Mathematics of Quantum Computation I

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Notes for the graduate course "Quantum Computation and Quantum Information" (290A), Spring 2005. v1

Complex Values: Let $\alpha \in \mathbb{C}$, then we can write this complex value as $\alpha=x+y i$ with the real and imaginary components $x, y \in \mathbb{R}$. It is often useful to write the value as $\alpha=r \mathrm{e}^{\mathrm{i} \varphi}$ with the norm $r \in \mathbb{R}_{\geq 0}$ and the phase $\varphi \in[0,2 \pi)$. The "norm squared" of α equals $\left|\alpha^{2}\right|=x^{2}+y^{2}=r^{2}$. The complex conjugate of α is defined by $\bar{\alpha}=\alpha^{*}=x-y \mathrm{i}=r \mathrm{e}^{-\mathrm{i} \varphi}$, which can be used in $|\alpha|^{2}=\alpha \alpha^{*}$. The norm $|\alpha|=\sqrt{x^{2}+y^{2}}=r$ obeys the triangle inequality $|\alpha+\beta| \leq|\alpha|+|\beta|$ for all $\alpha, \beta \in \mathbb{C}$.

Finite Dimensional Hilbert Space: Let \mathcal{A} be a finite set of $N=|\mathcal{A}|$ basis states. A quantum state, which is in superposition over all basis states \mathcal{A}, is represented by a norm one, complex valued vector $\in \mathbb{C}^{N}$. In Dirac's braket notation, a column vector is denoted by a $|k e t\rangle$ and a row vector by a $\langle b r a|$. If $|\psi\rangle=\sum_{x \in \mathcal{A}} \alpha_{x}|x\rangle$, then $\langle\psi|:=\sum_{x \in \mathcal{A}} \alpha_{x}^{*}\langle x|$ (note the complex conjugation of α_{x}). Given column vector $|\psi\rangle$, the row vector $\langle\psi|$ is also denoted by $|\psi\rangle^{\dagger}$ and is called the conjugate transpose of $|\psi\rangle$. If $\mathcal{A}=\{1, \ldots, N\}$, we can write in vector notation:

$$
|\psi\rangle^{\dagger}=\left(\begin{array}{c}
\alpha_{1} \tag{1}\\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right)^{\dagger}=\left(\begin{array}{llll}
\alpha_{1}^{*} & \alpha_{2}^{*} & \cdots & \alpha_{N}^{*}
\end{array}\right)=\langle\psi| .
$$

We equip this space with an inner product $\langle\cdot \mid \cdot\rangle: \mathbb{C}^{N} \times \mathbb{C}^{N} \rightarrow$ \mathbb{C} such that it becomes a finite dimensional Hilbert space. For the vectors

$$
\begin{equation*}
|\psi\rangle=\sum_{x \in \mathcal{A}} \alpha_{x}|x\rangle \text { and }|\phi\rangle=\sum_{x \in \mathcal{A}} \beta_{x}|x\rangle \tag{2}
\end{equation*}
$$

the inner product $\langle\psi||\phi\rangle$ is expressed by the braket

$$
\begin{equation*}
\langle\psi \mid \phi\rangle=\sum_{x \in \mathcal{A}} \alpha_{x}^{*} \beta_{x}=\langle\phi \mid \psi\rangle^{*} \tag{3}
\end{equation*}
$$

where α^{*} is the complex conjugate of $\alpha \in \mathbb{C}$. The norm of a vector in \mathbb{C}^{N} is defined by $\||\psi\rangle \|:=\sqrt{\langle\psi \mid \psi\rangle}$, which for a valid state representation is always one: $\sum_{x \in \mathcal{A}} \alpha_{x} \alpha_{x}^{*}=1$ (the normalization restriction). For vectors the triangle inequality holds as well: $\| \alpha|\psi\rangle+\beta|\phi\rangle\|\leq\| \alpha|\psi\rangle\|+\| \beta|\phi\rangle \|$.

The outer product $|\cdot\rangle\langle\cdot|: \mathbb{C}^{N} \times \mathbb{C}^{N} \rightarrow \mathbb{C}^{N \times N}$ maps two N dimensional vectors to an $N \times N$ matrix:

$$
\begin{equation*}
|\psi\rangle\langle\phi|=\sum_{x, y \in \mathcal{A}} \alpha_{x} \beta_{y}^{*}|x\rangle\langle y|, \tag{4}
\end{equation*}
$$

where $|x\rangle\langle y|$ is the all-zero matrix with one 1 value in the x-th row and the y-th column.

