Answers to Exercises in Quantum Computation IV

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Answer 1. (Generalized Phase Flip Trick)
(a) We have $A_{4}:\left|\varphi_{4}\right\rangle \mapsto \mathrm{i}\left|\varphi_{4}\right\rangle$ as is shown by

$$
\begin{aligned}
A_{4}\left(\left|\varphi_{4}\right\rangle\right) & =A_{4}\left(\frac{1}{2}(|0\rangle-\mathrm{i}|1\rangle-|2\rangle+\mathrm{i}|3\rangle)\right) \\
& =\frac{1}{2}(|1\rangle-\mathrm{i}|2\rangle-|3\rangle+\mathrm{i}|0\rangle) \\
& =\mathrm{i} \cdot \frac{1}{2}(|0\rangle-\mathrm{i}|1\rangle-|2\rangle+\mathrm{i}|3\rangle) .
\end{aligned}
$$

(b) By applying $A_{4} t$ times we get $A_{4}^{t}:\left|\varphi_{4}\right\rangle \mapsto(\mathrm{i})^{t}\left|\varphi_{4}\right\rangle$.
(c) It is easy to see that

$$
\begin{aligned}
A_{n}\left(\left|\varphi_{n}\right\rangle\right) & =\frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}_{n}} \mathrm{e}^{-2 \pi \mathrm{i} j / n} A_{n}(|j\rangle) \\
& =\frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}_{n}} \mathrm{e}^{-2 \pi \mathrm{i} j / n}|j+1\rangle \\
& =\frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}_{n}} \mathrm{e}^{-2 \pi \mathrm{i}(j-1) / n}|j\rangle \\
& =\mathrm{e}^{2 \pi \mathrm{i} / n}\left|\varphi_{n}\right\rangle
\end{aligned}
$$

Hence, by repetition, $A_{n}^{t}:\left|\varphi_{n}\right\rangle \mapsto \mathrm{e}^{2 \pi i t / n}\left|\varphi_{n}\right\rangle$.
Answer 2. (Fourier Squared)
(a) $\operatorname{Four}_{N} \cdot \operatorname{Four}_{N}:|x\rangle \mapsto|-x\rangle$, as is shown by

$$
\begin{aligned}
\operatorname{Four}_{N} \cdot \operatorname{Four}_{N}(|x\rangle) & \mapsto \operatorname{Four}_{N}\left(\frac{1}{\sqrt{N}} \sum_{y \in \mathbb{Z}_{N}} \zeta_{N}^{x y}|y\rangle\right) \\
& \mapsto \frac{1}{N} \sum_{y, z \in \mathbb{Z}_{N}} \zeta_{N}^{x y} \zeta_{N}^{y z}|z\rangle \\
& =\frac{1}{N} \sum_{z \in \mathbb{Z}_{N}}\left(\sum_{y \in \mathbb{Z}_{N}} \zeta_{N}^{y(x+z)}\right)|z\rangle \\
& =|-x\rangle
\end{aligned}
$$

for all $x \in \mathbb{Z}_{N}$ with $\zeta_{N}:=\exp (2 \pi \mathrm{i} / N)$, where we used $\sum_{y} \zeta_{N}^{y(x+z)}=0$ if $x+z \neq 0 \bmod N$ and $\sum_{y} \zeta_{N}^{y(x+z)}=N$ if $x+z=$ $0 \bmod N$.

Answer 3. (Factoring 35)
(a) The numbers $x \in\{0, \ldots, 34\}$ that are co-prime with respect to 35 are all but those that are divisible by 5 or 7 , which is the set $\{1,2,3,4,6,8,9,11,12,13,16,17,18,19,22,23,24$, $26,27,29,31,32,33,34\}$.
(b) For the 24 values $x \in \mathbb{Z}_{35}$ that are co-prime with respect to 35, the orders r are listed in the table below (where order (x) is the smallest positive integer such that $\left.x^{r}=1 \bmod 35\right)$.
(c) Of the 21 orders r that are even, the table below lists the values $x^{r / 2} \bmod 35$. To find potential non-trivial factors of 35 , we calculate for the 21 relevant values x (with even orders r),
the greatest common divisors $\operatorname{gcd}_{-}:=\operatorname{gcd}\left(x^{r / 2}-1,35\right)$ and $\operatorname{gcd}_{+}:=\operatorname{gcd}\left(x^{r / 2}+1,35\right)$. It turns out that 18 of the gcd cases give the non-trivial factors of 35 (namely 5 and 7). Hence, in total, 18 of the 35 values $x \in \mathbb{Z}_{35}$ (which is $18 / 35 \times 100 \approx$ 51%) are successful in the sense that x is co-prime with 35 , the order $r=\operatorname{order}(x)$ is even, and the values $\operatorname{gcd}\left(x^{r / 2}+1,35\right)$ and $\operatorname{gcd}\left(x^{r / 2}-1,35\right)$ give non-trivial factors of 35 .

co-primes x	$r=\operatorname{order}(x)$	$x^{r / 2}$	gcd $_{-}$	gcd $_{+}$	success
1	1	\cdot			
2	12	29	7	5	$\sqrt{ }$
3	12	29	7	5	$\sqrt{ }$
4	6	29	7	5	$\sqrt{ }$
6	2	6	5	7	$\sqrt{ }$
8	4	29	7	5	$\sqrt{ }$
9	6	29	7	5	$\sqrt{ }$
11	3	.			
12	12	29	7	5	$\sqrt{ }$
13	4	29	7	5	$\sqrt{ }$
16	3	.			
17	12	29	7	5	$\sqrt{ }$
18	12	29	7	5	$\sqrt{ }$
19	6	34	1	35	
22	4	29	7	5	$\sqrt{ }$
23	12	29	7	5	$\sqrt{ }$
24	6	34	1	35	
26	6	6	5	7	$\sqrt{ }$
27	4	29	7	5	$\sqrt{ }$
29	2	29	7	5	$\sqrt{ }$
31	6	6	5	7	$\sqrt{ }$
32	12	29	7	5	$\sqrt{ }$
33	12	29	7	5	$\sqrt{ }$
34	2	34	1	35	

