Answers to Exercises in Quantum Computation III

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Answer 1. (Deutsch-Jozsa on General Functions) (a) —

(**b**) After the application of the U_F gate the first *n* qubits of the system are described by $\sum_{x} (-1)^{F(x)} |x\rangle / \sqrt{2^n}$, where the summation is over all strings $x \in \{0, 1\}^n$. Applying *n* Hadamard gates to this state gives

$$\mapsto \frac{1}{2^n} \sum_{x \in \{0,1\}} (-1)^{F(x)} \sum_{y \in \{0,1\}^n} (-1)^{x_1 y_1 + \dots + x_n y_n} |y\rangle.$$

As a result the inner product between this output state and $|0,...,0\rangle$ is $2^{-n}\sum_{x}(-1)^{F(x)}$. Because $(-1)^{F(x)} = 1 - 2F(x)$, this gives the probability of observing the all zeros state

2

$$Pr(0\cdots 0) = \frac{1}{2^{2n}} \left(\sum_{x \in \{0,1\}^n} 1 - 2F(x) \right)$$
$$= \left(1 - 2\frac{\sum_x F(x)}{2^n} \right)^2.$$

In other words, it depends quadratically on the Hamming weight $\sum_{x} F(x)$ of the string F(0,...,0),...,F(1,...,1). The probability is 1 if and only if $\sum_{x} F(x)$ is 0 or 2^{n} ; the probability is 0 if and only if $\sum_{x} F(x) = 2^{n-1}$.

Answer 2. (Preparation for Midterm) —

Answer 3. (One-Out-of-Four) Throughout the algorithm the 3rd qubit is used to implement the phase flip trick, and hence remains unchanged. After the first two steps, the first two qubits will be $\frac{1}{2}\sum_{x,y} |x,y\rangle - |s,r\rangle$ where the summation is over all bit combinations $(x,y) \in \{0,1\}^2$. Because we can write this also as $H \otimes H |0,0\rangle - |s,r\rangle$, we see that after step 3 the state equals $|0,0\rangle - H \otimes H |s,r\rangle$. Regardless of the values s, r, the amplitude of the $|0,0\rangle$ component of this state is $\frac{1}{2}$, hence after step 4 (with its $\frac{1}{2}|0,0\rangle \mapsto -\frac{1}{2}|0,0\rangle$), the state will have changed to $-H \otimes H | s, r \rangle$. This shows that after the final transformation of step 5, the state of the system is $-|s, r\rangle$. Given the two unknown bits $s, r \in \{0, 1\}$, the measurement will therefore reveal the values s, r with 100% accuracy. (a) This circuit searches a database of size 4 (encoded by $U_{s,r}$) in a single query. It is a small example of a quantum search algorithms that is more efficient than is possible classically.

Answer 4. (Summing Phases) (a) Note that

$$\zeta_n \cdot \left(\sum_{j=0}^{n-1} \zeta_n^j\right) = \sum_{j=1}^n \zeta_n^j = \sum_{j=0}^{n-1} \zeta_n^j.$$

Assuming $n \neq 1$, we have $\zeta_n \neq 1$, which implies $\sum_{j=0}^{n-1} \zeta_n^j = 0$. (For the degenerate case n = 1, we have $\sum_{j=0}^{n-1} \zeta_n^j = n$.) (b) Similarly, note that

$$\zeta_n^q \left(\sum_{j=0}^{p-1} \zeta_n^{qj} \right) = \sum_{j=0}^{p-1} \zeta_n^{qj}$$

Hence, assuming that $q \neq n$, we have $\zeta_n^q \neq 1$, which gives again $\sum_{j=0}^{p-1} \zeta_n^{qj} = 0$. If q = n, then p = 1 and the summation becomes $\sum_{j=0}^{0} \zeta_n^{nj} = 1$. (The degenerate case n = 1 obviously gives $\sum_{j=0}^{p-1} \zeta_n^{qj} = p$.)

(c) For n = 1 the sum will be *m*. Otherwise, use the standard *geometric sum* equality

$$\sum_{j=0}^{m-1} \zeta_n^j = \frac{1 - \zeta_n^m}{1 - \zeta_n}.$$