Braket Calculus: The difference between the inner and the outer product shows that 'multiplying' bras and kets
does not commute: $\langle\psi||\phi\rangle \neq|\phi\rangle\langle\psi|$. However, this multiplication is associative and distributive. Hence, for example, $|\psi\rangle\left(\langle\phi|+\left\langle\phi^{\prime}\right|\right)=|\psi\rangle\langle\phi|+|\psi\rangle\left\langle\phi^{\prime}\right|$ and $(|\psi\rangle\langle\phi|)(|\psi\rangle\langle\phi|)=$ $|\psi\rangle(\langle\phi \mid \phi\rangle)\langle\psi|=|\psi\rangle\langle\psi|$ (because $\langle\phi \mid \phi\rangle=1$).

Measurement Projection: According to quantum mechanics, the 'inner product squared' $|\langle\psi \mid \phi\rangle|^{2}=\langle\psi \mid \phi\rangle\langle\phi \mid \psi\rangle$ between two states $|\psi\rangle$ and $|\phi\rangle$ gives the probability that one observes the outcome " $|\psi\rangle$ " when one observes the state " $|\phi\rangle$ ". It is straightforward to verify that $0 \leq|\langle\psi \mid \phi\rangle|^{2} \leq 1$. If $\langle\psi \mid \phi\rangle=0$, the two states are orthogonal. If $|\langle\psi \mid \phi\rangle|=1$, then the two states are identical up to a general phase factor (because we can still have $\langle\psi \mid \phi\rangle=\mathrm{e}^{\mathrm{i} \gamma}$). Although mathematically present, such a general phase difference can never be observed in reality, hence it has no physical relevance.

Tensor Product Construction: We can combine the spaces \mathbb{C}^{N} and \mathbb{C}^{M} to a joint space $\mathbb{C}^{N M}:=\mathbb{C}^{N} \otimes \mathbb{C}^{M}$. If \mathcal{A} and \mathcal{B} are the respective basis sets of these two spaces, then the joint basis of $\mathbb{C}^{N} \otimes \mathbb{C}^{M}$ is given by the Cartesian product $\mathcal{A} \times \mathcal{B}$. As a result, using the tensor product $\otimes: \mathbb{C}^{N} \times \mathbb{C}^{M} \rightarrow$ $\mathbb{C}^{N M}$, we can combine the states

$$
\begin{equation*}
|\psi\rangle=\sum_{x \in \mathcal{A}} \alpha_{x}|x\rangle \in \mathbb{C}^{N} \text { and }|\phi\rangle=\sum_{y \in \mathcal{B}} \beta_{y}|y\rangle \in \mathbb{C}^{M} \tag{5}
\end{equation*}
$$

to the tensor product state

$$
\begin{equation*}
|\psi\rangle \otimes|\phi\rangle=|\psi, \phi\rangle=\sum_{x \in \mathcal{A}, y \in \mathcal{B}} \alpha_{x} \beta_{y}|x, y\rangle \in \mathbb{C}^{N M} \tag{6}
\end{equation*}
$$

For the conjugate transpose of a tensor product it holds that $(|\psi\rangle \otimes|\phi\rangle)^{\dagger}=\langle\psi| \otimes\langle\phi|$.

If we assume $\mathcal{A}=\{1, \ldots, N\}$ and $\mathcal{B}=\{1, \ldots, M\}$, then this tensor product equation is described in vector notation by

$$
\left(\begin{array}{c}
\alpha_{1} \tag{7}\\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right) \otimes\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{M}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \beta_{1} \\
\alpha_{1} \beta_{2} \\
\vdots \\
\alpha_{1} \beta_{M} \\
\alpha_{2} \beta_{1} \\
\vdots \\
\vdots \\
\alpha_{N} \beta_{M}
\end{array}\right)
$$

