches. Non-monomorphic branches are better predicted by a longer path length
predictor, as shown in section 9.2.2, and such branches will advance to the second stage of the
predictor cascade.

We examined two variants of cascading predictors. Predictors with astrict filter only allow
branches into the second-stage predictor if the first-stage predictor mispredicts (but not if it
misses). In other words, branches only advance to the second stage if they are provably non-
monomorphic. In contrast, aleaky filter also allows new second-stage entries on first-stage
misses. Thus, the second-stage table may contain entries for monomorphic branches, but these
are likely to be evicted by patterns from branches that actually need two-level prediction.

1 Except for the very first pattern occurring for a branch, if leaky filtering is employed.
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9.4.2.1 Strict filters

Successful prediction in the filter classifies a branch as monomorphic (if only temporarily). If
a branch misses in the filter predictor, nothing conclusive is known: every branch incurs a
compulsory table miss in the filter, even if it is purely monomorphic. To prevent cold-start
misses of the filter to pass through to the second-stage predictor, strict filtering disallows new
entry insertion in the second-stage predictor on a miss (but not on a mispredict). To implement
this strict filter design, the filter’s table must be tagged.

Figure 74 shows the misprediction rates for three selected second-stage predictors (each with
optimal path length for its size). We also show the misprediction rate of a cascaded predictor
without filtering. Even without filtering, the first-stage predictor reduces overall misprediction
rates compared to the stand-alone predictor (shown as filter size 0) by providing an educated
guess in the case of a table miss in the second-stage predictor. In other words, a cascaded
predictor consisting of a BTB and a path-based predictor reduces cold-start misses even without
filtering. We call this astaged predictor (see Section 9.4.3)

Strict filters do not perform well for small filter table sizes. For 16 entries or less, overall
misprediction rates are even higher than that of the stand-alone predictor. Essentially, a strict
filter predictor recognizes branches as polymorphic only if the branch remains in the filter table
long enough to incur a target change (and thus a misprediction). But with small filters, many
polymorphic branches are displaced from the filter before they mispredict, and thus they never
enter the second stage. When the filter becomes large enough to avoid most capacity misses,
this effect disappears and filtering starts to pay off. At 256 entries, strict filtering performs as
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intended, i.e., it prevents monomorphic branches from overloading the second-stage predictor,
resulting in lower misprediction rates than those of a non-filtering cascaded predictor.

9.4.2.2 Leaky filters

The sensitivity of strict filters to capacity misses is a serious flaw; the performance of a filtered
predictor should remain at least as good as that of a stand-alone second-stage predictor. To
prevent filter capacity miss problems, aleaky filter inserts an entry into both predictors upon a
first-stage table miss. That is, only correctly predicted branches are stopped by the filter. Thus,
every branch is introduced at least once into the second-stage predictor, but filtering still occurs
for later executions of the same branch: as long as the branch remains in the filter table and
doesn’t mispredict, no further second-stage entries will be permitted. If the load on the second-
stage predictor table is high, the cold-start entries for monomorphic branches will eventually be
displaced by entries for polymorphic branches. Leaky filters are cheaper to implement than
strict filters: since a misprediction and a table miss is treated the same way (new entry in
second-stage table), the filtering predictor can use a tagless table1. The second-stage predictor
still needs tags in order to recognize a table miss.

Figure 75 shows the performance of leaky filters. Even for very small filters, the filtering effect
is pronounced and improves misprediction rates compared to a non-filtering cascaded predictor.
For example, a 32-entry BTB filter improves the misprediction rate of a 256-entry monopre-
dictor from 11.7% to 10.7%. Filtering still helps even with very large (4K) predictors, reducing

1 For easy comparison, all experiments are performed with 4-way associative, tagged tables.
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Figure 74. Misprediction rates for a cascaded predictor with strict filter
Second-stage predictor table size is 256 1K and 4K entries; both predictor tables are
4-way associative. Also shown is a cascaded predictor without filtering.
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mispredictions by about 0.5%. For large filters of 256 entries or more, the leaky filter’s mispre-
diction rate is only slightly better than that of a strict filter (not shown in the figure).

9.4.2.3 Results

Table 23 shows the best path length and misprediction rate for cascaded predictors with second
stage monopredictors. Even very small BTB filters increase the effective capacity of the
second-stage table, allowing it to accommodate longer paths without incurring extensive
capacity misses. For example, a 16-entry filter reduces the misprediction rate for all second-
stage sizes to below that of a monopredictor with twice the number of entries and uses the path

Second
stage
table
size m

on
o

Best P per filter table size

m
on

o

Miss% per filter table size

hy
br

id

4 8 16 32 64 12
8

25
6

51
2

4 8 16 32 64 12
8

25
6

51
2

64 1 2 2 2 2 2 2 2 2 19.8 18.6 17.4 15.8 14.7 13.7 12.7 12.0 11.7 19.8

128 1 2 2 2 2 3 3 3 3 17.0 14.8 14.1 13.3 12.7 11.9 11.1 10.5 10.3 16.7

256 2 2 2 3 3 3 3 3 3 13.7 12.3 11.9 11.3 10.7 10.2 9.7 9.2 9.0 13.3

512 2 3 3 3 3 3 3 3 3 11.3 10.2 9.7 9.3 8.9 8.7 8.4 8.1 8.0 10.9

1024 3 3 3 3 4 4 4 5 5 9.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.3 9.0

2048 3 4 4 4 5 6 6 6 6 8.5 7.8 7.6 7.4 7.2 7.0 6.9 6.7 6.7 7.8

4096 3 4 4 6 6 6 6 6 6 7.8 7.1 6.9 6.6 6.4 6.3 6.2 6.1 6.1 6.7

8192 4 5 6 6 6 6 6 6 6 7.3 6.5 6.3 6.1 6.0 5.9 5.8 5.8 5.7 6.0

16384 5 6 6 6 6 6 8 8 8 6.8 6.2 6.0 5.8 5.7 5.7 5.6 5.6 5.5 5.5

Table 23. Path length and misprediction rate for second-stage monopredictors
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Figure 75. Misprediction rates for a cascaded predictor with leaky filter
Second-stage predictor table size is 256, 1K and 4K entries; both predictor tables are
4-way associative. Also shown is a cascaded predictor without filtering.

For comparison, the table also shows the best monopredictor (“mono”) and the best dual-path hybrid
predictor (“hybrid”) of equivalent size.
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length of a monopredictor that is four times larger. A 64-entry filter lowers the misprediction
rate below that of a monopredictor four times as large, and for all table sizes smaller than 1K
entries, beyond that of a dual-path hybrid predictor of twice the size.

We also studied cascaded predictors that use dual-path hybrid predictors in the second stage,
anticipating that filtering would again reduce second-stage misses and allow longer path
lengths. For each filtered hybrid of table size T, we simulated the best path length couples of
non-cascaded dual-path hybrid predictors of section 9.3 with table sizes T, 2T and 4T.

The resulting improvements were equally pronounced (Table 24). Again, filtering reduces the
misprediction rate and increases the best path length choices for each table size. Whereas non-
cascaded predictors need at least 1024 table entries to achieve misprediction rates below 9%, a
filtered dual-path hybrid attains this threshold with only 544 entries (32-entry filter BTB plus
512-entry dual-path hybrid). Adding an 8-entry filter to a 1K-entry hybrid predictor lowers its
misprediction rate from 9.0% to 8.2%. A 128-entry filter reduces this to 7.5%. Across all table
sizes, cascaded prediction reduces table size by roughly a factor of two.

Second
level
table
size hy

br
id

Best P per filter table size

hy
br

id

Miss% per filter table size

4 8 16 32 64 12
8

25
6

51
2

4 8 16 32 64 12
8

25
6

51
2

64 1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 19.8 20.6 19.3 18.3 17.5 15.8 14.7 13.9 13.6

128 2.0 2.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 16.7 15.5 14.9 13.9 13.1 12.4 11.4 10.7 10.4

256 2.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 13.3 12.3 11.8 11.3 10.9 10.5 9.9 9.3 9.1

512 3.1 3.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 10.9 10.0 9.6 9.3 9.0 8.8 8.5 8.1 8.0

1024 3.1 5.1 5.1 6.2 6.2 6.2 6.2 6.2 6.2 9.0 8.2 8.0 7.7 7.5 7.3 7.1 6.9 6.8

2048 5.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 7.8 7.1 6.9 6.7 6.5 6.5 6.4 6.3 6.2

4096 6.2 6.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 6.7 6.3 6.1 6.0 5.9 5.9 5.8 5.8 5.7

8192 6.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 6.0 5.6 5.5 5.5 5.4 5.4 5.4 5.3 5.3

16384 7.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 5.5 5.3 5.2 5.2 5.2 5.1 5.1 5.1 5.1

Table 24. Path length and misprediction rate for second-stage dual-path hybrid predictors

For comparison, the table also shows the best the best dual-path hybrid predictor (“hybrid”) of
equivalent size.
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Figure 76 shows AVG misprediction rates for selected prediction schemes. For all schemes and
table sizes, filtering reduces misprediction rates. For tables of 512 entries or less, the resulting
misprediction rate of filtered monopredictors is equal or lower than that of filtered dual-path
hybrid predictors. This is due to a filter’s cold-start miss reduction (it usually has a zero path
length prediction if the second stage has not yet encountered the longer path). A dual-path
hybrid predictor does not get extra benefit from this effect at small table sizes, since its shorter
component’s path length is already close or equal to zero. Most of the misprediction rate reduc-
tion of small hybrid predictors is therefore due solely to the filter’s capacity miss reduction.
Mono predictors, with path lengths of two or three, benefit both from capacity miss reduction
and cold-start miss reduction. The resulting misprediction rates end up being fairly similar for
mono and hybrid predictors. However, for second-stage tables of 1K entries and larger, the
filtered hybrid predictor’s misprediction rate is substantially lower than that of a filtered mono-
predictor at all filter sizes. Since the short component path length is two in most of these cases,
a filter’s cold-start miss reduction also benefits a dual-path length hybrid predictor. At the high
end of the table size range (+8K), conflict and capacity misses become less frequent, and the
benefit of filtering starts to diminish.

Figures 77,78 and 79 show misprediction rates for the self, edg andgcc benchmarks1. The
former two programs have the largest number of active branches in the benchmark suite. The
reduction in misprediction rate is higher than the reductions on AVG of Figure 76, which shows
that the benefit of filtering is especially pronounced for large programs.

1 Best mono predictor path lengths are determined separately for each benchmark. Hybrid predictor path lengths are picked from
the AVG path length choices.
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Figure 77. Self misprediction rates without filters and with 8 and 128-entry filters
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Figure 78. Edg misprediction rates without filters and with 8 and 128-entry filters
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9.4.3 Multi-stage cascaded prediction

In the previous section we determined the optimal metaprediction and update filtering rule for
a cascaded predictor, on the simplified case where the first stage predictor is a history-less (0
path length) BTB. Here we investigate the accuracy of a natural generalization of this two-stage
predictor by allowing any type of predictor in the first stage and any number of stages. First, we
use the maximum number of stages, and unlimited, fully associative tables for each stage, to
determine the limit of prediction accuracy reachable by this architecture. Then we test two and
three stage predictors for a wide range of table sizes, to investigate how close we can get to the
limit with a practical architecture.

9.4.3.1 Predictor components

Figure 80 shows representative examples of the predictors used in this study. The simplest
architecture is abranch target buffer (BTB). A selection of bits from the branch address serves
as a key pattern into a predictor table, which stores the last target observed for this branch.

A two-level predictor extends the BTB scheme by taking bits from the last p branch targets
preceding the execution of the current branch and xor-ing these bits with the branch address.
The parameter p is thepath length of the two-level predictor.

A cascaded predictor consists of several stages, each containing a two-level predictor with its
own history buffer and predictor table. Successive stages use increasing path lengths (in prelim-
inary experiments we observed the consistently inferior accuracy of decreasing path lengths).
The use of separate tables allows all stages to predict in parallel. In a final step, the predictor
chooses the prediction from the last stage that did not encounter a table miss. This ensures that
its target prediction is based on the longest available path history.

A cascaded predictor saves table space by using aleaky filter update rule (see Section 9.4.2): a
new history pattern enters a long path length stage only if none of the shorter stages predicted
the branch correctly. This rule prevents easily predicted branches from occupying table space in
an expensive, long path length stage. For example, branches with only a single target are
perfectly predicted by a BTB, after the initial compulsory miss, so they do not need a long
history pattern. As a result, the longer path length stage encounters fewer capacity misses,
improving overall prediction accuracy.

We also measure the accuracy of a cascaded predictor without filtering. We call this astaged
predictor. Staged predictors, even without filtering, improve prediction accuracy compared to a
two-level predictor because they reduce cold start misses. Longer path length two-level predic-
tors are more accurate than short path length predictors, but they need a longer time to reach that
potential since they store more patterns per branch. In a staged predictor, the early stages predict
many branches accurately while the later stages are warming up. This also reduces theeffect of
capacity misses in later stages, since an earlier stage is likely to have a (less accurate) prediction
available in the case of a late stage capacity miss.
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In the next section we investigate predictor accuracy under ideal circumstances, in the absence
of table interference (conflict misses) and capacity misses.

Branch Address

Figure 80. Examples of a branch target buffer, two-level predictor and
cascaded predictor.
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XOR

Global History Buffers
key patterns

t1 prediction1

3-stage Cascaded predictor with path lengths 1, 3, and 8

XORt1t2t3 prediction2
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Tags

 A staged predictor looks the same as a cascaded predictor, but
has a different update rule (every stage is updated, where a
cascaded predictor prevents insertion of new patterns in later
stages if an earlier stage predicts a branch correctly).
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9.4.3.2 Ideal predictors

We use the termideal for a predictor scheme with an unlimited, fully associative predictor table.
The misprediction rate measured for such a predictor is free from the noise of conflict and
capacity misses. This allows us to compare the intrinsic strength of different prediction
schemes, and provides us with a limit beyond which prediction cannot be improved merely by
spending more transistors on predictor tables.

