Exercises in Quantum Computation I

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Exercises for the course "Quantum Computation and Quantum Information" (290A), Spring 2005. v1

(2)

Question 1 (Analyzing Small Circuits) Consider the following small circuits. Describe their behavior by analyzing their effect on classical basis states $\{0,1\}^n$. Next, calculate the (unitary) $2^n \times 2^n$ matrices of these circuits. Compare your these answers for consistency.

(a)

$$- H + H - (1)$$

(b)

Question 2 (Designing Small Circuits)

(a) Construct a two qubit SWAP gate defined by $|a,b\rangle \mapsto |b,a\rangle$ for all $a,b \in \{0,1\}$, using only CNOT gates and Hadamard gates.

(b) Create the Controlled-Phase Rotation

$$C - R_z(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\theta} \end{pmatrix}$$
(3)

for a given θ , using only CNOTs and single qubit Phase Rotations $R_z(\alpha) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$. You are allowed to use several gates $R_z(\alpha)$ with different angles α .

Question 3 (Controlled NOTs) *Obviously one can implement a NOT gate (on a \in \{0, 1\}) with a CNOT gate using the following circuit*

$$\begin{array}{c|c} |1\rangle & & \\ \hline \\ |a\rangle & & \\ \hline \\ \end{array} \begin{array}{c} \text{NOT} |a\rangle \end{array}$$
 (4)

On the other hand, it is impossible to implement a CNOT gate, using only NOT gates.

(a) Is it possible to implement a CCNOT gate using only CNOT gates?

(b) Is it possible to implement a CCCNOT using only CCNOT gates?

Try to prove the impossibility, or give an example of the implementation.

Question 4 (Unitarity) Let T be a linear transformation on \mathbb{C}^N such that $T |\psi\rangle = T |\phi\rangle = |0, ..., 0\rangle$ with $|\psi\rangle \neq |\phi\rangle$. Prove that T is not norm-preserving.

Acknowledgement: The circuits in these exercises were drawn using the Q-circuit LATEXpackage of Bryan Eastin and Steven T. Flammia.