If $|\psi\rangle$ and $|\phi\rangle$ are norm one vectors, then so is $|\psi\rangle \otimes|\phi\rangle$. Note that the tensor product does not commute: $|\psi\rangle \otimes|\phi\rangle \neq$ $|\phi\rangle \otimes|\psi\rangle$, but that it is associative and distributive. For example, $|\psi\rangle \otimes\left(|\phi\rangle \otimes\left|\phi^{\prime}\right\rangle\right)=(|\psi\rangle \otimes|\phi\rangle) \otimes\left|\phi^{\prime}\right\rangle$, and $|\psi\rangle \otimes(\alpha|\phi\rangle+$ $\left.\beta\left|\phi^{\prime}\right\rangle\right)=|\psi\rangle \otimes \alpha|\phi\rangle+|\psi\rangle \otimes \beta\left|\psi^{\prime}\right\rangle=\alpha|\psi, \phi\rangle+\beta\left|\psi, \phi^{\prime}\right\rangle$.

Unitary Operations: The group of norm preserving, linear operations on \mathbb{C}^{N} is the group $\mathrm{U}(N)$ of unitary, complex valued $N \times N$ matrices $U \in \mathbb{C}^{N \times N}$ that obey the equality $U \cdot U^{\dagger}=I$. Here U^{\dagger} is the Hermitian conjugate (or the conjugate transpose) of U defined by $U_{i j}^{\dagger}:=U_{j i}^{*}$ for all $1 \leq i, j \leq N$, and I is the N-dimensional identity matrix. As these operations are linear, we have

$$
\begin{equation*}
U|\psi\rangle=\sum_{x \in A} \alpha_{x} U|x\rangle \tag{8}
\end{equation*}
$$

for all $|\psi\rangle \in \mathbb{C}^{N}$. Hence, if we know the values of U on the basis states $|x \in \mathcal{A}\rangle$, we know the values of U on all quantum states in \mathbb{C}^{N}. We can describe $U \in \mathrm{U}(N)$ as a summation of outer products by

$$
\begin{equation*}
U:=\sum_{x, y \in A} U_{x y}|x\rangle\langle y|, \tag{9}
\end{equation*}
$$

or equivalently $U_{x y}:=\langle x| U|y\rangle$, such that by linearity we see that

$$
\begin{equation*}
U|\psi\rangle=\sum_{x, y \in A} U_{x y}|x\rangle\langle y| \sum_{z \in A} \alpha_{z}|z\rangle=\sum_{x, z \in A} \alpha_{z} U_{x z}|x\rangle . \tag{10}
\end{equation*}
$$

Unitary matrices are inner product preserving (and hence also norm preserving) as is shown by $\langle\phi \mid \psi\rangle=\langle\phi| I|\psi\rangle=$ $\langle\phi| U^{\dagger} U|\psi\rangle=\left\langle\phi^{\prime} \mid \psi^{\prime}\right\rangle$, where $\left|\phi^{\prime}\right\rangle:=U|\phi\rangle$ and $\left|\psi^{\prime}\right\rangle:=U|\psi\rangle$. This shows that U is unitary if and only if the row vectors of U form a orthonormal basis of \mathbb{C}^{N} (similarly for the columns of U).
Just as with vectors, we can define the tensor product between two matrices. Specifically, if $U \in \mathrm{U}(N)$ and $W \in \mathrm{U}(M)$ are unitary matrices defined by

$$
\begin{equation*}
U:=\sum_{x, y \in \mathcal{A}} U_{x y}|x\rangle\langle y| \text { and } W:=\sum_{p, q \in \mathcal{B}} W_{p q}|p\rangle\langle q|, \tag{11}
\end{equation*}
$$

then for the tensor product $\otimes: \mathbb{C}^{N \times N} \times \mathbb{C}^{M \times M} \rightarrow \mathbb{C}^{N M \times N M}$ we have

$$
\begin{equation*}
U \otimes W=\sum_{x, y \in \mathcal{A}} \sum_{p, q \in \mathcal{B}} U_{x y} W_{p q}|x, p\rangle\langle y, q| \in \mathbb{C}^{N M \times N M} . \tag{12}
\end{equation*}
$$