In one respect, the predictors studied in this section are not ideal: they have limited 24-bit
history buffers. History buffers must be kept small because they determine the cost of a table
entry through the size of the tag. A small buffer represents each target with few bits, and this can
cause pattern interference, reducing prediction accuracy. However, a 24-bit history buffer
suffices for near-ideal accuracy. Beyond path length 12, a 24-bit history buffer causes extensive
pattern interference because it stores only one bit for some targets. Therefore we do not use path
lengths longer than 12. This restriction does not substantially reduce the potential accuracy, as
we found during a preliminary experiment with a 30-bit buffer and path lengths up to 15.

Ideal cascaded predictors have a full complement of stages. For example, an ideal cascaded
predictor of path length 6 has 7 stages, consisting of ideal two-level predictors with path lengths
0 (a BTB) up to 6. Similarly, and idealstaged predictor also has the maximum number of stages,
but does not employ pattern filtering.

Figure 81 shows misprediction rates for ideal two-level predictors, cascaded predictors and
staged predictors for path lengths from 0 to 12. Two-level prediction reaches a minimum
misprediction rate of 6.0% at path length 6. Longer path lengths show increasing misprediction
rates, because cold start misses start to negate the advantage of capturing longer-term correla-
tions. The loss of accuracy due to pattern interference is small, as shown by the accuracy of an
ideal two-level predictor with unlimited buffer size (see Section 8). Where path lengths are
integer factors of the buffer size, enabling full buffer use, interference is negligible (path lengths
0 to 4, 6, 8 and 12). Only for path lengths that use less than the full history buffer does the
misprediction rate increase noticeably. For example, path length 9 in a 24 -bit history buffer
uses only two bits per target, for a total of 18 bits1. The difference in accuracy, represented by

Terminology Description

Unlimited ideal two-level of
path length P

Two-level predictor with an unlimited history buffer, storing a concatena-
tion of full precision addresses of the P most recent targets, with an unlim-
ited, fully associative predictor table

Ideal two-level of path length P
Two-level predictor with 24-bit history buffer, storing the xor of (24 div P)
bits of the P most recent targets, with an unlimited, fully associative predic-
tor table

Ideal branch target buffer (BTB) Ideal two-level predictor of path length 0

Ideal staged of path length P A non-filtering staged predictor, with P+1 stages, consisting of ideal two-
level predictors of path length 0,1,..,P

Ideal cascaded of path length P An ideal staged predictor of path length P, with filtering of new patterns

Table 25. Ideal predictor terminology
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the “bump” in the curves, is strictly due to pattern interference. The curves for cascaded predic-
tion and staged prediction show similar bumps, the most prominent at path length 9.

An ideal cascaded predictor is better than ideal two-level prediction at all path lengths. The
short path length stages in a cascaded (and a staged) predictor immediately start predicting
many branches accurately while the later stages are warming up, as explained in
Section 9.4.3.1. This gives it an advantage over a two-level predictor of the same path length
even in the absence of capacity misses.

Staged prediction reaches lower misprediction rates than cascaded prediction at all path lengths.
This is to be expected, since a cascaded predictor uses filtering and therefore stores strictly less
information than a staged predictor. Cascaded prediction merely economizes on the number of
table entries required by staged prediction, and this has no beneficial effect for ideal predictors
with unlimited tables.There simply are no capacity misses to reduce.

However, the reduction of table entry cost is dramatic, as shown in Figure 82. The graph shows
the total number of table entries occupied in a two-level, cascaded and staged predictor. As the
path lengths grows, a staged predictor’s size grows exponentially, while a cascaded and two-
level predictor show nearly linear growth. At path length 12, a staged predictor occupies
173325 entries, five times as much as a cascaded predictor (34572) and a two-level predictor
(34076). The curves of cascaded and two-level prediction overlap almost completely,
suggesting some systematic effect.We currently can not explain this similarity, but suspect that
the exact reason for the close resemblance is to be found in information theory. In terms of

1 It is of course possible to fill the unused bit space with bits from a strict subset of the target addresses. This opens up a variety
of choices as to which targets should be represented with 1 bit extra accuracy. In the reverse interleaved address projection
employed, this choice is unclear. To simplify our analysis, we left these bits unused.

Figure 81. Ideal two-level, fully cascaded and fully staged predictor misprediction rates

0 1 2 3 4 5 6 7 8 9 10 11 12

0%

5%

10%

15%

20%

25%

M
is

pr
ed

ic
tio

n 
ra

te
 fo

r 
id

ea
l t

ab
le

History Path Length

3 4 5 6 7 8 9 10 11 12

4%

5%

6%

7%

8%

History Path Length

TwoLevel

nCascaded

nStaged

TwoLevUnlim

For path lengths 0 to 12 (cutout enlarged in right graph)



136

branch prediction schemes, it means that a two-level predictor table cost is in the same ball park
as a fully cascaded predictor. However, the latter eliminates cold start misses, while preserving
the capacity to capture longer term correlations. In the next section we measure these benefits
in the context of practical predictors.

9.4.3.3 Practical predictors

In this section we study practical cascaded predictor architectures with limited, 4-way associa-
tive tables and a small number of stages. Our aim is to reduce the number of table entries
required to attain a given prediction accuracy. We also want to find out how close we can get to
the prediction accuracy of the hypothetical ideal predictors of the previous section.

9.4.3.3.1 Practical predictor tables

The main cost of predictor architectures lies in the amount of on-chip memory required to store
predictions. In the previous section we saw that the total number of patterns generated by an
ideal predictor grows as its path length increases. For example, a two-level predictor reaches a
minimal misprediction rate of 5.8% at path length 6, by storing13210 pattern/target associations
(averaged over the AVG benchmarks). Given a table entry size of about 60 bits (24-bit tag, 1-bit
update counter, and 32-bit target address), the resulting data structure takes up about 800 K bits
of memory, barely within the capability of current processor technology. We want to reduce this
memory cost while keeping misprediction rates as low as possible.

Reducing the size of a predictor table generatescapacity misses: a pattern/target association,
though it was stored, and would have correctly predicted the target of a branch, was evicted
from the table by a pattern/target of a more recently executed branch. For smaller tables, the
path length must be shortened to prevent extensive capacity misses. However, shorter path

Figure 82. Number of patterns stored by an ideal two-level, cascaded and staged predictor
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length predictors are less accurate. For every given table size, there is some path length which
forms the optimal compromise between these opposing effects. We use simulation to determine
this optimal path length, and the resulting misprediction rate, for table sizes from 32 to 32K
entries.

One further limitation is necessary to allow limited size predictor tables to be implemented in
silicon: a limited associativity (see Section 9). We use tables with associativity four, as usual.

9.4.3.3.2 Practical multi-stage predictors

A staged predictor must split up a given total table entry budget and allocate some part of it to
each stage. Although it is conceivable to use one global predictor table for all stages, this would
require an expensive multi-access table. Therefore each stage uses a separate single-access
table. For a given total table entry budget, we have the option of using many stages with small
tables, or few stages with large tables. Which one is better?

For a cascaded predictor, there are two opposite effects at work. On the one hand, partitioning
table space over a large number of stages increases the likelihood that a benchmark’s working
set overloads the capacity of any given stage, resulting in extensive capacity misses. This also
reduces the efficiency of pattern filtering, since only correct predictions prevent patterns from
occupying space in later stages. On the other hand, a large number of stages allows filtering to
occur at a stage with a shorter path length, reducing the total number of patterns stored. For our
benchmark suite, a small number of stages uses a given table entry budget more effectively than
a full complement of stages. For example, a cascaded predictor with 9 stages, from path length
0 up to 8, with 128 entries per stage (total budget of 1152 entries) achieves a misprediction rate
of 7.7%, while a 2-stage cascaded predictor with 512 entries per stage (total budget of 1024),
and path lengths 1 and 8, reaches 6.8%.

We therefore focus on predictors with a small number of stages. From an analysis point of view,
their superior accuracy is a windfall, since a small number of stages substantially reduces the
number of different path length combinations to be simulated1. For 2-stage predictors without
filtering (staged), we test all path length combinations P1P2, with 0 <= P1 < P2 <= 12, for each
total table entry budget that is a power of 2 between 32 and 32K entries. Each stage uses half of
the total table size.

We also determine optimal path length combinations for cascaded predictors. For the 2-stage
cascaded predictor, we test the same range of path lengths as for the 2-stage non-filtering
predictor. However, we also simulate table entry budgets halfway between powers of 2 (in order
to compare with 3-stage predictors with same-size stages). In that case, two third of the entries
is allocated to the last stage.

1 An truly exhaustive study would require simulation of approximately #stages ^ (#tablesizes * #historylengths). For the range of
table sizes, history lengths and number of stages explored in this study, this would lead to 15 ^ (10 * 15) ~= 2.6E176 different
combinations, far too many to explore within the given time frame.



138

For the 3-stage predictor we test all path length combinations with 0 <= P1 < P2 < P3 <= 12,
with P1 <= 4, and P2 <= 10, to reduce the number of combinations without removing good
candidates. We simulate the same range of total table entry budgets as for the 2-stage cascaded
predictor by using stage sizes X+X+X and X+X+2X, with X equal to a power of 2. Table 26
summarizes the terminology.

9.4.3.4 Results

Figure 83 shows misprediction rates that result from using the best path length combinations for
each predictor configuration. Exact numbers with path length combinations can be found in
Table 28. For comparison we also show the misprediction rate of a BTB and the best ideal two-
level, cascaded and staged predictors of the previous section (shown as dotted lines parallel to
the x-axis since table size is not a factor).

Cascaded predictors perform better than two-level predictors at all table sizes in the explored
range. In other words, any given misprediction rate is bought at a much lower cost. For instance,
a 3-stage predictor of size 512 outperforms a two-level predictor of size 2K. At a fairly modest

Terminology Description

Two-level of size T Two-level predictor with a 4-way associative predictor table of size T

2-staged of size T A non-filtering staged predictor, using 2 two-level predictors of size T/2

2-staged cascaded of size TA 2-staged predictor of size T, with pattern filtering. If T is not a power of 2, the
stages have size T/3 and 2T/3

3-staged cascaded of size TA 3-staged predictor with pattern filtering, using 3 two-level predictors of size
T/3. If T is a power of 2, the stages have size T/4,T/4, and T/2

Table 26. Practical predictor configurations (path length combinations are tuned to each size T)

Figure83. Misprediction rates for practical two-level, staged and cascaded predic-
tors
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budget of 1.5K entries, a 3-staged cascaded predictor attains the same misprediction rate as an
ideal two-level predictor with an unlimited table.

3-stage cascaded predictors consistently outperform 2-stage predictors, and 2-stage cascaded
predictors outperform 2-stage (non-filtering) predictors. For limited budgets, cascaded predic-
tion wins over staged prediction because pattern filtering reduces capacity misses, allowing a
cascaded predictor to use longer path lengths for any given table size.

2-and 3-staged predictors seem to get asymptotically close to the accuracy of an ideal staged
predictor for large, but still practical table budgets. A small number of stages clearly suffices to
get almost arbitrarily close to ideal accuracy. A 3-stage cascaded predictor, at 4K table entries
and higher, even improves upon the accuracy of an ideal cascaded predictor with a full comple-
ment of stages. This surprising result indicates that a small number of stages improves predic-
tion accuracy. The label “ideal” for a fully staged cascaded predictor thus seems to be a
misnomer. We are not entirely sure why this is the case. Filtering seems to be responsible for the
reduced accuracy, since a non-filtering ideal staged predictor still outperforms all other predic-
tors. A small number of stages does not filter out as many patterns, and therefore it may repre-
sent an intermediate between these extremes, at large table budgets1, resulting in an
intermediate misprediction rate.

Do 3-stage cascaded predictors form the best possible configuration for a limited budget? We
think not. Dividing the table entry budget over 8 stages gives worse performance than a 2-stage
cascaded predictor, as shown above, so the optimal number of stages may lie somewhere in
between 3 and 8, most likely at the lower end. However, the benefit of extra stages is not likely
to improve performance by a large factor. The difference between 2 and 3 stage cascaded
prediction is already fairly small, allowing a 3-stage predictor of size 3X to reach the same or
better performance than a 2-stage predictor of size 4X, as soon as X is larger than 512. The
added complexity of extra stages may not be worth the effort.

We did not show staged predictors in which stages differ in size by a large degree, although we
did simulate 2-and 3stage predictors with the later stage(s) as much as a factor 32 larger than the
earlier one(s). The results indicate that predictors with a table budget spread out evenly among
(a small number of) stages perform best. This effect is already noticeable for the 3-stage predic-
tors shown here, since the curve in Figure 83 shows slight bumps for those configurations with
total table budgets that are powers of two. In other words, a 3-stage predictor with stages of size
X+X+X performs relatively better, in accuracy per table entry, than a 3-stage predictor with
stage sizes X+X+2X.

1 Positive interference could also be responsible. However, the tables are tagged, so this can only be pattern interference.
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9.4.3.5 Detailed data

Table 27 shows misprediction rates and occupied table entries for ideal predictors with unlim-
ited tables, for various path lengths.

