# Answers to Exercises in Quantum Computation V v2 

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Answer 1. (Reading) -
Answer 2. (Towards Teleportation) (See Slides of Week 9 for more on these answers.)
(a) With $|q\rangle=\alpha|0\rangle+\beta|1\rangle$, the output state before the two measurements is

$$
\begin{aligned}
\mid \text { output }\rangle & =\frac{1}{2}(\alpha|0,00\rangle+\alpha|1,00\rangle+\alpha|0,11\rangle+\alpha|1,11\rangle+\beta|0,10\rangle-\beta|1,10\rangle+\beta|0,01\rangle-\beta|1,01\rangle) \\
& =\frac{1}{2}|00\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)+\frac{1}{2}|01\rangle \otimes(\alpha|1\rangle+\beta|0\rangle)+\frac{1}{2}|10\rangle \otimes(\alpha|0\rangle-\beta|1\rangle)+\frac{1}{2}|11\rangle \otimes(\alpha|1\rangle-\beta|0\rangle) .
\end{aligned}
$$

(b) The probability of measuring the outcome " 00 " on the first two qubits is $\frac{1}{4}$.
(c) The quantum state of the third qubit is $\alpha|0\rangle+\beta|1\rangle$ after the outcome " 00 " has been measured.
(d) For the four possible measurement outcomes we have the following cases

| measurement outcome | probability | third qubit |
| :---: | :---: | :---: |
| 00 | $\frac{1}{4}$ | $\alpha\|0\rangle+\beta\|1\rangle$ |
| 01 | $\frac{1}{4}$ | $\beta\|0\rangle+\alpha\|1\rangle$ |
| 10 | $\frac{1}{4}$ | $\alpha\|0\rangle-\beta\|1\rangle$ |
| 11 | $\frac{1}{4}$ | $-\beta\|0\rangle+\alpha\|1\rangle$ |.

Answer 3. (Rewriting Entanglement)
(a) For $|q\rangle=\frac{3}{5}|0\rangle+\frac{4}{5}|1\rangle$, take the orthogonal qubit state $\left|q^{\perp}\right\rangle:=\frac{4}{5}|0\rangle-\frac{3}{5}|1\rangle$ such that

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left(|q, q\rangle+\left|q^{\perp}, q^{\perp}\right\rangle\right) & =\frac{1}{\sqrt{2}}\left(\frac{9}{25}|00\rangle+\frac{12}{25}|01\rangle+\frac{12}{25}|10\rangle+\frac{16}{25}|11\rangle+\frac{16}{25}|00\rangle-\frac{12}{25}|01\rangle-\frac{12}{25}|10\rangle+\frac{9}{25}|11\rangle\right) \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& =\mid \text { EPR }\rangle .
\end{aligned}
$$

(b) There is no qubit state $\left|q^{\perp}\right\rangle$ (with $|q\rangle=(|0\rangle+\mathrm{i}|1\rangle) / \sqrt{2}$ ) such that $\left(|q q\rangle+\left|q^{\perp} q^{\perp}\right\rangle\right) / \sqrt{2}$. Proof: Let $\left|q^{\perp}\right\rangle=\alpha|0\rangle+\beta|1\rangle$ with $\alpha, \beta \in \mathbb{C}$, then

$$
\frac{1}{\sqrt{2}}\left(|q, q\rangle+\left|q^{\perp}, q^{\perp}\right\rangle\right)=\frac{1}{\sqrt{2}}\left(\frac{1}{2}|00\rangle+\frac{i}{2}|01\rangle+\frac{i}{2}|10\rangle-\frac{1}{2}|11\rangle+\alpha^{2}|00\rangle+\alpha \beta|01\rangle+\alpha \beta|10\rangle+\beta^{2}|11\rangle\right) .
$$

For this state to equal $(|00\rangle+|11\rangle) / \sqrt{2}$ it most hold that $\beta^{2}-\frac{1}{2}=1$ and hence that $|\beta|=\sqrt{\frac{3}{2}}$, which contradicts the requirement that $\left|q^{\perp}\right\rangle=\alpha|0\rangle+\beta|1\rangle$ is a proper (normalized) qubit state.
(c) If $\alpha, \beta \in \mathbb{R}$, define $\left|q^{\perp}\right\rangle= \pm(\beta|0\rangle-\alpha|1\rangle)$ such that

