Exercises in Quantum Computation III

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Question 1. (Deutsch-Jozsa on General Functions) Take the Boolean function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ with the unitary implementation $U_{F}:|x, b\rangle \mapsto|x, b \oplus F(x)\rangle$ for all $x \in\{0,1\}^{n}$ and $b \in\{0,1\}$. The Deutsch-Jozsa algorithm uses the following $n+1$ qubit circuit:

where one measures the first n bits in the computational basis.
(a) Read Sections 1.4.2-1.4.4 ("Quantum parallelism", "Deutsch's algorithm", "The Deutsch-Jozsa algorithm") in Nielsen and Chuang's Quantum Computation and Quantum Information.
(b) Analyze how F determines the probability of observing the all zeros state $|0\rangle \otimes \cdots \otimes|0\rangle$ for the observed n qubits.

Question 2. (Preparation for Midterm) Read the following Sections in Nielsen and Chuang's Quantum Computation and Quantum Information: 1-1.4.4 (ignore the Bloch sphere representation and other material that we did not cover).

Question 3. (One-Out-of-Four) Define the unitary transformation that only flips a bit if is has the right two bit input $(s, r) \in\{0,1\}^{2}$:

$$
U_{s, r}|x, y, b\rangle \mapsto \begin{cases}|x, y, b \oplus 1\rangle & \text { if }(x, y)=(s, r) \\ |x, y, b\rangle & \text { if }(x, y) \neq(s, r)\end{cases}
$$

Consider the following sequence of operations on a 3 qubit input state $|0,0,1\rangle$:

1) Apply $H \otimes H \otimes H$
2) Apply $U_{s, r}$ (for unknown s, r)
3) Apply $H \otimes H \otimes I$
4) Apply $U_{0,0}$
5) Apply $H \otimes H \otimes H$
6) Measure the 3 qubits in the computational basis.
(a) How will the output of the measurement depend on the two unknown bits $(s, r) \in\{0,1\}^{2}$?
(b) Contemplate what this quantum circuit is useful for.

Question 4. (Summing Phases) Let ζ_{n} denote the complex number $\mathrm{e}^{2 \pi \mathrm{i} / n}$ such that $\zeta_{n}^{n}=1$.
(a) What is the value $\sum_{j=0}^{n-1} \zeta_{n}^{j}$?
(b) Let n have the decomposition $n=p q$, what is $\sum_{j=0}^{p-1} \zeta_{n}^{q j}$?
(c) What is $\sum_{j=0}^{m-1} \zeta_{n}^{j}$?