Table entries Misprediction rates
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0 356 356 356 356 24.9 24.9 24.9 24.9 24.9
1 356 1195 1191 1551 24.9 13.1 13.1 13.1 13.1
2 356 2617 2495 4169 24.9 8.8 8.8 8.6 8.8
3 356 4477 4266 8645 24.9 7.1 7.0 6.7 7.1
4 356 6863 6469 15508 24.9 6.5 6.3 5.9 6.4
5 356 8838 8940 24346 24.9 6.3 5.9 5.4 5.9
6 356 12324 11838 36670 24.9 6.0 5.5 4.8 5.8
7 356 14379 14935 51048 24.9 6.2 5.4 4.8 5.8
8 356 18580 18430 69629 24.9 6.2 5.2 4.5 6.0
9 356 18160 21914 87788 24.9 7.2 5.5 5.5 6.2
10 356 23061 25770 110849 24.9 7.2 5.4 5.1 6.5
11 356 28400 30003 139249 24.9 7.3 5.3 4.8 6.9
12 356 34076 34572 173325 24.9 7.5 5.2 4.6 7.3

Table 27. Total number of entries and misprediction rates for ideal BTB, two-level, fully cascaded and
fully staged predictors, and for an ideal two-level predictor with unlimited history buffer
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Table 28 shows misprediction rates of practical predictors and the best path length combination
at various table budgets.

Table 29 shows misprediction rates per benchmark for selected predictor schemes. Headings
represent predictor schemes. For example,8Staged is an 8-staged nonfiltering staged predictor,
3Casc.P0.2.8 is a 3-staged cascaded predictor with path lengths 0, 2, and 8 (the best combina-
tion for a total of 1K-entries, in three 4-way associative tables).Oracle12 is a 12-stage nonfil-
tering staged predictor with a perfect metaprediction rule: instead of picking the component
prediction with the longest path length, thecorrect prediction is chosen, if any component
predicts the branch correctly.3CascPerBench is the misprediction rate reached by a 3-staged
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32 28.1 26.0 26.2 22.4 27.6 1 0.2 0.2 0.1.2
48 19.0 20.6 0.2 0.2.3
64 26.8 19.8 19.6 17.2 18.2 1 0.2 0.2 0.1.3
96 14.7 14.8 0.2 0.2.5

128 25.8 17.0 14.9 13.7 13.5 1 0.2 0.2 0.1.3
192 11.9 11.4 0.3 0.2.8
256 25.1 13.7 12.2 11.0 10.6 2 0.2 1.6 0.1.5
384 9.7 8.9 0.3 0.2.8
512 25.0 11.3 9.7 8.4 8.3 2 1.5 1.8 0.2.8
768 7.5 7.2 1.6 0.2.8

1024 24.9 9.8 7.8 6.8 6.8 3 1.6 1.8 0.2.8
1536 6.4 6.0 1.6 1.4.12
2048 24.9 8.5 6.7 6.0 5.8 3 1.6 1.8 1.3.12
3072 5.7 5.4 1.8 1.4.12
4096 24.9 7.8 6.0 5.5 5.2 3 2.8 1.8 1.4.12
6144 5.2 4.9 1.8 1.4.12
8192 24.9 7.3 5.4 5.0 4.8 4 2.8 2.12 1.4.12

12288 4.9 4.7 2.12 1.6.12
16384 24.9 6.8 5.1 4.8 4.7 5 2.8 2.12 1.6.12
24576 4.7 4.6 2.12 3.4.12
32768 24.9 6.6 4.9 4.7 4.6 5 2.8 2.12 1.6.12

Table 28. Misprediction rates of a BTB, Twolevel, 2-stage, 2-stage cascaded and 3-stage cascaded
predictor and their best path length combinations (a BTB’s path length is 0), for various table entry

budgets.
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cascaded predictor (1K-entry in this case), which is tuned specifically to each benchmark
(instead of choosing path lengths which minimize AVG misprediction rates).
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idl 47 6 70 543 0.2 0.3 0.4 0.4 2.4 0.3 0.4 0.3 0.4 0.4 0.8 2.4
jhm 47 5 34 155 2.1 8.1 8.6 8.7 11.1 8.7 9.7 8.6 9.9 9.6 11.3 11.1
self 56 7 848 1855 3.1 7.4 8.0 10.1 15.7 12.2 12.9 12.2 12.4 13.9 18.6 16.3

xlisp 69 11 4 13 0.3 1.4 1.6 1.4 13.5 1.9 1.7 1.5 1.8 2.0 2.2 13.5
troff 90 13 61 161 3.9 6.7 6.8 7.1 13.7 7.7 7.3 7.2 7.9 7.8 7.8 13.7
lcom 97 10 87 328 0.4 0.8 0.9 1.4 4.2 1.2 1.2 1.3 1.3 1.4 2.2 4.2

AVG-100 68 9 184 509 1.7 4.1 4.4 4.8 10.1 5.3 5.5 5.2 5.6 5.9 7.2 10.2
perl 113 17 7 24 0.2 0.2 0.2 0.5 31.8 0.2 0.2 0.2 0.2 0.2 0.3 31.8

porky 138 19 89 285 1.6 4.2 4.3 4.5 20.8 4.6 4.7 5.0 6.2 5.0 7.9 20.8
ixx 139 18 91 203 1.5 3.5 4.0 5.6 45.7 3.3 4.5 3.3 4.2 4.0 9.0 45.7
edg 149 23 186 350 3.4 7.2 8.1 11.9 35.9 8.9 9.6 9.4 9.6 9.4 16.3 35.9
eqn 159 25 58 114 2.8 8.5 10.8 12.5 34.8 12.8 13.1 14.4 14.8 14.9 21.9 34.8
gcc 176 31 95 166 2.6 8.2 11.9 11.7 65.7 14.8 15.1 15.3 17.3 17.2 23.6 65.7

beta 188 23 135 376 0.6 1.3 1.5 2.3 28.6 1.7 2.1 2.6 2.6 2.6 5.6 28.6
AVG-200 152 22 94 217 1.8 4.7 5.8 7.0 37.6 6.6 7.1 7.2 7.8 7.6 12.1 37.6
AVG 113 16 136 352 1.7 4.5 5.2 6.0 24.9 6.0 6.4 6.3 6.8 6.8 9.8 25.0
AVG-OO 107 14 164 447 1.8 4.5 5.0 5.8 19.7 5.8 6.2 6.1 6.6 6.6 9.5 19.7
AVG-C 127 21 73 138 1.6 4.3 5.5 6.3 36.7 6.5 6.7 6.6 7.2 7.2 10.6 36.7

m88ksim 1827 233 5 17 1.0 5.7 6.7 3.1 76.4 3.0 3.0 2.0 7.7 5.8 14.4 76.4
vortex 3480 525 10 37 2.4 4.3 6.3 9.9 20.2 7.7 9.2 4.5 6.4 4.6 7.1 20.2
ijpeg 5770 441 7 60 0.2 0.2 0.2 0.6 1.3 0.3 0.3 0.2 0.2 0.3 0.5 1.3

go 56355 7123 5 14 4.7 23.2 23.8 22.8 29.2 21.7 22.0 20.6 21.9 23.0 21.6 29.2
AVG-infreq 16858 2081 7 32 2.1 8.4 9.3 9.1 31.8 8.2 8.6 6.8 9.1 8.4 10.9 31.8

Table 29. Misprediction rates per benchmark for selected predictor schemes
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9.4.4 Conclusions

We have studied a new hybrid predictor architecture, the cascaded predictor, on a trace of purely
indirect branches. We first tested different table update rules and measure prediction accuracy
on the special case of a two-stage cascaded predictor with a BTB as first stage. Then we studied
multi-stage cascaded prediction. Cascaded prediction delivers superior accuracy even in the
absence of resource constraints, by exceeding the accuracy reached by any other predictor
scheme previously tested on these traces. In the context of limited table entry budgets, cascaded
prediction also provides superior accuracy, this time by reducing the cost of two-level predic-
tion by a factor of four or more.

More specifically:

• Ideal cascaded prediction with unlimited, fully associative tables reaches a hit rate of
94.8%. Ideal staged prediction, without pattern filtering, reaches 95.5%. We believe this
accuracy is close to the limit of predictability, using a pure indirect branch history, of the
indirect branches in our benchmark suite.

• Cascaded predictors with a small number of stages closely approach this limit when using
large but practical table entry budgets. In particular, a 4K entry, 3-stage cascaded predictor
attains 94.8% accuracy.

• At every table entry budget from 32 to 32K entries, multi-staged cascaded prediction
delivers accuracy superior to two-level prediction. In particular, a 512-entry three-stage
cascaded predictor reaches 92% accuracy, reducing table size by a factor of four compared
to a two-level predictor. At 6K entries, a 3-stage cascaded predictor with tuned path lengths
reaches 95% prediction accuracy, higher than the 94% accuracy achieved by a hypothetical
two-level predictor with an unlimited, fully associative predictor table.

We believe that cascaded prediction can also improve conditional branch prediction and load
value prediction, because these applications suffer equally from cold start and capacity misses,
and because recent related work [52] (see Section 10) shows that a similar architecture delivers
superior accuracy on conditional branches. It seems to be an idea whose time has come.

9.5 Summary

We used two-level predictors of different path length as components in a hybrid predictor. We
studied three classes of hybrid predictors, whose main distinctive feature is the way they decide
which component is used for a particular branch, and if there are several target predictions,
which one to trust (metaprediction):

• Classifying predictors, first proposed for conditional branches by Chang, Hao and Patt [23],
assign a class to each branch according to compile-time or profile-based criteria. We
assigned to each branch class a separate component predictor, with a path length tuned to
the branch class.Opcode-based classification, where an indirect branch is classified as a
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switch, virtual or indirect branch, does not perform well.Arity-based classification, where
an indirect branch is classified according to the number of different targets (one, two, or
more than two), performs well, but requires a change in the instruction set architecture. The
best of the tested predictors achieves 91% prediction accuracy for 1K table entries.

• Dual-path hybrid predictors predict each branch with both components and use the target
prediction with the highest confidence counter. This dynamically updated counter keeps
track of the number of successes among the most recent predictions of a table entry. The
fine-grained metaprediction implemented by per-path confidence counters increases
prediction accuracy compared to classifying predictors, but this only pays off with large
enough table entry budgets. Since every branch is always updated in both components,
dual-path predictors need more table entries for the same working set of branches. After
tuning, the best predictor achieves 91% misprediction rate for 1K total table entries.

• Cascaded predictors, a new prediction architecture, use several stages of two-level
predictors of increasing path length, and give precedence to the longest path length
prediction available. This already improves prediction accuracy compared to dual-path
hybrid predictors with confidence counters. In addition, cascaded prediction does not
require that every branch is predicted by all components. If a short path length component
predicts a branch correctly, the later stages are prevented from storing the longer path length
target prediction. This filtering of new paths reduces capacity misses. The best combination
with a BTB as first stage resulted in 92% prediction accuracy for 1K total table entries. A
cascaded predictor reduces the cost of a two-level predictor by a factor four, for similar
misprediction rates. At 6K entries, a 3-stage cascaded predictor with tuned path lengths
reaches 95% prediction accuracy, higher than the 94% accuracy achieved by a hypothetical
two-level predictor with an unlimited, fully associative predictor table.

Cascaded prediction works so well because the first-stage predictor reduces the load on the
longer path length predictors. Generally speaking, longer branch histories require larger tables.
In principle, this effect should occur for any application of path-based predictors where the
dynamic frequency of easily predicted cases is high. In particular, conditional branch prediction
or load value prediction could behave in qualitatively the same way. Therefore, we believe that
cascaded predictors might also perform well in those areas. Of course, only empirical work can
confirm this hypothesis, and thus we are planning to explore these questions in future work.
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10 Related work
“Our field is still in its embryonic stage. It’s great
that we haven’t been around for 2000 years. We
are still at a stage where very, very important
results occur in front of our eyes.”

Michael O.Rabin [115]

In this section we discuss related work not touched in other chapters.

10.1 Software techniques

10.1.1 Code rewriting optimization

Dispatch overhead can also be reduced by eliminating dispatches (rather than just making them
fast). When a branch is provably monomorphic, its target procedure can be inlined. This opti-
mization not only removes the direct overhead of lookup and parameter passing, but also
enables classic optimizations such as common subexpression elimination. Many standard opti-
mizations such as interprocedural analysis require a static call graph to work well, and many
intraprocedural optimizations are ineffective for the small function bodies present in object-
oriented programs. Thus the presence of dynamic dispatch hinders optimization, and conse-
quently, the resulting program will run more slowly. Concrete type inference [106, 130,2, 110,
3] or link-time optimizations [10,58] can determine the concrete receiver types of calls,
possibly eliminating dynamic dispatch for many sends.

When a call site has the same target for a sufficiently long time, a dynamic compilation system
can detect this through type feedback [70], and recompile code with inlining in much the same
way as a static compiler. The SELF-93 system inlines 95% of all dispatches[71] with compiler
optimizations such as customization [16] and type feedback. Hölzle and Ungar [70] estimate
that the resulting speedup in SELF is five times higher than the direct cost of the eliminated
dispatches. Given the dispatch overheads reported here, this ratio suggests significant optimi-
zation opportunities for C++ programs. Preliminary results from an optimizing C++ compiler
confirm this assumption [6].

However, these techniques are not applicable in all cases. Type-inference requires the whole
program to be present at compile time, an unrealistic assumption in the typical environment of
dynamically linked libraries. Type-feedback requires dynamic recompilation, or profiling, one
of which has a cost at run time, the other requiring most of the program to be tested in a separate
phase. The implementation effort associated with either method is typically much larger than
that of implementing an efficient dispatch technique in software, an important consideration to
practitioners. Even when either of these techniques is applicable, part of the program still needs
dynamic dispatch, since an object-oriented program typically contains real run-time polymor-
phism.
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10.1.2 Message dispatch techniques

Rose [112] analyzes dispatch performance for a number of table-based techniques, assuming a
RISC architecture and a scalar processor. The analysis included both dispatch and tag checking
code sequences. The study considers some architecture-related performance aspects such as the
limited range of immediates in instructions. Other studies have analyzed the performance of
one or two dispatch sequences. For example, Ungar [127] analyzes the performance of IC, LC,
and no caching on SOAR, a RISC-processor designed to run Smalltalk. In [40], we analyze
algorithmic issues of a number of dispatch techniques for dynamically-typed languages, but
without taking processor architecture into account. Hölzle et al. [70] compare IC and PIC for
the SELF system running on a scalar SPARC processor. Milton and Schmidt [102] compare the
performance of VTBL-like techniques for Sather. None of these studies takes superscalar
processors into account.