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left(|q, q\rangle+\left|q^{\perp}, q^{\perp}\right\rangle\right) & =\frac{1}{\sqrt{2}}\left(\alpha^{2}|00\rangle+\alpha \beta|01\rangle+\beta \alpha|10\rangle+\beta^{2}|11\rangle+\beta^{2}|00\rangle-\beta \alpha|01\rangle-\alpha \beta|10\rangle+\alpha^{2}|11\rangle\right) \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& =\mid \text { EPR }\rangle
\end{aligned}
$$

because, by normalization, we have $\alpha^{2}+\beta^{2}=1$.
If $\alpha$ or $\beta \notin \mathbb{R}$, there is no such $\left|q^{\perp}\right\rangle$. Proof: Define $\left|q^{\perp}\right\rangle=\gamma|0\rangle+\delta|1\rangle$ such that

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left(|q, q\rangle+\left|q^{\perp}, q^{\perp}\right\rangle\right) & =\frac{1}{\sqrt{2}}\left(\alpha^{2}|00\rangle+\alpha \beta|01\rangle+\beta \alpha|10\rangle+\beta^{2}|11\rangle+\gamma^{2}|00\rangle+\gamma \delta|01\rangle+\gamma \delta|10\rangle+\delta^{2}|11\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(\left(\alpha^{2}+\gamma^{2}\right)|00\rangle+(\alpha \beta+\gamma \delta)|01\rangle+(\alpha \beta+\gamma \delta)|10\rangle+\left(\beta^{2}+\delta^{2}\right)|11\rangle\right)
\end{aligned}
$$

For this to be the state $|\mathrm{EPR}\rangle$, the following equations must hold

$$
\alpha^{2}+\gamma^{2}=1, \quad \beta^{2}+\delta^{2}=1, \quad \alpha \beta+\gamma \delta=0
$$

and by the normalization restriction $|\alpha|^{2}+|\beta|^{2}=|\gamma|^{2}+|\delta|^{2}=1$. Here we will show that this only possible if $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. By adding the first two equations we get $\left(\alpha^{2}+\beta^{2}\right)+\left(\gamma^{2}+\delta^{2}\right)=2$. Now, because of the triangle inequality $|x+y| \leq|x|+|y|$ for $x, y \in \mathbb{C}$, we see that we must have $2=\left|\left(\alpha^{2}+\beta^{2}\right)+\left(\gamma^{2}+\delta^{2}\right)\right| \leq\left|\alpha^{2}+\beta^{2}\right|+\left|\gamma^{2}+\delta^{2}\right| \leq\left|\alpha^{2}\right|+\left|\beta^{2}\right|+\left|\gamma^{2}\right|+\left|\delta^{2}\right|=2$, and hence it must hold that $\left|\alpha^{2}+\beta^{2}\right|=\left|\gamma^{2}+\delta^{2}\right|=1$. By $\left(\alpha^{2}+\beta^{2}\right)+\left(\gamma^{2}+\delta^{2}\right)=2$ this implies $\alpha^{2}+\beta^{2}=\gamma^{2}+\delta^{2}=1$. With $\left|\alpha^{2}\right|+\left|\beta^{2}\right|=\left|\gamma^{2}\right|+$ $\left|\delta^{2}\right|=1$ this is only possible if $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. (We use here the fact that $(a+b \mathrm{i})^{2}+(c+d \mathrm{i})^{2}=a^{2}+2 a b \mathrm{i}-b^{2}+c^{2}+2 c d \mathrm{i}-d^{2}=1$ in combination with $a^{2}+b^{2}=c^{2}+d^{2}$ implies $b, d=0$.)
(d) For general $|q\rangle=\alpha|0\rangle+\beta|1\rangle$ and its orthogonal dual $\left|q^{\perp}\right\rangle=\beta^{*}|0\rangle-\alpha^{*}|1\rangle$ define the qubit state $|s\rangle=\alpha^{*}|0\rangle+\beta^{*}|1\rangle$ and its orthogonal dual $\left|s^{\perp}\right\rangle=\beta|0\rangle-\alpha|1\rangle$ such that

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left(|q, s\rangle+\left|q^{\perp}, s^{\perp}\right\rangle\right) & =\frac{1}{\sqrt{2}}\left(\alpha \alpha^{*}|00\rangle+\alpha \beta^{*}|01\rangle+\beta \alpha^{*}|10\rangle+\beta \beta^{*}|11\rangle+\beta^{*} \beta|00\rangle-\beta^{*} \alpha|01\rangle-\alpha^{*} \beta|10\rangle+\alpha^{*} \alpha|11\rangle\right) \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& =\mid \text { EPR }\rangle
\end{aligned}
$$

because, by normalization, we have $\alpha \alpha^{*}+\beta \beta^{*}=1$.

