Answers to Exercises in Quantum Computation IV

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Answer 1. (Generalized Phase Flip Trick) (a) We have $A_4 : |\varphi_4\rangle \mapsto i |\varphi_4\rangle$ as is shown by

$$\begin{split} A_4(|\varphi_4\rangle) &= A_4(\frac{1}{2}(|0\rangle - \mathbf{i} |1\rangle - |2\rangle + \mathbf{i} |3\rangle)) \\ &= \frac{1}{2}(|1\rangle - \mathbf{i} |2\rangle - |3\rangle + \mathbf{i} |0\rangle) \\ &= \mathbf{i} \cdot \frac{1}{2}(|0\rangle - \mathbf{i} |1\rangle - |2\rangle + \mathbf{i} |3\rangle). \end{split}$$

(b) By applying $A_4 t$ times we get $A_4^t : |\varphi_4\rangle \mapsto (i)^t |\varphi_4\rangle$. **(c)** It is easy to see that

$$\begin{split} A_n(|\phi_n\rangle) &= \frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}_n} \mathrm{e}^{-2\pi \mathrm{i} j/n} A_n(|j\rangle) \\ &= \frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}_n} \mathrm{e}^{-2\pi \mathrm{i} j/n} |j+1\rangle \\ &= \frac{1}{\sqrt{n}} \sum_{j \in \mathbb{Z}_n} \mathrm{e}^{-2\pi \mathrm{i} (j-1)/n} |j\rangle \\ &= \mathrm{e}^{2\pi \mathrm{i} / n} |\phi_n\rangle \,. \end{split}$$

Hence, by repetition, $A_n^t : |\varphi_n\rangle \mapsto e^{2\pi i t/n} |\varphi_n\rangle$.

Answer 2. (Fourier Squared)

(a) Four_N · Four_N : $|x\rangle \mapsto |-x\rangle$, as is shown by

$$\begin{aligned} \operatorname{Four}_{N} \cdot \operatorname{Four}_{N} \left(|x\rangle \right) &\mapsto \operatorname{Four}_{N} \left(\frac{1}{\sqrt{N}} \sum_{y \in \mathbb{Z}_{N}} \zeta_{N}^{xy} |y\rangle \right) \\ &\mapsto \frac{1}{N} \sum_{y, z \in \mathbb{Z}_{N}} \zeta_{N}^{xy} \zeta_{N}^{yz} |z\rangle \\ &= \frac{1}{N} \sum_{z \in \mathbb{Z}_{N}} \left(\sum_{y \in \mathbb{Z}_{N}} \zeta_{N}^{y(x+z)} \right) |z\rangle \\ &= |-x\rangle \,, \end{aligned}$$

for all $x \in \mathbb{Z}_N$ with $\zeta_N := \exp(2\pi i/N)$, where we used $\sum_y \zeta_N^{y(x+z)} = 0$ if $x + z \neq 0 \mod N$ and $\sum_y \zeta_N^{y(x+z)} = N$ if $x + z = 0 \mod N$.

Answer 3. (Factoring 35)

(a) The numbers $x \in \{0, ..., 34\}$ that are co-prime with respect to 35 are all but those that are divisible by 5 or 7, which is the set $\{1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34\}$.

(b) For the 24 values $x \in \mathbb{Z}_{35}$ that are co-prime with respect to 35, the orders *r* are listed in the table below (where order(*x*) is the smallest positive integer such that $x^r = 1 \mod 35$).

(c) Of the 21 orders *r* that are even, the table below lists the values $x^{r/2} \mod 35$. To find potential non-trivial factors of 35, we calculate for the 21 relevant values *x* (with even orders *r*),

the greatest common divisors $gcd_{-} := gcd(x^{r/2} - 1, 35)$ and $gcd_{+} := gcd(x^{r/2} + 1, 35)$. It turns out that 18 of the gcd cases give the non-trivial factors of 35 (namely 5 and 7). Hence, in total, 18 of the 35 values $x \in \mathbb{Z}_{35}$ (which is $18/35 \times 100 \approx 51\%$) are successful in the sense that *x* is co-prime with 35, the order *r* = order(*x*) is even, and the values $gcd(x^{r/2} + 1, 35)$ and $gcd(x^{r/2} - 1, 35)$ give non-trivial factors of 35.

co-primes x	$r = \operatorname{order}(x)$	$x^{r/2}$	gcd_	gcd_+	success
1	1				
2	12	29	7	5	\checkmark
3	12	29	7	5	\checkmark
4	6	29	7	5	\checkmark
6	2	6	5	7	\checkmark
8	4	29	7	5	\checkmark
9	6	29	7	5	\checkmark
11	3				
12	12	29	7	5	\checkmark
13	4	29	7	5	\checkmark
16	3				
17	12	29	7	5	\checkmark
18	12	29	7	5	\checkmark
19	6	34	1	35	
22	4	29	7	5	\checkmark
23	12	29	7	5	\checkmark
24	6	34	1	35	
26	6	6	5	7	\checkmark
27	4	29	7	5	\checkmark
29	2	29	7	5	\checkmark
31	6	6	5	7	\checkmark
32	12	29	7	5	\checkmark
33	12	29	7	5	\checkmark
34	2	34	1	35	