Calder et al. [14] discuss branch misprediction penalties for indirect function calls in C++.
Their measurements of several C++ programs indicate that inline caching might be effective for
many C++ programs (although measurements by Garrett et al. [59] are somewhat less opti-
mistic). For each call site the address of the most frequently called function is determined from
execution profiles. Calder et al. propose to improve performance with “if-conversion,” an inline
cache with a statically determined target. For their suite of programs (which differs from ours),
they measured an average BTB hit ratio of 91%, assuming an infinite BTB. In comparison, the
hit ratios we observed were much lower, with a median hit ratio of only 76% for the standard
benchmarks. Grove et al. [61] also report more polymorphic C++ programs than Calder. BTB
hit ratios vary substantially between individual programs (see Figure 42), and the difference
between benchmark suites should therefore not come as a surprise.

The efficiency of message dispatch has long been a concern to implementors of dynamically-
typed, pure languages like Smalltalk where dispatches are more frequent since these languages
model even basic types like integers or arrays as objects. Dispatch consumed a significant frac-
tion of execution time in early Smalltalk implementations (often 30% or more, even in inter-
preted systems). Hash tables reduced this overhead to around 5% [30]; however, 5% of a
relatively slow interpreter still is a lot of time. The introduction ofinline caching [35,126]
dramatically diminished this overhead. Polymorphic inline caches (PICs), extend the technique
to cache multiple targets per call site. For SELF-93 which uses inline caching and polymorphic
inline caching [68], Hölzle and Ungar [72] report an average dispatch overhead of 10-15% on
a scalar SPARCstation-2 processor, almost half of which (6.4%) is for inlined tag tests imple-
menting generic integer arithmetic. (This figure also includes other inlined type tests, not just
dispatched calls.) Given the large differences in languages, implementation techniques, and
experimental setup, used, it is difficult to compare these results with those presented here.

Srinivasan and Sweeney[117] measure the number of dispatch instructions in C++ applications,
but do not calculate the relative dispatch overhead or consider superscalar issue.
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10.1.3 Multiple dispatch techniques

We have studied single dispatch only. Cecil [18] and CLOS [83], among other languages,
support multiple-argument polymorphism directly in the form of multi-method dispatch.
Ingalls [75] shows how to implement multiple dispatch with a sequence of single dispatches,
but such an implementation is unlikely to be optimal (see Section 2.3.3).

Kiczales and Rodriguez [83], describe a multiple dispatch technique where each generic func-
tion has a corresponding hash table, mapping the combination of dynamic classes of specialized
arguments to a target method.

Dussud [51] uses a tree of hash tables per generic function, each mapping the dynamic class of
a specialized argument to a nested subtree of has tables that test the remaining arguments.

Chen and Turau model the multiple dispatch function as a collection of Deterministic Finite
Automata (DFA’s) [26],[27]. In a thorough analysis, the authors outline an algorithm to
construct an automatonDFAm for each messagem, so that dispatch is achieved inn transitions,
with n the number of arguments. Each argument type in turn decides the transition to be
executed. The algorithm ensures a minimal number of states for each automaton, so that space
requirements are minimized. However, the actual implementation ofDFAm is not treated. In
[26], the suggested implementation for each transition is “a hash table or a binary tree”. We do
not believe that this is sufficiently fast for a practical system. However, if space is at a premium,
this method is very promising. A fast implementation of multiple dispatch stores the DFA as an
n-dimensional table, indexed by the n argument types. As in single dispatch, this table is too
large to be stored in memory. In the Cecil system, for example, there are 1008 types, so a 3-
argument message would have a table with 10083 ~ 109 entries. If a memory address takes four
bytes, about four gigabytes would be necessary just to store the table of this one message. Since
there are on average four definitions for each message, the potential redundancy in this table is
enormous.

Amiel, Gruber and Simon compress the aforementioned n-dimensional table by sharing rows
between types [7]. If, for instance typet and typeu in the first argument lead to exactly the same
dispatch code, for all combinations of types of the other argument, thent andu are mapped to
the same index for the first argument, prior to the actual access into the compressed table.This
mapping is implemented by an argument array for each argument of each message. For instance
ARGm1[t] = ARGm1[u], for the above case. The argument array has as many entries as there
are types in the system. The memory overhead of this technique is difficult to estimate without
a quantitative study. The argument arrays occupy a substantial amount of memory, but the space
requirements depend mainly on the amount of sharing that can be accomplished on the n-
dimensional table. This quantity depends on the content of the table, which is determined by the
actual message definitions and thus can not be estimated without looking at real samples.

We propose a multiple dispatch technique that takes advantage of row displacement compres-
sion (two-argument cascaded dispatch) [44]. For two-argument dispatch, the two-dimensional



148

table, indexed by the first two argument types, can be mapped into the memory space used by
single dispatch tables. Since the number of messages is much larger than the number of types
in any given system (in Cecil there is a difference of a factor four), the width of such a table will
likely fit into the row displacement master array. Empty space in this table can be reclaimed by
fitting in single dispatch tables. For three or more arguments, the entries in the two-dimensional
table refer to a dispatch table for the third and subsequent arguments. Since most of the
messages in Cecil dispatch over two or fewer arguments, this technique offers efficient dispatch
for the majority of cases (see Table 30). we analyze dispatch sequences, for argument array

dispatch and two-argument cascaded dispatch, using the methodology of Section 5. According
to this analysis, two-argument cascaded dispatch outperforms argument-array dispatch only for
two-argument messages. For three or more arguments, argument-array dispatch wins because
the argument table loads are not dependent.

Pang, Holst, Leontiev, and Szafron [108] apply row displacement on multi-dimensional
dispatch tables generated by multiple dispatch. They show on the Cecil class library that
multiple row displacement is faster and uses less space than the aforementioned techniques.

Chambers and Chen [21] build a Directed Acyclic Graph (DAG) for each multiple dispatch, and
prune unreachable paths from this DAG using static information such as type declarations and
class hierarchy analysis. In [20], they unify a number of the above techniques (see the discus-
sion in Section 2.3.4), and demonstrate, on a variety of mature class libraries, that a combined
approach commonly delivers superior performance to techniques used in isolation.

10.1.4 Dispatch table compression

Besides the techniques presented in Section 3.3, two other methods for compressing dispatch
tables are reported on in the literature.

Huang and Chen propose two-way coloring [74], which applies the selector coloring principle
to both selectors and classes, and also shares occupied entries. This technique needs to check at
run time both the actual class and selector for a “message not understood” error. To our knowl-
edge, it has not been tested on real class libraries.

#Args #Messages Messages%

0 671 16.16%

1 3159 76.07%

2 271 6.53%

3 44 1.06%

4 6 0.14%

5 1 0.02%

6 1 0.02%

Table 30. Multiple-argument dispatch in the Cecil system
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Thorup presents sparse arrays [122], used to implement Objective-C, which find a method
through two indirections. The storage of empty entries is reduced by dividing a dispatch table
into chunks of constant size, and not storing those that are completely empty. No fill rates or
other comparable data is reported, so we can not compare the memory requirements with our
technique. However, the dispatch speed of sparse arrays is lower because of the double memory
indirection.

Compression of sparse tables is an old problem. Dencker et. al., in [34], list a number of tech-
niques for the compression of parser tables, which contain large numbers of default entries. For
this application, accessing a table entry is time critical, changing the table is not. Therefore the
requirements are identical to those of dispatch tables. However, of the techniques presented,
only row displacement and selector coloring perform retrieval in constant time. The other tech-
niques, like run length encoding, require search within the compressed table.

We used a genetic algorithm to find near-optimal column and row numbers for arbitrary sparse
tables [41]. This experiment showed that better encodings exist than the heuristics employed in
class-based row displacement [40]. However, the time required to find these encodings was
prohibitive in the context of dispatch table compression (several hours on a Cray Y-MP).
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10.2 Hardware techniques

10.2.1 Indirect branch prediction

Lee and Smith [89] describe several forms of BTBs. Jacobson et al. [77] study efficient ways to
implement path-based history schemes and observe that BTB hit rates increase substantially
when using a global path history. Their Correlated Task Target Buffer (CTTB), unconstrained
and fully associative, reached misprediction rates of 18% and 15% forgcc andxlisp with path
length 7; our study found misprediction rates of 12% and 1.5% forp=7. The different results can
be explained by several factors: different benchmark version (SPEC92 vs. SPEC95), inputs, and
radically different architectures (e.g., the multiscalar processor’s history information will likely
omit some branches in the immediate past). Finally, Jacobson et al. include conditional
branches in the path histories, which is probably responsible for the difference inxlisp .

Chang et al. [25] explore a limited range of two-level predictors for indirect branches and simu-
late the resulting speedups of selected SPECint95 programs for a superscalar processor. The
misprediction rate of a BTB-2bc is reduced by half to 30.9% forgcc  with a Pattern History
Tagless Target Cache with configuration gshare(9). This predictor XORs a global 9-bit history
of taken/non taken bits from conditional branches with the branch address, and uses the result
as a key into a globally shared, tagless 512-entry history table. In the present study, a compa-
rable non-hybrid predictor (p=3, tagless 512-entry) reaches a misprediction ratio of 31.5% for
gcc, the best non-hybrid predictor (p=2, four-way associative 512-entry) has 28.1% mispredic-
tion rate, and the best dual-path hybrid predictor (p1=3, p2=1, four-way associative 512-entry)
reaches 26.4%. These comparisons should be regarded with caution, since the two experiments
differed in architectures (HPS vs. SPARC), compilers, and benchmark inputs.

Emer and Gloy [54] describe several single-level indirect branch predictors based on combina-
tions of the values of PC, SP, register number, and target address, and evaluate their perfor-
mance on a subset of the SPECint95 programs. For these programs, the best predictor shown
achieved a misprediction ratio of 30%, although the authors allude to a better predictor that
achieves 15%.

Calder and Grunwald proposed the two-bit counter update rule for BTB target addresses [14]
and showed that it improved the prediction rate of a suite of C++ programs.

Stark, Evers and Patt [118], determine the best path length for each branch in the program by
profiling, and communicate this path length to the hardware through the ISA. This is a refine-
ment of branch classification, with 32 branch classes, each corresponding to a particular path
length. For a tagless table of 128 entries, a misprediction rate of 27.7% is achieved for gcc. This
technique represents the most fine-grained profile-based classification of indirect branches we
know of.

Kalamatianos and Kaeli [81] apply PPM prediction (see Section 10.2.2.2) to indirect branches,
demonstrating excellent accuracy. The PPM predictor shortens a history pattern bit by bit, and
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looks it up in successively smaller stages. Each stage is half the size of its predecessor. The bits
correspond to branch targets, so this scheme tests ever shorter path lengths. This resembles the
prediction rule of a cascaded predictor. Cascaded prediction differs from PPM prediction
because a cascaded predictor employs pattern filtering and uses a separate history buffer for
each stage.The number of stages is also independent from pattern length, and each stage can use
any table size. Although Kalamatianos and Kaeli’s study [81] demonstrates slightly better
prediction performance on some of the benchmarks measured here, at least part of the improve-
ment is due to dynamic classification of indirect branches into two classes: a class that corre-
lates best with a history buffer which stores both conditional and indirect branch targets, and
one that correlates best with only indirect branch targets. In this study we use a purely indirect
branch target trace.

10.2.2 Prediction architectures

This study builds on previous work in conditional branch prediction. Many alternative imple-
mentations were conceived by adapting existing conditional branch prediction architectures to
indirect branches. The literature on conditional branch prediction is extensive. We refer to Uht
et al. [123] for a recent general overview, and limit the discussion to work which is closely
related to this study.

10.2.2.1 Basic prediction

Yeh and Patt first proposed two-level branch prediction [134] and presented a thorough classi-
fication [135] of two-level predictors, which influenced the work discussed in Section 8.2.

Nair [105] introduced path-based branch correlation for conditional branches and showed that
a path-based predictor with two-bit partial addresses attained prediction rates similar to a
pattern-based predictor with taken/not taken bits (for similar hardware budgets).

Talcott’s disseration work [120] influenced much of this study, and the Powersim simulator
which he used to do cycle-level simulation was adapted to the SPARC architecture and used in
the experiments of Section 6.

Juan, Sanjeevan and Navarro [80] extend the two-level predictor with a table that measures
prediction accuracy and adapts the path length of a two-level predictor dynamically in order to
improve prediction accuracy over individual programs in a benchmark suite. Although this
proposal is an improvement over a statically chosen path length, it still seems too coarse-
grained for optimal performance. Hybrid predictors, as discussed in Section 9, allow individual
branches or even history patterns, rather than individual programs, to settle on a path length
which best predicts the branch.
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10.2.2.2 Hybrid prediction

McFarling first proposed to combine basic predictors into a hybrid predictor [98]. See
Section 9.1.2 for a detailed discussion. Chang, Hao and Patt’s study [24] and Evers, Chang and
Patt’s [56] present more recent results of hybrid conditional branch prediction.

