Mathematics of Quantum Computation I

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Notes for the graduate course "Quantum Computation and Quantum Information" (290A), Spring 2005. v1

Complex Values: Let $\alpha \in \mathbb{C}$, then we can write this complex value as $\alpha = x + yi$ with the real and imaginary components $x, y \in \mathbb{R}$. It is often useful to write the value as $\alpha = re^{i\varphi}$ with the norm $r \in \mathbb{R}_{\geq 0}$ and the phase $\varphi \in [0, 2\pi)$. The "norm squared" of α equals $|\alpha^2| = x^2 + y^2 = r^2$. The complex conjugate of α is defined by $\overline{\alpha} = \alpha^* = x - yi = re^{-i\varphi}$, which can be used in $|\alpha|^2 = \alpha \alpha^*$. The norm $|\alpha| = \sqrt{x^2 + y^2} = r$ obeys the triangle inequality $|\alpha + \beta| \leq |\alpha| + |\beta|$ for all $\alpha, \beta \in \mathbb{C}$.

Finite Dimensional Hilbert Space: Let \mathcal{A} be a finite set of $N = |\mathcal{A}|$ basis states. A quantum state, which is in superposition over all basis states \mathcal{A} , is represented by a norm one, complex valued vector $\in \mathbb{C}^N$. In Dirac's braket notation, a column vector is denoted by a $|ket\rangle$ and a row vector by a $\langle bra|$. If $|\Psi\rangle = \sum_{x \in \mathcal{A}} \alpha_x |x\rangle$, then $\langle \Psi | := \sum_{x \in \mathcal{A}} \alpha_x^* \langle x |$ (note the complex conjugation of α_x). Given column vector $|\Psi\rangle$, the row vector $\langle \Psi |$ is also denoted by $|\Psi\rangle^{\dagger}$ and is called the *conjugate transpose* of $|\Psi\rangle$. If $\mathcal{A} = \{1, \ldots, N\}$, we can write in vector notation:

$$|\psi\rangle^{\dagger} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix}^{\dagger} = (\alpha_1^* \ \alpha_2^* \ \cdots \ \alpha_N^*) = \langle \psi|. \qquad (1)$$

We equip this space with an *inner product* $\langle \cdot | \cdot \rangle : \mathbb{C}^N \times \mathbb{C}^N \to \mathbb{C}$ such that it becomes a *finite dimensional Hilbert space*. For the vectors

$$|\psi\rangle = \sum_{x \in \mathcal{A}} \alpha_x |x\rangle \text{ and } |\phi\rangle = \sum_{x \in \mathcal{A}} \beta_x |x\rangle$$
 (2)

the inner product $\langle \psi | | \phi \rangle$ is expressed by the *braket*

$$\langle \Psi | \phi \rangle = \sum_{x \in \mathcal{A}} \alpha_x^* \beta_x = \langle \phi | \Psi \rangle^*,$$
 (3)

where α^* is the *complex conjugate* of $\alpha \in \mathbb{C}$. The *norm* of a vector in \mathbb{C}^N is defined by $|||\psi\rangle|| := \sqrt{\langle \psi | \psi \rangle}$, which for a valid state representation is always one: $\sum_{x \in \mathcal{A}} \alpha_x \alpha_x^* = 1$ (the normalization restriction). For vectors the triangle inequality holds as well: $||\alpha|\psi\rangle + \beta|\phi\rangle|| \le ||\alpha|\psi\rangle|| + ||\beta|\phi\rangle||$.

The outer product $|\cdot\rangle\langle\cdot|:\mathbb{C}^N\times\mathbb{C}^N\to\mathbb{C}^{N\times N}$ maps two *N*-dimensional vectors to an $N\times N$ matrix:

$$|\psi\rangle\langle\phi| = \sum_{x,y\in\mathcal{A}} \alpha_x \beta_y^* |x\rangle\langle y|,$$
 (4)

where $|x\rangle\langle y|$ is the all-zero matrix with one 1 value in the *x*-th row and the *y*-th column.