This matrix acts on the space $\mathbb{C}^{N M}=\mathbb{C}^{N} \otimes \mathbb{C}^{M}$ spanned by the set of basis states $\mathcal{A} \times \mathcal{B}$. For the states $|\psi\rangle \in \mathbb{C}^{N}$ and $|\phi\rangle \in \mathbb{C}^{M}$ we have $(U \otimes W)(|\psi\rangle \otimes|\phi\rangle)=U|\psi\rangle \otimes W|\phi\rangle \in \mathbb{C}^{N M}$. Again assuming $\mathcal{A}=\{1, \ldots, N\}$ and $\mathcal{B}=\{1, \ldots, M\}$, the tensor product of two matrices is described in matrix notation by

$$
\begin{aligned}
U \otimes W & =\left(\begin{array}{cccc}
U_{11} W & U_{12} W & \cdots & U_{1 N} W \\
U_{21} W & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
U_{N 1} W & \cdots & \cdots & U_{N N} W
\end{array}\right) \\
& =\left(\begin{array}{cccc}
U_{11} W_{11} & U_{11} W_{12} & \cdots & U_{1 N} W_{1 M} \\
U_{11} W_{21} & \ddots & & U_{1 N} W_{2 M} \\
\vdots & & \ddots & \vdots \\
U_{N 1} W_{M 1} & \cdots & \cdots & U_{N N} W_{M M}
\end{array}\right) \in \mathbb{C}^{N M \times N M} .
\end{aligned}
$$

As was the case with vectors, the tensor product of matrices is not commutative, but it is distributive and associative. Also, if $U, U^{\prime} \in \mathrm{U}(N)$ and $W, W^{\prime} \in \mathrm{U}(M)$, then $(U \otimes W)\left(U^{\prime} \otimes W^{\prime}\right)=$ $U U^{\prime} \otimes W W^{\prime}$; if U, W are unitary, then so is $U \otimes W$ and $(U \otimes$ $W)^{\dagger}=U^{\dagger} \otimes W^{\dagger}$.

Eigenvector / Eigenvalue Decomposition: We can decompose a unitary matrix $U \in \mathrm{U}(N)$ into its eigenvectors $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{N}\right\rangle$ and its corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{N} \in$ \mathbb{C}. With these values we can express the operator as

$$
\begin{equation*}
U=\sum_{i=1}^{N} \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| . \tag{14}
\end{equation*}
$$

The unitarity of U corresponds with the requirement that all eigenvalues λ_{i} have norm one, and that the eigenvectors form a orthonormal basis of \mathbb{C}^{N}. The identity matrix I has for all eigenvalues $\lambda_{i}=1$. The conjugate transpose of this U is given by

$$
\begin{equation*}
U^{\dagger}=\sum_{i=1}^{N} \lambda_{i}^{*}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| . \tag{15}
\end{equation*}
$$

When U is as above and $W \in \mathrm{U}(M)$ has eigenvector decomposition $W=\sum_{j=1}^{M} \mu_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$ then for the tensor product we have

$$
\begin{equation*}
V \otimes W=\sum_{i=1}^{N} \sum_{j=1}^{M} \lambda_{i} \mu_{j}\left|\psi_{i}, \phi_{j}\right\rangle\left\langle\psi_{i}, \phi_{j}\right| . \tag{16}
\end{equation*}
$$

Quantum Computing: The typical setting for a quantum circuit is quantum mechanical system that is described by an n-fold tensor product of two dimensional Hilbert spaces: $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\mathbb{C}^{2^{n}}$ (where each \mathbb{C}^{2} corresponds to a single qubit). The elementary quantum gates that we can apply to an initial state $|0, \ldots, 0\rangle$ are unitary operators that act only a small number of qubits. For example, if we apply the NOT gate $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ to the second qubit, then the overall unitary operator is described by $I \otimes X \otimes I \otimes \cdots \otimes I \in \mathrm{U}\left(2^{n}\right)$, where the I are the identity operators on the qubits $1,3, \ldots, n$. For operators that act on two non-adjacent qubits, the notation becomes a bit tricky. Consider for example a CNOT gate that acts on the first and the last qubit. To avoid these problems one can introduce the notation where the identity operators are omitted, and a subscript is used to indicate on which qubit the gates act. Hence the previous NOT circuit has the much shorter description $X_{2} \in \mathrm{U}\left(2^{n}\right)$, and the CNOT example becomes $\mathrm{CNOT}_{1, n} \in \mathrm{U}\left(2^{n}\right)$. Regardless, it is often advisable to draw a quantum circuit diagram to explain the operation.

Further Reading: For more information see Sections 1.2, 1.3 and especially Sections 2-2.1.7 in

- Quantum Computation and Quantum Information, M.A. Nielsen and I.L. Chuang, Cambridge University Press (2000).