Chang, Hao and Patt [23] first proposed branch classification for conditional branches. Condi-
tional branches are divided in six classes, corresponding to the frequency with which a branch
is taken in a profiling run, with boundary values 5%, 10%, 50%, 90%, 95% and 100%. The
authors present a GAs predictor with multiple branch history length and shared history table,
which is similar to the classifying shared-table hybrid predictor used in this study. A dynami-
cally classifying predictor uses a fully associative branch address cache (BAC), consisting of 2-
bit saturating counters that indicate the component predictors which best predicts a given
branch. Since we use a simple predictor both to predict indirect branches and to classify them
as “hard-to-predict”, a BAC is unnecessary in a dynamically classifying cascaded predictor. By
combining profile-guided classification for mostly monomorphic branches with dynamic clas-
sification for mixed-direction branches (between 10% and 90% taken), prediction accuracy of
96.4% is achieved for conditional branches of the SPECint92 benchmarks suite.

Stark, Evers and Patt [118] determine a path length per branch by profiling each branch in a
separate profiling run. Their technique is an instance of profile based classification which is
much more fine-grained than the classifications used in Section 9.2 (see Section 10.2.1 for more
detail).

Cheng, Coffey and Mudge [28] propose Partial Prefix Matching (PPM) prediction, based on a
compression technique, for conditional branch prediction. They show that a PPM predictor
performs better than a two-level predictor for a similar hardware budget. Since a PPM predictor
predicts for the longest pattern for which a prediction is available (choosing progressively
shorter path lengths until a prediction is found), a cascaded predictor mimics this behavior.
However, PPM prediction has a predetermined table size for all its components (exponentially
decreasing in size), reserves a component for each history bit length, and does not employ
filtering (similar to the ideal staged predictor discussed in Section 9.4.3.2).

Federovsky, Feder and Weis [57] also adapt a compression technique, Context Tree Weighting
(CWT), to conditional branch prediction. They demonstrate that the technique delivers excel-
lent prediction accuracy under the assumption of unconstrained hardware resources. They do
not assess prediction performance under limited hardware budgets.

Eden and Mudge [52] proposed the YAGS architecture for conditional branch prediction. A
YAGS predictor uses two kinds of predictor tables. A direct-mapped table (the choice table)
stores the dominant direction of a branch using a 2-bit counter. Two tagged tables (direction
tables) store a prediction for a pattern that represents history as taken/non taken bits. One of
these is used for branches that are mostly taken, the other for branches that mostly not taken.
Prediction in a direction table takes precedence over the prediction in the choice table, and
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patterns enter a direction table only if the choice table mispredicts. This scheme resembles a 2-
stage cascaded predictor with a direct-mapped BTB as first stage. The main difference is that
the second stage of a YAGS predictor consists of two separate tables. However, the authors
agreed that this is not a requirement. A YAGS predictor shows better prediction accuracy than
other conditional branch predictor schemes. We believe this is evidence that cascaded predic-
tion is also likely to perform well on conditional branches.

Table update filtering, as used in a cascaded predictor, has a precursor in conditional branch
prediction: Chang, Evers and Patt [22] study a conditional branch predictor which uses a BTB
to filter out easily predicted branches. Their predictor inhibits the history table update if the
BTB’s confidence counter is at maximum (e.g., “strongly taken”). See Section 9.4.1.1 for a
more detailed discussion and comparison with the filtering rule of cascaded predicition.
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11 Future work and open problems
“Speed is exchangeable for almost anything. Any
computer can emulate any other at some speed”,

Burton J. Smith [115]

“Sometimes it is good that some things are impos-
sible. I am happy there are many things that
nobody can do to me.”

Leonid Levin [115]

Much work remains to be done in every field we explored in the course of this study. The design
space of software techniques is by no means exhausted. Both hardware and compiler techniques
continue to evolve at a rapid pace, making continuous evaluation of dispatch cost necessary.
The population of programs that run on the majority of processors also changes, as different
trends emerge in the market place. Adaptivity, both in software and hardware, and across the
software/hardware interface, seems to provide a general solution to many efficiency problems,
but it has barely been explored. Finally, the hardware techniques explored for indirect branch
prediction may have a wider application domains.

11.1 Software techniques

11.1.1 Inline caching with fast subtype tests

It is entirely feasible to replace the equality test in the inline cache method prefix (see
Section 3.2.2) with a subtype test. Recent advances in fast subtype testing, explored by Krall,
Vitek and Horspool [85], suggest that such a test can be implemented in only a few assembly
instructions. The advantage of subtype testing is that the current receiver class does not need to
be identical to the last observed class, but can be a descendant of a common super class,
provided that the implementation is not overridden along the way. The inline cache may thus
achieve a higher hit rate. An disadvantage of such a scheme is the requirement that the subtype
relationship can be trusted. Whenever the class hierarchy changes, inline caches must be
checked for correctness. A standard inline cache is more responsive, since a changed class can
be assigned a new identity, so that old cache information results in a miss and causes an update.

11.1.2 Global caching with history

A global cache (see Section 3.2.1) is like a BTB: for every class/selector combination, exactly
one target is stored. If the key into the cache were augmented with a history of previous targets,
much higher hitrates may be achieved (a global cache is less accurate than an inline cache).
Since global caches are easy to implement, they are the preferred form of optimization in many
mid-level systems. With little extra effort, a costly dispatch table search may be avoided more
often.
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11.2 The software-hardware interface

11.2.1 Measuring cycle cost of more software techniques on superscalar
processors

We only measured virtual function table dispatch on a range of superscalar processor designs.
To evaluate other table-based techniques, in particular row-displacement dispatch, and various
forms of inline caching, these techniques should be implemented in full in the context of a real
programming environment. Hybrid techniques, that use inline caching but resort to a more effi-
cient table-based technique in the miss case, can reduce dispatch cost further on processors that
lack indirect branch prediction. The SUIF project [84], for instance, is an appropriate research
vehicle for this work.

11.2.2 Benchmarking Java

With the growing popularity of Java, processors are likely to see more code generated by a Java
compiler. Java programs are different from C++ programs. Although the all-virtual versions of
C++ programs in Section 6 capture part of the behavior of their Java counterparts by forcing the
Java default (non-final) on member function declarations, it would be nevertheless expedient to
directly measure Java applets.

11.2.3 Influence of code-rewriting techniques on indirect branch
population

Since code-rewriting techniques are capable of removing monomorphic indirect branches from
the executable, they can change the nature of the indirect branch stream that the micro-archi-
tecture must predict. With statically predicted branches removed from the indirect branch
stream, capacity misses will likely diminish, while the remaining indirect branches will be, on
average, harder to predict accurately. Hölzle [71], shows that inlining, by removing near-mono-
morphic calls, increased the dynamic average number of targets (arity) of the remaining calls by
more than a factor two. This may take some load off the first stage of a cascaded predictor, since
fewer easily predicted branches reach the hardware, resulting in overall reduction of dispatch
cost.

Some code-rewriting techniques are capable or over-optimization. For instance, a recently
proposed technique for Java dispatch, by Zendra, Colnet and Collin [136], replaces all polymor-
phic calls by a tree of nested conditional branches. Whether this is a win depends on whether the
processor’s indirect or conditional branch prediction architecture is best suited to capture the
regularity of target patterns of the branch. It may well be the case that this kind of optimization
reduces performance, as in the case where an inline cache uses an inferior form of prediction,
assuming that the hardware does not predict indirect branches at all.
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11.2.4 Feedback from predictor hardware to code-rewriting techniques

Type-feedback, in combination with dynamic recompilation of a program’s “hot spot’s” has
proven a very effective tool for program optimization in a dynamic environment [71]. Two
statistics are gathered by the run-time system: the types that occur as receivers of a particular
message call site and the frequency of invocation of each particular message implementation.
The latter tells the dynamic (JIT) compilation system which methods are executed frequently
enough so that it is worth paying a run-time recompilation cost. The former tells the optimizer
which polymorphic calls are, at least temporarily, dominated by one or only a few targets, so
that these can be inlined, enabling classic compiler optimizations and further reducing type tests
within the inlined code. The overhead, compared to an off-line profiling optimizer (assuming
the program’s behavior is relatively constant) consists of the actual compilation cost, occurring
at run time, and the cost of updating type feedback information and invocation counters. Type
feedback can be supported by hardware.

Branch prediction hardware, by its very nature, stores statistical information about branch
targets in its history table. Suppose we collect, from the history table, all targets that occur for
a particular call site (an indirect branch address1). This gives us, in the case of a BTB, the target
that occurred most recently2 for recently executed call sites. If the BTB is sampled regularly,
frequency information can be obtained from a) the presence of a target in the table, b) it’s place
(assuming LRU replacement) in the associativity set to which it belongs. Branch prediction
hardware can therefore not only speed up non-inlined dispatch sequences, it can also, at little
extra cost, suggest opportunities for inlining to a dynamic compiler. It can therefore free the
run-time system from the burden of continually updating invocation counters and polymorphic
inline caches (which speed up dispatch and provide type-feedback in SELF). We only need to
augment the architecture with an instruction to block-dump the BTB in memory. Periodical
branchmaps can be processed by measuring the difference with the previous one. The size of
this delta can signal state changes in the program, and the persistent entries can designate
inlining opportunities to the dynamic compiler. This may prove a useful framework to adap-
tively tune the recompilation strategy, for instance by increasing the sampling frequency for
more reactive recompilation, or lowering it for settled systems, to reduce the run-time overhead
of BTB sampling. The effectiveness of hardware-supported type-feedback, or target feedback,
is still an open problem.

Merten et al. [99] propose a separate hardware device for detecting program hot spots. Their
Branch Behavior Buffer (BBB) closely resembles a BTB, but is augmented with counters to
detect the frequency of branch execution. In future work, they envision to take advantage of
binary reoptimization opportunities enabled by using the information in the BBB.

1 This has to be stored as a separate address, or, with only slight loss of prediction accuracy, instead of the tag in an associative
table. A tag comparison becomes a comparison with the branch address. In early experiments we disambiguated entries this way,
and misprediction rates were fairly similar to that of tags checking for identity of a the key pattern (history pattern XOR address).
2 With the adjustment that 2-bit counters filter out targets that occur in isolation.
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11.3 Exploring different applications for hardware-based
prediction

The new prediction architectures in this study may well prove advantageous in other application
domains than indirect branch prediction, such as:

• Conditional branch prediction: the Pentium II conditional branch target predictor (512
entries with for each a 4-bit local history), arguably the currently most popular predictor in
practice, is a two-level predictor. It seems likely that cascaded prediction with leaky
filtering will reduce cold-start and capacity misses as it does for indirect branches, since
many conditional branches behave monomorphically. Chang, Evers and Patt [22]
demonstrate the potential of table update filtering on conditional branches, using a different
filtering rule (see the discussion in Section 9.4.1.1).

• Value prediction: this is currently an active field. Again, cascaded prediction may prove
advantageous, since the value equivalent of a monomorphic branch is a constant. Run time
constants occur frequently enough to warrant special treatment, as indicated in Lipasti,
Wilkerson, and Shen’s seminal paper [93]. They propose a constant verification unit that
stores highly predictable and constant values.

• Prefetching: if the history table is augmented to store multiple alternative targets, which
serve as hints to the prefetcher as to which code sequences are likely to be needed in the
instruction cache, the cache missrate could be reduced. Each target could keep a counter to
indicate the likelihood of its occurrence.

• Predict-ahead: when the history table stores the address of the next indirect branch as well
as the target address, the predictor can run arbitrarily far ahead of execution. The average
length of a precisely predicted sequence of targets equals the reciprocal of the
misprediction rate. With an achievable prediction rate of 95%, an average of 20 branches
could therefore be predicted ahead of time. This can be useful in all the previous application
domains. The Rise mP6 processor [116] uses predict-ahead as part of its fetch unit: the
target of theprevious branch (not theaddress of thecurrent branch) is used to look up the
next target prediction in a BTB. Up to four targets can be predicted ahead of time.

• Compression: the link between compression and prediction has been pointed out multiple
times in the literature (see Section 10.2.2.2). Compression of arbitrary traces can be
accomplished by storing a trace consisting of the runlength of precisely predicted values
and the next mispredicted value, along with a predictor specification. Accurate run-ahead
prediction architectures may thus enable the building of fast, economic compression
hardware.
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11.4 Algorithms

The loss of prediction performance due to hardware constraints is an algorithmic issue. This
study explores, for a limited application domain, the performance of indirect branch target
predictors, hampered by limited resources and committed to simple prediction logic (so as to
remain practical in hardware). These designs only scratch the surface of what is possible when
the latency of the operation and the size of its memory resources is not as restricted as in hard-
ware. In less constrained, less time-critical domains than branch prediction, much lower
misprediction rates could be achieved.

Since trace prediction has many applications, a rigorous study on the mechanics of limited
resource prediction may be both desirable and profitable. Prediction architectures similar to
those presented in branch prediction literature may have applications on all kinds of domains
that deal with strings. We envision applications in compression, fast string matching (for
example in gene sequencing of DNA string representations), and user interface event anticipa-
tion.

11.5 Misprediction rate as a program complexity metric

A program with easily predicted branches is a simple program.Go, the SPECINT benchmark
that implements a strategy for playing Go, is notoriously hard to predict. Part of the reason is
that indirect branches occur very infrequently ingo (once every 50K instructions), so that the
indirect branch trace captures only a small part of the overall execution path. 80% prediction
accuracy seems fairly good, considering this context. In contrast, we believe that the high
misprediction rate of for instancejhm (with less than 50 instructions between indirect calls, for
the best hybrid: 8%, the highest in the AVG-100 class), is due to the structural complexity of the
Java class files it processes. If values, conditional branches and indirect branches are predicted,
a program’s behavior can be quantified as X,Y, with X the misprediction rate for a particular
predictor configuration Y. This may be a practical way to quantify program execution
complexity. Ideal predictors, which lack the noise of capacity, conflict and pattern interference
misses, could be used to establish equivalence classes of complexity.
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12 Conclusions
“We didn’t know what we wanted and how to do
it. It just sort of grew....it was a big problem and
what we did looks astonishingly clumsy now”,
John Backus on the invention of Fortran [115]

Though we don’t claim to have discovered something as fundamental to computer science as a
high-level language compiler, we have struggled hard to optimize a high-level language
construct: polymorphic calls. We have gathered substantial evidence that software- and hard-
ware-based support for polymorphic call resolution is useful, effective and affordable, and,
according to current projections, will become more so in the next decade.

