Answers to Exercises in Quantum Computation I

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Answer 1 (Analyzing Small Circuits).
(a) The circuit consists of four sequential transformations of 2 qubits, with the corresponding matrices:

$$
\begin{aligned}
I \otimes X & =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
H \otimes H & =\frac{1}{2}\left(\begin{array}{llll}
+1 & +1 & +1 & +1 \\
+1 & -1 & +1 & -1 \\
+1 & +1 & -1 & -1 \\
+1 & -1 & -1 & +1
\end{array}\right) \\
\text { CNOT } & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

and again the matrix of $H \otimes H$.
The effect of this circuit on a 2 qubit state $|\psi\rangle$ is described by $(H \otimes H)(\mathrm{CNOT})(H \otimes H)(I \otimes X)|\psi\rangle$, which shows why the transformation matrix of this circuit equals

$$
M_{\text {circuit }}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

As a result, the behavior of the circuit on the four classical basis states is:

$\|a, b\rangle$	$M_{\text {circuit }}\|a, b\rangle$
$\|0,0\rangle$	$\|1,1\rangle$
$\|0,1\rangle$	$\|0,0\rangle$
$\|1,0\rangle$	$\|0,1\rangle$
$\|1,1\rangle$	$\|1,0\rangle$

(b) This circuit has the following effect on the four basis states

$$
\begin{array}{r|r}
\text { input } & \text { output } \\
\hline|0,0\rangle & |0,0\rangle \\
|0,1\rangle & |0,1\rangle \\
|1,0\rangle & |1,0\rangle \\
|1,1\rangle & -|1,1\rangle
\end{array}
$$

hence its matrix representation is

$$
\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Answer 2 (Designing Small Circuits).
(a) The following circuit implements the SWAP gate

(b) From now on we denote the single qubit phase rotation gate by the circuit element

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{\mathrm{i} \phi}
\end{array}\right) \cong \phi
$$

We can implement the controlled phase rotation by

Answer 3 (Controlled NOTs).
(a) It is not possible to implement a CCNOT gate using CNOT gates. Let $a, b, c \in\{0,1\}$ be the 3 bits input of a CNOT circuit. Describe the effect of the circuit on the third qubit as a $\bmod 2$ calculation such that CCNOT with its $|a, b, c\rangle \mapsto|a, b, c+a b\rangle$ is viewed as a second degree polynomial (because of the product term $a b$). As the CNot gate with its mapping $|a, b\rangle \mapsto$ $|a, b \oplus a\rangle$ will only produce linear functions in a, b, c, a CNOT circuit is not capable of implementing a CCNOT gate.
(b) It is possible to implement a CCCNOT gate using CCNOT gates as the following circuit shows

Note how we drew the CCNot gates here: The first CCNot gate has as control bits $|a\rangle$ and $|b\rangle$, while $|c\rangle$ and $|d\rangle$ do not play a role, which is indicated by the solid control dots on the relevant wires.

Answer 4 (Unitarity). Consider the effect of T on the vector $|\psi\rangle-|\phi\rangle$. Because $|\psi\rangle \neq|\phi\rangle$ we have $\||\psi\rangle-|\phi\rangle \| \neq 0$. On the other hand, because T is linear, it must hold that $\| T(|\psi\rangle-$ $|\phi\rangle)\|=\||0, \ldots, 0\rangle-|0, \ldots, 0\rangle \|=0$. Hence T is not norm preserving.

Acknowledgment: Again, the circuits in these exercises were drawn using the Q-circuit $\mathrm{ETT}_{\mathrm{E}}$ Xpackage of Bryan Eastin and Steven T. Flammia.

