Answers to Exercises in Quantum Computation VI

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Question 1. (Reading) -
Question 2. (Classical Impossibilities)
(a) The requirement states that $x_{a} \oplus y_{b}=a b$ for all $(a, b) \in$ $\{0,1\}^{2}$ with $x_{a}, y_{b} \in\{0,1\}$. As $x \oplus y=0$ implies $x=y$, it must hold that $x_{0}=y_{0}, x_{1}=y_{0}$ and $x_{0}=y_{1}$, or in short $x_{0}=x_{1}=y_{0}=y_{1}$. This contradicts the fourth requirement $x_{1} \oplus y_{1}=1$.
(b) The assignment $\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=(0,0,0,0)$ satisfies all equalities except the case $x_{1} \oplus y_{1}=1$. More generally, we have the following assignments that satisfy three out of four equalities

x_{0}	x_{1}	y_{0}	y_{1}	unsatisfied equality
0	0	0	0	$x_{1} \oplus y_{1}=1$
0	0	0	1	$x_{0} \oplus y_{1}=0$
0	1	0	0	$x_{1} \oplus y_{0}=0$
0	1	1	0	$x_{0} \oplus y_{0}=0$

If A and B employ randomly one of these four assignments, each case $(a, b) \in\{0,1\}^{2}$ will have a success rate of 0.75 .
(c) The answer of (a) shows that of the four cases always at least one will get contradicted, hence a success probability of 0.75 is optimal.

Question 3. (Towards Quantum Error Correction)
(a) If the two measurements have output " 1 " and " 1 ", then it must hold that $b=b^{\prime \prime}$ and $b, b^{\prime \prime} \neq b^{\prime}$.
(b) If the first measurement outcome is "zero", then $b=b^{\prime}$ and if the outcome is "one" then $b \neq b^{\prime}$. If the second measurement outcome is "zero", then $b^{\prime}=b^{\prime \prime}$ and if the outcome is "one" then $b^{\prime} \neq b^{\prime \prime}$.
(c) By the previous answer, for each of the four possible measurement outcomes there are two corresponding bit strings $\left(b, b^{\prime}, b^{\prime \prime}\right) \in\{0,1\}^{3}$. Hence, a general superposition of these two strings will be unaffected by the measurement of the two outcome bits. These 'stable state' superpositions are as follows (with $\alpha, \beta \in \mathbb{C}$):

1st outcome	2nd outcome	stable state
0	0	$\alpha\|000\rangle+\beta\|111\rangle$
0	1	$\alpha\|001\rangle+\beta\|110\rangle$
1	0	$\alpha\|100\rangle+\beta\|011\rangle$
1	1	$\alpha\|010\rangle+\beta\|101\rangle$