Polymorphic call optimization is useful because polymorphic calls are expensive. We measured
a number of industry-size object-oriented programs and found that the most efficient and
popular call resolution technique costs up to 30% of execution time. Since these programs are
written in C++, where polymorphic calls are not the default case, it is likely that the growing
popularity of fully polymorphic languages like Java will expose even more polymorphism to
future processors. Near-future processors with high clock frequency need deep instruction pipe-
lines, which are likely to increase the cost of a polymorphic call.

Polymorphic call resolution techniques are effective in reducing the run-time call cost. We
studied both software and hardware techniques:

• In the software domain, we have analyzed current dispatch techniques qualitatively and
quantitatively. This study showed that inline cache strategies can outperform table-based
techniques by predicting indirect branches in software, even though they show bad worst-
case performance. However, if hardware-based prediction is present, table-based software
techniques win. We have increased the application domain of table-based call resolution by
using row displacement compression on dispatch tables. Dynamically typed and multiple
inheritance languages can now also use fast table-based dispatch. Row displacement
compression is used in at least one industrial strength programming system, JOVE [133], a
Java compiler designed to handle very large applications1.

• In the hardware domain, we have studied dedicated indirect branch prediction
architectures. Simple prediction architectures, similar to software-based prediction, can
reduce the frequency of mispredicted branches by a factor four (BTB, 256 entries, 25%
misprediction). More sophisticated techniques, some of which have been first presented in
this work, can reduce misprediction frequency by a factor twenty (Cascaded, 3x2K entries,
5% misprediction). Table-based call resolution thereby becomes nearly as efficient as a
procedural call, since only one out of twenty calls incurs a branch penalty.

1 Though statically typed, the use of interfaces in Java necessitates compression of interface dispatch tables. These incur memory
overhead like multiple inheritance dispatch tables, since they allow the merging of dispatch tables from classes unrelated by
subclass (implementation) inheritance.



162

Polymorphic call support is affordable. Table-based dispatch techniques require affordable off-
chip memory (4Mbytes for Self). The extra compilation time required to build the tables is
negligible compared to total compilation cost (2.5 seconds for Self on a 60 MHz Sparc-20).
Hardware indirect branch prediction starts paying off at low on-chip transistor budgets (a 32
entry BTB already predicts more than 70% of all indirect branches), and reaches 90% predict-
ability for reasonable predictor table sizes (64+256 cascaded). In the next decade, uniprocessors
may reach one billion transistors, with 48 million transistors dedicated to branch prediction
[109]. Our study, and that of others [14][25][81] justifies that some of those transistors be spent
on dedicated indirect branch prediction.

We believe that, using techniques as described in this dissertation, polymorphic call overhead
can become negligible in all but the most time-critical applications. This enlarges the applica-
tion domain of object-oriented programming, allowing programmers to use polymorphism as
the default, instead of the exception. From our own experience in building software architec-
tures, we consider this a Good Thing.
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13 Glossary
“‘Tis but thy name which is my enemy;
Thou art thyself, though not a Montague.
What’s a Montague? It is nor hand, nor foot,
Nor arm, nor face, nor any other part
Belonging to a man. O, be some other name!
What’s in a name? That which we call a rose
By any other word would smell as sweet”,

Shakespeare [114]

Branch classification. A classifying hybrid predictor assigns to each branch a branch class.
All branches that belong to a class use the same component predictor. Section 9.2

BTB. A table that stores the most recent target address of a branch instruction. Section 6.2.1

Cascaded predictor. A cascaded predictor classifies branches dynamically by observing
their performance on a simple first-stage predictor. Only when this predictor fails to predict a
branch correctly is a more powerful second-stage predictor permitted to store predictions for
newly encountered history patterns of that branch. If both stages have a target prediction, the
later stage takes precedence. Section 9.4

Dynamic caching. A message dispatch technique that caches the target of a message send at
run time. If the class of the receiver object is the different from that of the cached target, a
backup message dispatch technique is invoked and the cache entry is replaced with the new
target. Section 3.2

Dynamic typing. A typing regime which does not require that variables are annotated with a
type at compile time. At run time, a variable can contain any object type. Section 2.3.1

Dual-path hybrid predictor . A hybrid predictor with two components of different path
length. Section 9.3

Duomorphic branch. A branch that jumps to two targets during an entire program run.
Section 9.2.2

Hybrid predictor . A branch predictor that combines two or more simpler predictors and
chooses for each branch which component to trust. Section 9.1

Indirect branch . A branch instruction which transfers control to a target address stored in a
machine register. Section 1.3

Indirect branch prediction . The process of predicting the target of an indirect branch
instruction, using only its address and possibly history information. Section 8

Inheritance. Incremental construction of classes (object types). A class is defined by
extending an existing class, called its super class, by adding or redefining inherited functions.
Section 1.2.1

Inline caching. A form of dynamic caching. Instead of storing a receiver class/message
selector pair with its resulting target method in a table, a direct call to the target replaces the call
to the message dispatch routine. Section 3.2.2
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Message dispatch. Polymorphic call resolution in object-oriented languages. The dispatch
function takes as arguments the class of the current object (the receiver), and the name of the
called message (selector), and maps this pair to the appropriate implementation (method).
Section 2.3

Metaprediction. The mechanism used in a hybrid predictor to decide which component
prediction to trust (predict which prediction is best). Section 9.1.2

Monomorphic branch. A branch that jumps to only one target during an entire program run.
Section 9.2.2

Multiple dispatch . A generalization of message dispatch. The run time target of a message
depends on more than one argument, where single dispatch only takes the receiver’s type (first
argument) into account. Section 2.3.3

Multiple inheritance . An inheritance regime which allows a class to inherit from any
number of super classes. Section 2.3.2

Polymorphic call. A polymorphic call looks like a procedural call, but where a procedural
call has only one possible target subroutine, a polymorphic call can result in the execution of
one of several different subroutines. The choice is typically based on the type of the first argu-
ment, and is made at run time. Section 1

Polymorphic call resolution. The action of mapping a polymorphic call to a single target at
run time. Section 1.2

Predicate dispatch. A generalization of multiple dispatch. The run time target of a message
depends on a predicate expression, which can be an arbitrary side-effect free expression in the
underlying programming language. The most powerful form of polymorphism. Section 2.3.4

Single inheritance. An inheritance regime which requires that a class inherits from at most
one super class. Section 2.3.2

Staged predictor. A cascaded predictor without filtering. Section 9.4.3

Static caching. seeTable-based dispatch.

Static typing. A typing regime which requires that all variables in a program are annotated
with a type at compile time. At run time, a variable can contain only objects of the declared type
and its subtypes. Section 2.3.1

Subclassing. Implementation by incremental modification of classes through inheritance. A
class inherits all functions from its super class, but can override them (redefine their implemen-
tation) and add new functions. Section 1.2.1.2

Subtyping. Incremental interface definition through inheritance. A subtype must implement at
least all functions of the type it is derived from. Section 1.2.1.1

Table-based dispatch. A message dispatch technique that precomputes all valid combina-
tions of class/selector pairs at compile or link time. At run time, dispatch is accomplished by
simple table lookup, typically a small number of dependent array accesses. Section 3.3



Appendix A Basic prediction accuracy per benchmark

Table A-1 shows the misprediction rates (in %) per benchmark and averages for a fully associa-
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64 26.83 24.26 26.30 23.60 19.77 18.53 19.77 2.99 5.20 6.38 5.55 5.33 5.02 5.33
128 25.76 20.56 22.22 19.09 16.98 15.56 16.66 2.45 4.80 4.54 3.73 2.74 3.77 3.64
256 25.13 16.99 18.06 15.15 13.73 12.47 13.29 2.41 3.40 3.13 3.69 2.67 1.23 2.10
512 25.01 13.74 15.92 12.59 11.35 10.40 10.90 2.40 2.05 3.26 2.18 1.49 1.05 1.17
1024 24.93 11.74 13.53 10.74 9.82 8.48 8.98 2.40 1.43 2.38 1.33 0.85 0.64 0.76
2048 24.92 10.27 11.48 9.49 8.52 7.76 7.82 2.40 1.13 1.80 0.82 0.69 0.62 0.46
4096 24.92 9.12 10.43 8.54 7.77 7.17 6.72 2.40 0.95 1.60 0.71 0.63 0.62 0.38
8192 24.92 8.45 9.68 8.02 7.27 6.57 5.95 2.40 0.69 1.01 0.67 0.63 0.44 0.37
16384 24.92 7.77 8.97 7.47 6.81 6.14 5.53 2.40 0.69 0.85 0.65 0.45 0.42 0.36
32768 24.92 7.09 8.46 7.07 6.57 6.02 5.21 2.40 0.55 0.81 0.50 0.45 0.42 0.35

100-AVG ijpeg
32 14.97 18.92 18.07 16.82 16.81 15.86 16.81 1.26 26.62 1.52 1.64 0.82 0.32 0.82
64 13.31 15.73 16.96 14.68 14.29 13.76 14.29 1.26 26.63 51.15 0.31 0.31 0.31 0.31
128 11.72 15.01 13.98 12.33 11.77 13.63 12.35 1.26 0.92 0.56 0.31 0.31 0.39 0.29
256 10.57 12.49 12.01 12.11 11.20 9.85 10.08 1.26 0.69 0.56 0.65 0.39 0.39 0.29
512 10.32 9.84 12.27 9.84 9.09 8.20 8.22 1.26 0.44 0.39 0.39 0.39 0.39 0.37
1024 10.14 8.42 10.77 8.48 7.15 6.37 6.66 1.26 0.45 0.39 0.39 0.46 0.46 0.37
2048 10.11 7.41 9.21 6.97 6.37 6.12 5.96 1.26 0.45 0.39 0.46 0.46 0.51 0.38
4096 10.11 6.69 8.54 6.29 5.77 5.62 5.47 1.26 0.44 0.39 0.46 0.46 0.51 0.47
8192 10.11 6.21 6.91 5.92 5.62 5.26 4.83 1.26 0.50 0.46 0.46 0.51 0.56 0.47
16384 10.11 5.95 6.43 5.69 5.42 4.93 4.54 1.26 0.56 0.46 0.51 0.56 0.62 0.47
32768 10.11 5.56 6.10 5.68 5.26 4.86 4.42 1.26 0.56 0.46 0.56 0.56 0.62 0.48

200-AVG ixx
32 39.38 40.82 44.86 41.81 33.84 28.40 33.84 46.58 33.15 56.21 51.11 30.07 24.30 30.07
64 38.42 31.58 34.30 31.24 24.48 22.61 24.48 45.75 24.47 32.91 24.86 18.10 15.94 18.10
128 37.79 25.32 29.28 24.89 21.44 17.22 20.36 45.70 24.60 27.55 17.93 15.37 12.10 19.02
256 37.61 20.84 23.24 17.77 15.91 14.72 16.04 45.70 18.74 20.58 15.47 12.57 10.34 13.32
512 37.61 17.08 19.05 14.94 13.29 12.28 13.20 45.70 13.88 21.38 13.48 10.63 10.25 9.48
1024 37.61 14.58 15.90 12.67 12.10 10.28 10.98 45.70 12.37 15.32 11.57 9.03 8.21 8.56
2048 37.61 12.73 13.43 11.65 10.36 9.16 9.42 45.70 10.90 12.51 9.82 8.47 6.94 6.06
4096 37.61 11.21 12.05 10.46 9.47 8.51 7.80 45.70 9.34 12.11 9.29 8.29 6.94 5.06
8192 37.61 10.37 12.06 9.82 8.69 7.69 6.91 45.70 8.86 11.28 8.94 7.11 5.86 4.91
16384 37.61 9.32 11.15 9.00 8.00 7.18 6.38 45.70 7.66 10.55 8.04 5.98 5.58 4.70
32768 37.61 8.39 10.48 8.26 7.68 7.01 5.88 45.70 6.79 10.14 6.70 5.94 5.58 4.15

INFREQ-AVG lcom
32 31.78 31.68 32.32 31.88 20.85 17.95 20.85 5.18 12.99 5.80 5.24 4.81 4.45 4.81
64 31.78 27.61 34.80 18.16 17.74 17.54 17.74 4.71 4.67 4.78 4.03 3.84 3.62 3.84
128 31.78 23.16 20.75 17.96 17.54 15.66 21.46 4.46 4.75 3.90 3.61 3.47 3.49 3.72
256 31.78 19.92 18.07 17.52 15.58 14.98 17.03 4.25 3.93 3.43 3.37 3.25 3.27 2.96
512 31.78 15.26 20.34 16.44 15.18 14.97 11.31 4.25 3.25 3.26 2.80 2.60 2.53 2.56
1024 31.78 14.27 19.40 16.09 10.89 10.40 10.43 4.25 2.68 2.77 2.33 2.20 1.88 1.95
2048 31.78 13.54 18.06 12.86 10.67 10.16 10.09 4.25 2.17 2.43 1.85 1.68 1.65 1.69
4096 31.78 12.04 16.48 11.87 10.44 10.06 8.31 4.25 1.83 2.12 1.56 1.42 1.34 1.31
8192 31.78 12.12 14.41 11.76 10.50 10.81 7.84 4.25 1.62 1.71 1.44 1.36 1.34 1.11
16384 31.78 12.66 14.17 11.67 11.22 9.17 8.60 4.25 1.55 1.58 1.37 1.37 1.39 1.04
32768 31.78 11.14 13.98 11.89 11.07 9.10 8.90 4.25 1.43 1.49 1.39 1.35 1.39 1.02

