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Complex Values: Let o € C, then we can write this com-
plex value as o0 = x + yi with the real and imaginary compo-
nents x,y € R. It is often useful to write the value as o = re'®
with the norm r € R> and the phase ¢ € [0,2%). The “norm
squared” of & equals |o?| = x> +y? = 2. The complex conju-
gate of o is defined by & = o = x — yi = re ', which can be
used in |a? = awo*. The norm |o = y/x2 +y2 = r obeys the
triangle inequality |ot+ B| < |o| 4+ |B] for all o, B € C.

Finite Dimensional Hilbert Space: Let A be a finite set
of N = |A| basis states. A quantum state, which is in super-
position over all basis states A, is represented by a norm one,
complex valued vector € CN. In Dirac’s braket notation, a col-
umn vector is denoted by a |ker) and a row vector by a (bral.
If |W) = Y, cq0lx), then (Y| :=Y ., ai(x| (note the com-
plex conjugation of o). Given column vector |y), the row
vector (| is also denoted by )T and is called the conjugate

transpose of |y). If A ={1,...,N}, we can write in vector
notation:
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We equip this space with an inner product (-|-) : CN x CN —
C such that it becomes a finite dimensional Hilbert space. For
the vectors

) =Y oulx) and [0) = ) Bilx) )
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the inner product (||} is expressed by the braket
(wlo) =} 0B = (0lw)", (3)

xeA

where o* is the complex conjugate of a € C. The norm of
a vector in CV is defined by |||w)|| := \/(w|w), which for a
valid state representation is always one: ) 4 0,,0f =1 (the
normalization restriction). For vectors the triangle inequality
holds as well: [[aw) + Bl0)]| < [lochy)]| + [IBlo)]]

The outer product |-)(-| : CN x CN — CM*N maps two N-
dimensional vectors to an N X N matrix:

)0l = Y aup;lx) (v, @)
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where |x)(y| is the all-zero matrix with one 1 value in the x-th
row and the y-th column.

Braket Calculus: The difference between the inner and
the outer product shows that ‘multiplying’ bras and Kkets

does not commute: (y||0) # |0)(y|. However, this multi-
plication is associative and distributive. Hence, for exam-
ple, [y) ((9]+(¢']) = [w) (0] +w)(¢'] and (Jy) (o)) (lw)(9]) =
(W) ((010)){w] = [w) (] (because (¢[¢) = 1).

Measurement Projection: According to quantum me-
chanics, the ‘inner product squared’ |(y|0)|* = (W|0)(0|y)
between two states |y) and |¢p) gives the probability that
one observes the outcome “|y)”” when one observes the state
“|¢)”. Tt is straightforward to verify that 0 < |(y|¢)|> < 1. If
(y|0) = 0, the two states are orthogonal. If |{y|d)| = 1, then
the two states are identical up to a general phase factor (be-
cause we can still have (y|¢) = e"). Although mathematically
present, such a general phase difference can never be observed
in reality, hence it has no physical relevance.

Tensor Product Construction: We can combine the
spaces CV and C¥ to a joint space C¥” := CN @ CM. If A
and B are the respective basis sets of these two spaces, then
the joint basis of CV¥ @ CM is given by the Cartesian product
A x B. As a result, using the tensor product ® : CNxCM -
CMM  we can combine the states
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to the tensor product state

Y B lry)eC™. (6
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For the conjugate transpose of a tensor product it holds that
(Ilw) ©19))" = (w|®(9].

If we assume A = {1,...,N} and B = {1,...,M}, then this
tensor product equation is described in vector notation by
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If |y) and |0) are norm one vectors, then so is |Y) ® |0).
Note that the tensor product does not commute: |y) ® |¢) #
|9) @ |y), but that it is associative and distributive. For exam-
ple, W) ® (|0) ®10)) = (lw) @0)) ©[¢), and |y) @ (at[9) +
BIO") = W) @ o) + [w) @ BIW') = o, 0) + Bw, ¢').



