Answers to Exercises in Quantum Computation II

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Answer 1. (The Effect of Pauli Gates). The following table describes the effect of the ?-gate on the output state.

?-gate	I	X	Y	Z
Output	$\|0,0\rangle$	$\|0,1\rangle$	$-\mathrm{i}\|1,1\rangle$	$\|1,0\rangle$

Answer 2. (Creating Correlated Quantum States). The following circuit creates the required superposition $\frac{1}{\sqrt{2}}(|0,0,0,0\rangle+|1,1,1,1\rangle)$.

Answer 3. (Implementing Modulo Calculations).
(a) Because $a+b=2\left(a_{1}+b_{1}\right)+\left(a_{0}+b_{0}\right)$, we have to implement the 6 bit operation $\left|a_{1}, a_{0}, b_{1}, b_{0}, 0,0\right\rangle \mapsto$ $\left|a_{1}, a_{0}, b_{1}, b_{0}, a_{1}+b_{1}+a_{0} b_{0}, a_{0}+b_{0}\right\rangle$, where the additions and multiplications are done $\bmod 2$.

(b) Because $a b=4 a_{1} b_{1}+2\left(a_{1} b_{0}+a_{0} b_{1}\right)+a_{0} b_{0}=2\left(a_{1} b_{0}+\right.$ $\left.a_{0} b_{1}\right)+a_{0} b_{0} \bmod 4$, we have to implement the 6 bit operation $\left|a_{1}, a_{0}, b_{1}, b_{0}, 0,0\right\rangle \mapsto\left|a_{1}, a_{0}, b_{1}, b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{0} b_{0}\right\rangle$, where the additions and multiplications are done $\bmod 2$.

(c) Write the numbers as $a=\sum_{j=0}^{n-1} a_{j} 2^{j}$ and $b=$ $\sum_{j=0}^{n-1} b_{j} 2^{j}$ such that $a+b=\sum_{j=0}^{n-1}\left(a_{j}+b_{j}\right) 2^{j}$ and $a b=$ $\sum_{j=0}^{n-1}\left(a_{0} b_{j}+\cdots+a_{j} b_{0}\right) 2^{j}$. Use extra bits to implement the carry bits when adding or multiplying the numbers a and b. These techniques are well-known from traditional circuit complexity.

Answer 4. (Copying Qubits).
(a) Use the following circuit for all $s \in\{-,+\}$

(b) The effect of this circuit on the states $|b, 0\rangle$ is $|0,0\rangle \mapsto$ $\frac{1}{\sqrt{2}}(|0,0\rangle+|1,1\rangle)$ and $|1,0\rangle \mapsto \frac{1}{\sqrt{2}}(|0,1\rangle+|1,0\rangle)$.
(c) (Proof by contradiction.) Let $U \in \mathbb{C}^{4 \times 4}$ be the unitary matrix of the 2 qubit circuit. Because of the requirement $U:|0,0\rangle \mapsto|0,0\rangle$ the first column of the matrix U must have the form

$$
\left(\begin{array}{llll}
1 & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Next, because of the other requirement $U:|+, 0\rangle \mapsto|+,+\rangle$ the third column of U must have the form

$$
\left(\begin{array}{cccc}
1 & * & \frac{1}{\sqrt{2}}-1 & * \\
0 & * & \frac{1}{\sqrt{2}} & * \\
0 & * & \frac{1}{\sqrt{2}} & * \\
0 & * & \frac{1}{\sqrt{2}} & *
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Thus the first and the third column of U are not orthogonal, hence U is not unitary.

Alternatively, we can prove the nonunitarity of U as follows. We have $\langle 0,0 \mid+, 0\rangle=\frac{1}{\sqrt{2}} \neq \frac{1}{2}=\langle 0,0 \mid+,+\rangle$, hence this U can not be inner-product preserving.

Answer 5. (Exploring an Unknown Function).
(a) Depending on the two values $f(0)$ and $f(1)$ the output states are as follows

$f(0)$	$f(1)$	output state
0	0	$\frac{1}{2}(+\|0\rangle+\|1\rangle) \otimes(\|0\rangle-\|1\rangle)$
0	1	$\frac{1}{2}(+\|0\rangle-\|1\rangle) \otimes(\|0\rangle-\|1\rangle)$
1	0	$\frac{1}{2}(-\|0\rangle+\|1\rangle) \otimes(\|0\rangle-\|1\rangle)$
1	1	$\frac{1}{2}(-\|0\rangle-\|1\rangle) \otimes(\|0\rangle-\|1\rangle)$

(b) If you apply a Hadamard on the first qubit and then measure it in the computational basis, then you will see a " 0 " if and only if $f(0)=f(1)$ and you will see a " 1 " if and only if $f(0) \neq f(1)$. Note that this quantum procedure can therefore decide the question $f(0)=f(1)$? with only one query to f.

Acknowledgment: Again, the circuits in these exercises were drawn using the Q-circuit LATEXpackage of Bryan Eastin and Steven T. Flammia.