OO-AVG m88ksim

Table A-1. Misprediction rates (per benchmark and averages) for basic predictors.
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32 23.70 25.80 28.17 25.96 22.64 20.02 22.64 76.41 56.87 78.29 76.41 45.33 35.99 45.33
64 22.18 20.43 22.55 18.96 17.18 16.04 17.18 76.41 46.52 49.25 35.99 35.99 35.99 35.99
128 20.87 20.75 18.40 15.33 14.13 15.43 15.47 76.41 43.78 46.40 35.99 35.99 26.55 46.11
256 19.97 17.00 15.48 14.79 13.29 11.95 12.16 76.41 36.17 35.99 29.46 26.55 26.55 32.27
512 19.81 13.37 15.30 11.95 10.61 9.50 10.50 76.41 22.07 32.29 27.54 26.55 26.55 15.38
1024 19.69 11.29 12.63 9.91 9.47 7.93 8.49 76.41 20.16 30.44 27.54 14.40 14.40 13.56
2048 19.67 9.81 10.51 9.14 8.09 7.21 7.50 76.41 19.31 30.43 17.48 14.40 13.40 8.72
4096 19.67 8.67 9.68 8.21 7.38 6.70 6.48 76.41 15.41 30.43 14.58 14.40 13.40 2.17
8192 19.67 8.03 9.32 7.75 6.90 6.31 5.76 76.41 14.39 16.40 14.40 13.40 10.58 2.17
16384 19.67 7.43 8.57 7.21 6.49 5.91 5.35 76.41 14.43 16.40 13.40 10.58 3.07 4.00
32768 19.67 6.82 8.00 6.76 6.33 5.87 5.06 76.41 9.64 16.40 10.58 10.58 3.07 4.00

C-AVG perl
32 34.91 36.72 37.28 35.94 27.18 23.20 27.18 31.80 60.62 31.81 31.80 36.31 22.80 36.31
64 34.54 30.25 34.76 26.10 21.67 20.83 21.67 31.80 45.24 45.27 49.74 22.76 22.75 22.76
128 34.27 21.65 25.78 22.75 20.46 15.76 20.41 31.80 0.37 40.74 36.21 22.72 0.34 0.29
256 34.25 18.43 20.96 16.75 15.16 14.31 16.43 31.80 0.35 22.73 0.33 0.32 0.29 0.26
512 34.25 14.90 18.84 15.23 14.10 13.69 11.56 31.80 0.31 0.33 0.32 0.29 0.28 0.27
1024 34.25 13.50 17.48 14.34 10.75 10.05 10.26 31.80 0.31 0.32 0.30 0.34 0.32 0.26
2048 34.25 12.43 15.87 11.56 10.08 9.57 9.31 31.80 0.30 0.31 0.34 0.33 0.37 0.27
4096 34.25 11.09 14.31 10.58 9.54 9.15 7.79 31.80 0.30 0.30 0.33 0.32 0.37 0.33
8192 34.25 10.75 12.45 10.19 9.31 8.98 7.12 31.80 0.34 0.35 0.33 0.37 0.40 0.32
16384 34.25 10.60 12.02 9.87 9.38 7.91 7.26 31.80 0.38 0.34 0.37 0.40 0.45 0.33
32768 34.25 9.42 11.73 9.82 9.08 7.72 7.22 31.80 0.38 0.33 0.41 0.40 0.45 0.34

SPEC-AVG porky
32 34.05 35.89 34.75 34.29 25.64 21.58 25.64 21.70 28.88 26.38 23.76 22.52 19.41 22.52
64 34.04 30.36 34.64 25.27 20.80 20.39 20.80 21.21 19.74 21.75 17.41 15.30 13.97 15.30
128 34.02 20.11 25.21 22.61 20.19 14.91 19.45 21.08 19.24 17.53 13.97 13.15 9.68 16.11
256 34.02 17.20 20.64 15.99 14.49 13.68 15.82 20.80 14.94 15.96 12.43 10.22 9.12 11.04
512 34.02 13.72 18.12 14.80 13.78 13.48 10.70 20.80 12.28 12.53 10.16 9.01 8.90 9.28
1024 34.02 12.63 16.96 14.22 9.95 9.43 9.67 20.80 10.37 10.03 8.56 7.89 6.97 7.59
2048 34.02 11.72 15.46 11.00 9.49 9.02 8.99 20.80 9.30 8.96 7.78 6.88 5.13 6.99
4096 34.02 10.39 14.23 10.05 9.01 8.64 7.44 20.80 8.39 8.43 7.24 6.26 4.85 5.41
8192 34.02 10.12 11.76 9.71 8.67 8.56 6.76 20.80 7.22 9.13 6.98 5.30 5.05 5.05
16384 34.02 10.22 11.39 9.26 8.79 7.35 7.01 20.80 6.07 7.68 5.64 5.22 4.61 4.77
32768 34.02 8.95 11.13 9.32 8.51 7.13 7.05 20.80 5.37 6.53 5.19 4.99 4.61 4.29

beta self
32 31.85 27.98 36.63 33.76 25.20 16.89 25.20 36.08 49.54 48.36 46.15 45.21 40.81 45.21
64 30.48 21.88 23.13 19.59 14.73 12.22 14.73 32.34 44.08 46.73 39.69 38.86 36.39 38.86
128 29.44 18.65 16.62 14.66 10.77 13.06 13.03 25.07 39.80 39.03 32.54 31.61 36.84 34.00
256 28.57 13.88 12.88 13.04 10.99 10.44 10.17 18.41 33.05 32.08 31.53 29.44 26.91 26.15
512 28.57 10.20 13.75 9.38 7.46 5.51 8.36 16.94 26.80 29.39 23.94 22.18 19.70 23.26
1024 28.57 7.84 10.64 6.04 5.61 3.19 4.92 15.88 22.37 24.27 19.48 18.61 16.62 17.11
2048 28.57 6.29 6.19 5.13 3.77 2.66 3.23 15.68 18.33 19.69 16.81 15.40 16.01 14.64
4096 28.57 4.42 4.78 4.12 3.28 2.63 2.20 15.68 15.49 16.84 14.03 12.90 13.44 13.38
8192 28.57 3.77 4.91 3.62 2.73 2.46 1.99 15.68 14.00 15.43 12.27 11.91 11.54 10.83
16384 28.57 3.49 4.46 2.81 2.51 2.28 1.88 15.68 13.51 13.73 11.55 11.43 10.50 9.25
32768 28.57 2.91 4.18 2.79 2.49 2.28 1.68 15.68 11.87 12.63 11.51 10.72 10.10 8.61

edg jhm
32 40.88 42.59 54.99 47.48 37.97 34.57 37.97 11.45 14.05 12.24 11.81 14.40 14.03 14.40
64 37.97 29.48 35.61 31.89 27.78 23.89 27.78 11.16 12.92 15.14 13.03 12.88 12.49 12.88
128 35.99 32.48 29.80 23.77 22.36 21.72 27.08 11.13 15.12 12.22 11.96 11.76 13.36 11.81
256 35.91 27.09 23.22 22.07 19.86 18.73 20.72 11.13 13.81 11.80 12.98 12.40 11.31 11.35
512 35.91 23.17 23.84 18.18 16.36 15.18 17.57 11.13 12.75 14.64 12.18 11.27 10.59 11.00
1024 35.91 19.63 21.13 15.16 16.34 14.40 14.46 11.13 11.93 13.57 11.18 11.33 9.67 10.35
2048 35.91 17.40 18.73 15.53 14.19 13.46 11.59 11.13 11.59 13.03 12.10 10.92 9.41 9.85
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Table A-1. Misprediction rates (per benchmark and averages) for basic predictors.
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tive BTB, two-level predictors with tagless, one-way, two-way, four-way and fully associative
tables of given entry size, and a dual pathlength hybrid predictor with 2-bit confidence counters
and 4-way associative table, for comparison. The pathlengths for the best predictor and compo-
nent predictors is given in Table A-2. Note that the misprediction rates of individual bench-
marks in Table A-1 may occasionally increase even for a larger table size, since the pathlength
is chosen to minimize the AVG misprediction rate, and some benchmarks go against the general
trend, especially for small tables of low associativity.

4096 35.91 15.94 14.82 14.27 13.28 12.75 10.20 11.13 11.08 12.83 11.42 10.22 9.30 9.16
8192 35.91 15.10 17.25 13.58 13.81 11.94 9.62 11.13 11.12 11.89 11.20 10.75 9.44 8.45
16384 35.91 13.24 16.39 14.15 13.52 11.86 9.00 11.13 10.33 11.40 11.38 10.29 8.75 8.40
32768 35.91 12.65 15.97 13.37 13.06 11.86 8.38 11.13 10.14 10.89 10.51 10.21 8.75 8.32

eqn troff
32 36.87 37.65 39.37 37.60 33.44 32.77 33.44 17.50 21.21 22.12 18.05 20.20 19.48 20.20
64 35.82 32.30 32.68 29.38 29.16 28.00 29.16 15.16 18.57 19.47 17.08 16.45 16.70 16.45
128 34.78 38.22 28.85 26.17 25.56 29.27 24.95 13.70 21.56 15.39 13.44 12.72 17.32 12.91
256 34.78 34.08 26.35 27.28 25.97 25.58 21.95 13.70 17.20 13.14 13.27 12.06 9.38 10.43
512 34.78 28.22 26.77 23.17 21.20 18.69 21.04 13.70 10.93 12.69 10.28 9.64 8.29 8.37
1024 34.78 23.41 23.22 19.72 21.93 16.89 18.16 13.70 9.24 11.50 8.96 7.76 7.33 7.00
2048 34.78 20.18 19.82 20.29 17.62 15.27 17.85 13.70 8.39 10.17 7.68 7.37 7.20 6.75
4096 34.78 18.60 18.69 18.02 16.08 13.99 14.68 13.70 7.93 9.71 7.48 7.34 7.20 6.74
8192 34.78 17.22 20.24 17.23 15.01 13.52 12.55 13.70 7.79 8.29 7.41 7.26 7.13 6.54
16384 34.78 15.95 18.79 16.08 13.87 12.56 11.39 13.70 7.59 8.12 7.35 7.25 7.15 6.40
32768 34.78 14.81 17.39 14.74 13.71 12.56 10.61 13.70 7.45 7.91 7.53 7.16 7.15 6.49

gcc vortex
32 65.96 54.84 68.66 67.18 51.35 48.07 51.35 20.19 19.08 20.21 20.22 13.01 10.98 13.01
64 65.89 47.92 48.75 45.84 43.52 41.52 43.52 20.19 13.42 14.88 12.67 11.30 10.71 11.30
128 65.74 43.71 43.90 41.51 40.11 34.36 42.02 20.19 14.86 12.38 12.01 10.69 12.17 14.92
256 65.70 36.81 40.94 33.73 31.43 28.55 34.80 20.19 13.16 12.18 16.78 13.10 12.08 12.78
512 65.70 31.49 34.77 29.89 28.09 27.15 26.38 20.19 12.09 25.94 16.40 12.56 12.07 7.68
1024 65.70 28.12 30.68 27.31 23.59 21.96 22.89 20.19 11.37 24.43 15.16 7.12 6.36 7.63
2048 65.70 24.72 27.50 22.64 21.29 20.31 19.97 20.19 11.29 19.80 11.68 6.89 5.90 7.81
4096 65.70 21.45 25.23 19.97 18.82 18.02 16.70 20.19 11.03 13.60 11.65 6.39 5.90 8.24
8192 65.70 20.04 21.24 18.07 16.50 14.60 13.95 20.19 10.83 19.57 11.65 7.12 10.98 7.50
16384 65.70 18.48 19.83 15.92 14.49 12.93 12.56 20.19 11.92 19.02 11.48 11.49 9.89 8.12
32768 65.70 15.83 18.79 14.64 13.20 11.71 11.72 20.19 11.34 18.34 12.63 11.38 9.89 8.15

go xlisp
32 29.25 24.17 29.25 29.25 24.25 24.52 24.25 13.51 9.00 13.51 13.51 8.39 8.36 8.39
64 29.25 23.87 23.92 23.66 23.38 23.13 23.38 13.51 8.93 9.25 8.71 8.35 8.34 8.35
128 29.25 33.07 23.66 23.52 23.16 23.51 24.52 13.51 4.03 8.82 8.69 8.34 7.03 8.02
256 29.25 29.67 23.57 23.18 22.27 20.89 22.80 13.51 3.53 8.48 7.80 7.36 7.03 7.50
512 29.25 26.42 22.72 21.44 21.21 20.88 21.80 13.51 3.23 10.41 7.66 7.35 7.03 2.98
1024 29.25 25.08 22.34 21.25 21.57 20.39 20.18 13.51 2.90 10.12 7.62 2.17 2.09 2.77
2048 29.25 23.13 21.61 21.84 20.95 20.83 23.44 13.51 2.85 8.17 2.54 2.15 1.81 2.35
4096 29.25 21.29 21.51 20.81 20.52 20.45 22.37 13.51 2.84 8.15 2.53 2.14 1.81 1.83
8192 29.25 22.75 21.19 20.52 20.97 21.10 21.21 13.51 2.01 3.11 2.53 1.81 1.67 1.71
16384 29.25 23.73 20.80 21.31 22.23 23.09 21.81 13.51 2.06 2.90 1.83 1.76 1.37 1.78
32768 29.25 23.00 20.74 23.76 21.75 22.82 22.95 13.51 1.92 2.84 2.62 1.71 1.37 1.74
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predictor type 32 64 128 256 512 1024 2048 4096 8192 16384 32768

tagless 1 1 3 3 3 3 3 3 4 5 5

assoc2 0 1 1 2 2 2 3 3 3 4 5

assoc4 1 1 1 2 2 3 3 3 4 5 5

fullassoc 1 1 2 2 2 3 4 4 5 6 6

hybrid assoc4 1 1 2.0 2.0 3.1 3.1 5.1 6.2 6.2 7.2 8.2

Table A-2. Path length of best predictor for each associativity. The hybrid predictor has two path
lengths, one for each component. When the same-size non-hybrid predictor is better, we only give
the single path length.
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Appendix A Polymorphic call sequences in assembly

Table A-2 to 8 show the call code sequence of all techniques. These are expressed as assembly
code sequences in the abstract instruction set of Table A-1. This instruction set captures the
functionality of a generic load/store processor architecture [65].

