Answers to Exercises in Quantum Computation VI

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Question 1. (Reading) —

Question 2. (Classical Impossibilities)

(a) The requirement states that $x_a \oplus y_b = ab$ for all $(a,b) \in \{0,1\}^2$ with $x_a, y_b \in \{0,1\}$. As $x \oplus y = 0$ implies x = y, it must hold that $x_0 = y_0$, $x_1 = y_0$ and $x_0 = y_1$, or in short $x_0 = x_1 = y_0 = y_1$. This contradicts the fourth requirement $x_1 \oplus y_1 = 1$.

(b) The assignment $(x_0, x_1, y_0, y_1) = (0, 0, 0, 0)$ satisfies all equalities except the case $x_1 \oplus y_1 = 1$. More generally, we have the following assignments that satisfy three out of four equalities

x_0	x_1	<i>y</i> 0	<i>y</i> ₁	unsatisfied equality
0	0	0	0	$x_1 \oplus y_1 = 1$
0	0	0	1	$x_0\oplus y_1=0$
0	1	0	0	$x_1 \oplus y_0 = 0$
0	1	1	0	$x_0\oplus y_0=0$

If *A* and *B* employ randomly one of these four assignments, each case $(a,b) \in \{0,1\}^2$ will have a success rate of 0.75.

(c) The answer of (a) shows that of the four cases always at least one will get contradicted, hence a success probability of 0.75 is optimal.

Question 3. (Towards Quantum Error Correction)

(a) If the two measurements have output "1" and "1", then it must hold that b = b'' and $b, b'' \neq b'$.

(b) If the first measurement outcome is "zero", then b = b' and if the outcome is "one" then $b \neq b'$. If the second measurement outcome is "zero", then b' = b'' and if the outcome is "one" then $b' \neq b''$.

(c) By the previous answer, for each of the four possible measurement outcomes there are two corresponding bit strings $(b,b',b'') \in \{0,1\}^3$. Hence, a general superposition of these two strings will be unaffected by the measurement of the two outcome bits. These 'stable state' superpositions are as follows (with $\alpha, \beta \in \mathbb{C}$):

lst outcome	2nd outcome	stable state
0	0	$\alpha \left 000 \right\rangle + \beta \left 111 \right\rangle$
0	1	$\alpha \left 001 \right\rangle + \beta \left 110 \right\rangle$
1	0	$\alpha \left 100 \right\rangle + \beta \left 011 \right\rangle$
1	1	$\alpha \left 010 \right\rangle + \beta \left 101 \right\rangle$