Unitary Operations: The group of norm preserving, lin-
ear operations on CV is the group U(N) of unitary, com-
plex valued N x N matrices U € C¥*V that obey the equality
U-UT =1. Here U" is the Hermitian conjugate (or the conju-
gate transpose) of U defined by U;;- = UJ’-‘i forall 1 <i,j <N,
and / is the N-dimensional identity matrix. As these opera-
tions are linear, we have

Uly) =Y o Ulx) (8)
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for all |y) € CVN. Hence, if we know the values of U on the
basis states |x € A), we know the values of U on all quantum
states in CN. We can describe U € U(N) as a summation of
outer products by

U:= Z Uy |x) (0], )
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or equivalently U,, := (x|Uly), such that by linearity we see
that

U) =Y, Uyl Y olz) = Y, ocUglx).  (10)
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Unitary matrices are inner product preserving (and hence
also norm preserving) as is shown by (d|y) = (0|I|y) =
OUTUIy) = (¢'|). where [¢/) := U]¢) and |y') := Uly).
This shows that U is unitary if and only if the row vectors of
U form a orthonormal basis of CV (similarly for the columns
of U).

Just as with vectors, we can define the tensor product be-
tween two matrices. Specifically, if U € U(N) and W € U(M)
are unitary matrices defined by

U= Y Uylx)ylandW:= Y Wylp)lal, (D
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then for the tensor product @ : CN*N x CM*M _, CNMXNM e

have

UsW=Y Y UyWylx,p)(pql € CVM (12
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This matrix acts on the space CM = CN @ CY spanned by
the set of basis states A x B. For the states |y) € CV and
[0) € CY we have (U@ W)(|y) ®10)) = Uly) @W|¢) € CM.
Again assuming A = {1,...,N} and B = {1,...,M}, the ten-
sor product of two matrices is described in matrix notation by

unw upw ... UpnW
UaW = szW : (13)
UN:1W UN;VW
UnWn UnWi - UiwWim
_ | UnWa UinWaym € CNMXNM.
UNIWMl UNNWMM

As was the case with vectors, the tensor product of matrices is
not commutative, but it is distributive and associative. Also, if
U, U € UIN) and W, W' € UM), then (U W)(U' @W') =
UU' @ WW'; if U,W are unitary, then so is U ®@ W and (U ®
W) =UT oW,

Eigenvector / Eigenvalue Decomposition: We can de-
compose a unitary matrix U € U(N) into its eigenvectors
[w1),...,|wy) and its corresponding eigenvalues Ay, ..., Ay €
C. With these values we can express the operator as

N
U =Y Mlwi){wil. (14)
i=1

The unitarity of U corresponds with the requirement that all
eigenvalues A; have norm one, and that the eigenvectors form
a orthonormal basis of CV. The identity matrix / has for all
eigenvalues A; = 1. The conjugate transpose of this U is given
by

N
Ut =Y Ml {wil- (15)
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When U is as above and W € U(M) has eigenvector decom-
Ip;osition W= ):1}’1:1 1;j|0;)(9;| then for the tensor product we
ave

N M
Vaw =YY hulyi,0,) (i, 0l. (16)
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Quantum Computing: The typical setting for a quantum
circuit is quantum mechanical system that is described by
an n-fold tensor product of two dimensional Hilbert spaces:
C2@C?2®---®C2? =C? (where each C2 corresponds to a
single qubit). The elementary quantum gates that we can ap-
ply to an initial state |0,...,0) are unitary operators that act
only a small number of qubits. For example, if we apply the
NOT gate X = (9 }) to the second qubit, then the overall uni-
tary operator is described by IQ X QI ®---®1 € U(2"), where
the I are the identity operators on the qubits 1,3,...,n. For
operators that act on two non-adjacent qubits, the notation be-
comes a bit tricky. Consider for example a CNOT gate that
acts on the first and the last qubit. To avoid these problems
one can introduce the notation where the identity operators
are omitted, and a subscript is used to indicate on which qubit
the gates act. Hence the previous NOT circuit has the much
shorter description X, € U(2"), and the CNOT example be-
comes CNOT} , € U(2"). Regardless, it is often advisable to
draw a quantum circuit diagram to explain the operation.

Further Reading: For more information see Sections 1.2,
1.3 and especially Sections 2-2.1.7 in

o Quantum Computation and Quantum Information,
M.A. Nielsen and I.L. Chuang, Cambridge University
Press (2000).



