Answers to Exercises in Quantum Computation III

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Answer 1. (Deutsch-Jozsa on General Functions)

(a) -
(b) After the application of the U_{F} gate the first n qubits of the system are described by $\sum_{x}(-1)^{F(x)}|x\rangle / \sqrt{2^{n}}$, where the summation is over all strings $x \in\{0,1\}^{n}$. Applying n Hadamard gates to this state gives

$$
\mapsto \frac{1}{2^{n}} \sum_{x \in\{0,1\}}(-1)^{F(x)} \sum_{y \in\{0,1\}^{n}}(-1)^{x_{1} y_{1}+\cdots+x_{n} y_{n}}|y\rangle
$$

As a result the inner product between this output state and $|0, \ldots, 0\rangle$ is $2^{-n} \sum_{x}(-1)^{F(x)}$. Because $(-1)^{F(x)}=1-2 F(x)$, this gives the probability of observing the all zeros state

$$
\begin{aligned}
\operatorname{Pr}(0 \cdots 0) & =\frac{1}{2^{2 n}}\left(\sum_{x \in\{0,1\}^{n}} 1-2 F(x)\right)^{2} \\
& =\left(1-2 \frac{\sum_{x} F(x)}{2^{n}}\right)^{2}
\end{aligned}
$$

In other words, it depends quadratically on the Hamming weight $\sum_{x} F(x)$ of the string $F(0, \ldots, 0), \ldots, F(1, \ldots, 1)$. The probability is 1 if and only if $\sum_{x} F(x)$ is 0 or 2^{n}; the probability is 0 if and only if $\sum_{x} F(x)=2^{n-1}$.

Answer 2. (Preparation for Midterm) -
Answer 3. (One-Out-of-Four) Throughout the algorithm the 3 rd qubit is used to implement the phase flip trick, and hence remains unchanged. After the first two steps, the first two qubits will be $\frac{1}{2} \sum_{x, y}|x, y\rangle-|s, r\rangle$ where the summation is over all bit combinations $(x, y) \in\{0,1\}^{2}$. Because we can write this also as $H \otimes H|0,0\rangle-|s, r\rangle$, we see that after step 3 the state equals $|0,0\rangle-H \otimes H|s, r\rangle$. Regardless of the values s, r, the amplitude of the $|0,0\rangle$ component of this state is $\frac{1}{2}$, hence after step 4 (with its $\frac{1}{2}|0,0\rangle \mapsto-\frac{1}{2}|0,0\rangle$), the state will have changed to $-H \otimes H|s, r\rangle$. This shows that after the final transformation of step 5, the state of the system is $-|s, r\rangle$. Given the two unknown bits $s, r \in\{0,1\}$, the measurement will therefore reveal the values s, r with 100% accuracy.
(a) This circuit searches a database of size 4 (encoded by $U_{s, r}$) in a single query. It is a small example of a quantum search algorithms that is more efficient than is possible classically.

Answer 4. (Summing Phases)
(a) Note that

$$
\zeta_{n} \cdot\left(\sum_{j=0}^{n-1} \zeta_{n}^{j}\right)=\sum_{j=1}^{n} \zeta_{n}^{j}=\sum_{j=0}^{n-1} \zeta_{n}^{j}
$$

Assuming $n \neq 1$, we have $\zeta_{n} \neq 1$, which implies $\sum_{j=0}^{n-1} \zeta_{n}^{j}=0$.
(For the degenerate case $n=1$, we have $\sum_{j=0}^{n-1} \zeta_{n}^{j}=n$.)
(b) Similarly, note that

$$
\zeta_{n}^{q}\left(\sum_{j=0}^{p-1} \zeta_{n}^{q j}\right)=\sum_{j=0}^{p-1} \zeta_{n}^{q j}
$$

Hence, assuming that $q \neq n$, we have $\zeta_{n}^{q} \neq 1$, which gives again $\sum_{j=0}^{p-1} \zeta_{n}^{q j}=0$. If $q=n$, then $p=1$ and the summation becomes $\sum_{j=0}^{0} \zeta_{n}^{n j}=1$. (The degenerate case $n=1$ obviously gives $\sum_{j=0}^{p-1} \zeta_{n}^{q j}=p$.)
(c) For $n=1$ the sum will be m. Otherwise, use the standard geometric sum equality

$$
\sum_{j=0}^{m-1} \zeta_{n}^{j}=\frac{1-\zeta_{n}^{m}}{1-\zeta_{n}}
$$