The first column (I) of every table numbers the call code instructions of the second column
(Assembly Code). Instructions are ordered as if they are executed on a processor without pipe-
lining. Numbers in superscript indicate control- or data dependencies (for example, in Table A-
3, instruction 111,8 uses values produced by instruction 1 and 8). Every technique is then sched-
uled for best performance on P92 and P97. TheTime column specifies, for each instruction, the
earliest possible cycle it can be executed. For P92, each branch has a delay slot. If there is no
instruction available to be fitted in the slot, one cycle is lost. Columns I1-4 represent the 4-way
instruction issue of P97. This processor has no delay slots. Therefore each unpredicted branch
causes a branch penalty (B). At most two memory operations and one branch can be executed
in a cycle, and we assumed that a branch can be executed in the same cycle as the comparison

a sethi always occurs after a setlo in our code. We use the same string to indicate the upper and
lower part of #imm, to indicate which instructions depend on the bit length of a particular
value.

b Operands of arithmetic and logic instructions can be immediates, if the bit length permits.
c PC-relative. We do not go into such details, unless they affect code size and/or speed.

R1 a register (any argument without #)

#immediate an immediate value (prefix #)

load [R1+#imm], R2 load the word in memory location R1+#imm to register R2

store R1,[R2+#imm] store the word in register R1 into memory location R2+#imm

setlo #imm, R1 set the least significant part of register R1 to #imm, the rest to 0

sethi #imm, R1 set the most significant part of R1 to #imma

xor R1, R2, R3 bit-wise xor on register R1 and R2b. Result is put in R3

and R1, R2, R3 bit-wise and on register R1 and R2. Result is put in R3

add R1, R2, R3 add register R1 to R2 and put result in R3

call R1 jump to address in R1 (can also be immediate), saves return address

comp R1, R2 compare value in register R1 with R2 (R2 can be immediate)

bne #imm if last compare is not equal, jump to #immc

jump R1 jump to address in R1 (can also be immediate)

Table A-1. Abstract instruction set
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it depends on1. Unconditional branches may disappear due tobranch folding (see [65]), but we
show them for clarity in the schedule.

Instructions initalic take care of multiple inheritance (only in Table A-2). Instructions inbold

implement dynamic typing.

1 This is not the case for all current processors in the P97 class. However, some architectures provide compare-
and-branch instructions, which generate similar schedules. Also, the net effect of not being able to executed a
compare and branch simultanously on P97 is one extra cycle for most techniques. In the PIC and CT cases, the
compare instructions of the repeated tests can be scheduled one cycle more in advance than shown (branch x
scheduled with test x+1), resulting in a total overhead of one cycle.

P92 P97

I Assembly Code I1 Time I1 I2 I3 I4 Time

1 load [object + #tableOffset], table 1 0 1 - - - 0

21 load [table + #selectorOffset], method 2 L 2 31 - - L

31 load [table + #deltaOffset], delta 3 L+1 5 43 - - 2L

43 add object, delta, object 5 2L 6 - - - 2L+1+B

52 call method 4 2L+1

6 2L+2

65,4 <first instruction of target>

Table A-2. VTBL call code schedule
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P92 P97

I Assembly Code I1 Time I1 I2 I3 I4 Time

1 load [object + #classOffset], class 1 0 1 2 3 4 0

2 setlo #cacheAddr, cache 2 1 5 - - L

3 sethi #cacheAddr, cache 3 2 6 - - - 1+L

4 setlo #selectorCode, selector 4 3 7 - - - 2+L

51,4 xor class, selector, index 5 max(L,4) 8 9 - - 3+L

65 and index, #mask, index 6 1+max(L,4) 10 11 12 - 3+2L

73,6 add cache, index, cache 7 2+max(L,4) 13 14 - - 4+2L

87 load [cache], cacheClass 8 3+max(L,4) 15 - - - 5+2L

97 load [cache + 4], cacheSelector 9 4+max(L,4) 16 6+2L+B

107 load [cache + 8], cacheTarget 10 5+max(L,4)

111,8 comp class, cacheClass 11 3+max(2L,7)

1211 bne #miss 12 4+max(2L,7)

132,9 comp selector, cacheSelector 13 5+max(2L,7)

1413 bne #miss 14 6+max(2L,7)

1510 call cacheTarget 15 7+max(2L,7)

- 8+max(2L,7)

1615 <first instruction of target> 16 9+max(2L,7)

Table A-3. LC call code schedule

P92 P97

I Assembly Code I1 Time I1 I2 I3 I4 Time

1 load [object + #tableOffset], table 1 0 1 - - - 0

21 load [table + #colorOffset], method 2 L 2 3 - - L

3 setlo #selector, selector 3 1+L 4 - - - 2L

42 call method 4 2L 5 6 - - 1+2L+B

- 1+2L 7 - - - 2+2L+B

53,4 comp selector, #methSelector 5 2+2L

65 bne #messageNotUnderstood 6 3+2L

76 <first instruction of target> 7 4+2L

Table A-4. SC call code schedule
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a The message selector is placed right after this call instruction. This doesn’t have any
effect on speed, but does increase the code size by one word.

P92 P97

I Assembly Code I1 Time I1 I2 I3 I4 Time

1 load [object + #classOffset], actualClass 1 0 1 2 3 - 0

2 setlo #class, predictedClass 2 1 4 5 - - L

3 call #methoda 3 2 6 - - - 1+L

4 max(3,L)

41,2,3 comp   actualClass, predictedClass 5 1+max(3,L)

54 bne   #inlineCacheMiss 6 2+max(3,L)

65 <first instruction of target>

Table A-5. IC call code schedule

P92 P97

I Assembly Code I1 Time I1 I2 I3 I4 Time

1 load [object + #classOffset], actualClass 1 0 1 2 - - 0

2 call #PIC_nnn 2 1 3 4 - - L

3 L 5 - - - (1+pB)a+L

31 comp  actualclass, #predictedClass1 4 1+L 6 - - - 1+(1+pB)+L

43 bne   #2nd 7 2+L 7 8 - - (1+pB)+L

54 jump   #method1 5 3+L 9 - - - 2*(1+pB)+L

74 2nd: comp   actualClass, #predictedClass2 6 4+L 10 - - - 1+2*(1+pB)+L

87 bne   #3rd 8 3+L

98 jump   #method2 11 4+L 4i-1 4i - - (i-1)*(1+pB)+L

... ... 9 5+L 4i+1 - - - i*(1+pB)+L

4i-1 ith: comp   actualClass, #predictedClassi 10 6+L 4i+2 - - - 1+i*(1+pB)+L

4i bne   #(i+1)th ...

4i+1 jump   #methodi 4i -1+i*2+L

... ... 4i+1 1+i*2+L

4n-1 last: jump #PICmiss 4i+2 2+i*2+L

65 <first instruction of method 1>

109 <first instruction of method 2>

4i+2 <first instruction of method i>

Table A-6. PIC call code schedule
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a A mispredicted conditional branch adds 1+B cycles, a predicted branch adds 1 cycle, p = average branch
misprediction rate.

a selector offset is unlikely to fit in immediate field of instructions in large applications.

P92 P97

I Assembly Code I1 Time I1 I2 I3 I4 Time

1 load [object + #classoffset], class 1 0 1 2 3 - 0

2 setlo #selector, selector 2 1 4 - - - L

3 sethi #selector, selectora 3 2 5 - - - 1+L

41,3 add class, selector, table 4 max(3,L) 6 - - - 1+2L

54 load [table], method 5 1+max(3,L) 7 8 - - 2+2L+B

65 call method 6 1+L+max(3,L) 9 10 - - 3+2L+B

- 2+L+max(3,L) 11 - - - 4+2L+B

76 sethi #methSelector, thisSelector 7 3+L+max(3,L)

86 setlo #methSelector, thisSelector 8 4+L+max(3,L)

98 comp selector, thisSelector 9 5+L+max(3,L)

109 bne #messageNotUnderstood 10 6+L+max(3,L)

1110 <first instruction of target> 11 7+L+max(3,L)

Table A-7. RD call code schedule
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P92 P97

I Assembly Code I1 Time I1 I2 I3 I4 Time
ca

lls
ite

1 load [object + #classOffset], class 1 0 1 - - - 0

21 load [class + #tableOffset], table 2 L 2 3 - - L

31 load [class + #cidOffset], cid 3 1+L 4 - - - 2L

42 load [table + #selector], method 4 2L 5 - - - 3L

54 call method 5 3L

- 1+3L

si
ng

le
-im

pl
em

en
ta

tio
n

65 setlo #mask, mask 6 1+1+3L 6 7 - - 1+3L+B

75 sethi #mask, mask 7 2+1+3L 8 9 10 - 2+3L+B

87 and mask, cid, cid 8 3+1+3L 11 12 - - 3+3L+B

95 setlo #thisClass, thisClass 9 4+1+3L 13 - - - 3+1+3L+B

105 sethi #thisClass, thisClass 10 5+1+3L

118,10 comp thisClass, cid 11 6+1+3L

1211 bne #messageNotUnderstood 12 7+1+3L

1312 <first instruction of target> 13 7+2+3L

ov
er

lo
ad

ed

145 setlo #mask1, mask1 14 1+1+3L 14 15 - - 1+3L+B

155 sethi #mask1, mask1 15 2+1+3L 16 17 18 - 2+3L+B

1615 and mask1, cid, temp 16 3+1+3L 19 20 - - 1+2+3L+B

175 setlo #cid1, cid1 17 4+1+3L 21 - - - 1+(3+pB)a+3L+B

185 sethi #cid1, cid1 18 5+1+3L 22 - - - 2+(3+pB)+3L+B

1916,18 comp cid1, temp 19 6+1+3L 23 24 - - 1+(3+pB)+3L+B

2019 bne #2nd 20 7+1+3L 25 26 27 - 1+2+(3+pB)+3L+B

2120 jump #method1 23 1+7+1+3L 28 29 - - 1+2+(3+pB)+3L+B

2320 2nd: setlo #mask2, mask2 21 7+2+3L 30 - - - 1+2*(3+pB)+3L+B

2420 sethi #mask2, mask2 22 7+3+3L 31 - - - 2+2*(3+pB)+3L+B

2524 and mask2, cid, temp 24 2+7+1+3L ...

2620 setlo #cid2, cid2 25 3+7+1+3L 13+9n - - 2+n*(3+pB)+3L+B

2720 sethi #cid2, cid2 26 4+7+1+3L

2825,27 comp cid2, temp 27 5+7+1+3L

2928 bne #3nd 28 6+7+1+3L

3029 jump #method2 29 7+7+1+3L

3229 3rd: ... 32 1+2*7+1+3L

30 2*7+2+3L

2221 <first instruction of method 1> 31 2*7+3+3L

...

3130 <first instruction of method 2> 13+9i i*7+3+3L

13+9i <first instruction of method i>

Table A-8. CT call code schedule
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Table A-9 shows the average dispatch time, in cycles, for all techniques, for the parameter values of

Tables 7 and 8. For each generic processor, both statically typed and dynamically typed versions of a

technique are shown. In the dynamically cached cases, these are always equal. This table is shown as a

graph in Figure 27 in the main text.

Table A-10 shows an approximation of the space cost, of all techniques, for the Smalltalk image

(VisualWorks 1.0). Part of this table is shown as a graph in Figure 18 in the main text.

a A mispredicted conditional branch adds 1+B cycles, a predicted branch adds 1 cycle, p = average branch
misprediction rate.

P92 P95 P97
static dyn. static dyn. static dyn.

LC 20.7 17.8 21.1
VTBL 6.0 N/A 8.0 N/A 13.0 N/A
VTBL-MI 6.0 N/A 8.0 N/A 13.0 N/A
SC 6.0 8.0 8.0 10.0 13.0 14.0
RD 8.0 12.0 9.0 11.0 14.0 16.0
CT 8.0 15.0 10.0 14.0 16.0 19.0
IC 9.8 7.1 7.8
PIC 8.8 6.3 7.5

Table A-9. Dispatch timings (in cycles)

single inheritance

static typing dynamic typing

code data sum code data sum
DTS 274 89 363 same as SI-ST 363
LC 1,916 137 2,053 same as SI-ST 2,053
IC 477 137 614 same as SI-ST 614
PIC 477 231 708 same as SI-ST 708
VTBL 274 696 970 N/A
SC 274 1,219 1,493 341 1,219 1,560
RD 684 703 1,387 817 703 1,520
CT 548 107 655 782 107 889

Table A-10. Approximate space cost for dispatch in Smalltalk image (in Kbytes)
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Appendix B Indirect branch execution intervals

Below we show the number of instructions occuring between indirect branches. Histograms
show the percentage of total branches executed that fall in each category of five instructions.
The last category, 100+, groups all branches that occur more than 100 instructions after the last
branch. For each benchmark, the left histogram shows the distance between indirect branch
executions, and the right histogram shows the distance between executions of the same branch.
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