Exercises in Quantum Computation IV

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Question 1. (Generalized Phase Flip Trick) Define the following superposition $|\phi_4\rangle$ over the basis states \mathbb{Z}_4 :

$$|\varphi_4\rangle := \frac{1}{2}(|0\rangle - i|1\rangle - |2\rangle + i|3\rangle).$$

(a) What is the effect of the operation $A_4 : |x\rangle \mapsto |x+1 \mod 4\rangle$ (for all $x \in \mathbb{Z}_4$) on $|\varphi_4\rangle$?

(b) Let $A^t = A \cdot A \cdots A$ be the *t*-fold application of *A*. What is the effect of A^t on $|\varphi_4\rangle$?

(c) For arbitrary \mathbb{Z}_n define the state

$$|\mathbf{\varphi}_n\rangle := rac{1}{\sqrt{n}}\sum_{j=0}^{n-1}\mathrm{e}^{-2\pi\mathrm{i}j/n}|j
angle$$

and the operation $A_n : |x\rangle \mapsto |x+1 \mod n\rangle$ for all $x \in \mathbb{Z}_n$. What is the effect of A_n^t on $|\varphi_n\rangle$?

Question 2. (Fourier-Squared)

(a) Read Handout 4 on the quantum Fourier transformation and Sections 5–5.1 in Nielsen and Chuang's *Quantum Computation and Quantum Information*.

(b) Fix $N \in \mathbb{Z}^+$, what is Four_N · Four_N $|x\rangle$ for general $x \in \mathbb{Z}_N$?

Question 3. (Factoring 35) Consider the composite number N = 35 and the part of the quantum factoring algorithm that is described on Slide 10 of week6Thurs.pdf.

(a) Analyze which $x \in \mathbb{Z}_{35}$ are co-prime with 35.

(b) For those x with gcd(35,x) = 1, determine the orders of x mod 35.

(c) Using these orders, determine which $x \in \mathbb{Z}_{35}$ give a non-trivial factor of 35.