Exercises in Quantum Computation II v2

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Question 1. (The Effect of Pauli Gates). Consider the following 2 qubit circuit:

where the ?-gate can be one of the Pauli matrices $\{I, X, Y, Z\}$. Calculate what the output of this quantum circuit will be depending on the choice for the ?-gate.

Question 2. (Creating Correlated Quantum States). Describe a 4 qubit circuit that from the input $|0,0,0,0\rangle$ produces the state $\frac{1}{\sqrt{2}}(|0,0,0,0\rangle+|1,1,1,1\rangle)$.
Question 3. (Implementing Modulo Calculations). We are going to implement $\bmod 4$ calculations in a unitary (and hence reversible) way. Let $a=\left(a_{1}, a_{0}\right)$ and $b=\left(b_{1}, b_{0}\right)$ represent two numbers $\in \mathbb{Z}_{4}$ according to $a=2 a_{1}+a_{0}$ and $b=2 b_{1}+b_{0}$. You are allowed to use all the standard gates.
(a) Describe a small 6 qubit circuit that implements the addition transformation $|a, b, 0\rangle \mapsto|a, b, a+b \bmod 4\rangle$.
(b) Describe a small qubit circuit that implements the multiplication transformation $|a, b, 0\rangle \mapsto|a, b, a b \bmod 4\rangle$.
(c) Contemplate how well you can generalize this to n bits numbers $a, b \in \mathbb{Z}_{2^{n}}$.

Question 4. (Copying Qubits). Notation: We define the qubit states $|+\rangle:=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $|-\rangle:=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$.
(a) The CNOT gate copies the bit value b in the operation $|b, 0\rangle \mapsto|b, b\rangle$ for all $b \in\{0,1\}$. Describe a quantum circuit that copies the states $\{|+\rangle,|-\rangle\}$. That is: give a circuit that implements the mapping $|s, 0\rangle \mapsto|s, s\rangle$ for all $s \in\{+,-\}$.
(b) Describe the effect of the circuit of the previous question on the states $|b, 0\rangle$ for all $b \in\{0,1\}$.
(c) Prove that there exists no quantum circuit that implements a 2 qubit operation with the mappings $|0,0\rangle \mapsto|0,0\rangle$ and $|+, 0\rangle \mapsto|+,+\rangle$. If possible, try to find more than one proof.

Question 5. (Exploring an Unknown Function). Take a Boolean function $f:\{0,1\} \rightarrow\{0,1\}$ and define its 2 qubit unitary implementation $U_{f}:|a, b\rangle \mapsto|a, b \oplus f(a)\rangle$.
(a) Apply this U_{f} to the superposition $\frac{1}{2}(|0\rangle+|1\rangle) \otimes(|0\rangle-$ $|1\rangle)$ and see what happens to the two qubits depending on the function values $f(0)$ and $f(1)$.
(b) Ponder what you could do with the result of the previous question if you were allowed to apply some Hadamard gates after the application of U_{f}.
Acknowledgment: Again, the circuits in these exercises were drawn using the Q-circuit LATEXpackage of Bryan Eastin and Steven T. Flammia.