Braket Calculus: The difference between the inner and the outer product shows that 'multiplying' bras and kets does not commute: $\langle \Psi || \phi \rangle \neq |\phi \rangle \langle \Psi |$. However, this multiplication *is* associative and distributive. Hence, for example, $|\Psi \rangle (\langle \phi | + \langle \phi' |) = |\Psi \rangle \langle \phi | + |\Psi \rangle \langle \phi' |$ and $(|\Psi \rangle \langle \phi |) (|\Psi \rangle \langle \phi |) = |\Psi \rangle \langle \langle \phi | \phi \rangle \rangle \langle \Psi | = |\Psi \rangle \langle \Psi |$ (because $\langle \phi | \phi \rangle = 1$).

Measurement Projection: According to quantum mechanics, the 'inner product squared' $|\langle \psi | \phi \rangle|^2 = \langle \psi | \phi \rangle \langle \phi | \psi \rangle$ between two states $|\psi\rangle$ and $|\phi\rangle$ gives the probability that one observes the outcome " $|\psi\rangle$ " when one observes the state " $|\phi\rangle$ ". It is straightforward to verify that $0 \le |\langle \psi | \phi \rangle|^2 \le 1$. If $\langle \psi | \phi \rangle = 0$, the two states are *orthogonal*. If $|\langle \psi | \phi \rangle| = 1$, then the two states are identical *up to a general phase factor* (because we can still have $\langle \psi | \phi \rangle = e^{i\gamma}$). Although mathematically present, such a general phase difference can never be observed in reality, hence it has no physical relevance.

Tensor Product Construction: We can combine the spaces \mathbb{C}^N and \mathbb{C}^M to a joint space $\mathbb{C}^{NM} := \mathbb{C}^N \otimes \mathbb{C}^M$. If \mathcal{A} and \mathcal{B} are the respective basis sets of these two spaces, then the joint basis of $\mathbb{C}^N \otimes \mathbb{C}^M$ is given by the Cartesian product $\mathcal{A} \times \mathcal{B}$. As a result, using the *tensor product* $\otimes : \mathbb{C}^N \times \mathbb{C}^M \to \mathbb{C}^{NM}$, we can combine the states

$$|\psi\rangle = \sum_{x \in \mathcal{A}} \alpha_x |x\rangle \in \mathbb{C}^N \text{ and } |\phi\rangle = \sum_{y \in \mathcal{B}} \beta_y |y\rangle \in \mathbb{C}^M$$
 (5)

to the tensor product state

$$|\psi\rangle \otimes |\phi\rangle = |\psi, \phi\rangle = \sum_{x \in \mathcal{A}, y \in \mathcal{B}} \alpha_x \beta_y | x, y \rangle \in \mathbb{C}^{NM}.$$
 (6)

For the conjugate transpose of a tensor product it holds that $(|\psi\rangle \otimes |\phi\rangle)^{\dagger} = \langle \psi| \otimes \langle \phi|.$

If we assume $A = \{1, ..., N\}$ and $B = \{1, ..., M\}$, then this tensor product equation is described in vector notation by

$$\begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{N} \end{pmatrix} \otimes \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{M} \end{pmatrix} = \begin{pmatrix} \alpha_{1}\beta_{1} \\ \alpha_{1}\beta_{2} \\ \vdots \\ \alpha_{1}\beta_{M} \\ \alpha_{2}\beta_{1} \\ \vdots \\ \vdots \\ \alpha_{N}\beta_{M} \end{pmatrix}.$$
(7)

If $|\Psi\rangle$ and $|\phi\rangle$ are norm one vectors, then so is $|\Psi\rangle \otimes |\phi\rangle$. Note that the tensor product does not commute: $|\Psi\rangle \otimes |\phi\rangle \neq |\phi\rangle \otimes |\psi\rangle$, but that it is associative and distributive. For example, $|\Psi\rangle \otimes (|\phi\rangle \otimes |\phi'\rangle) = (|\Psi\rangle \otimes |\phi\rangle) \otimes |\phi'\rangle$, and $|\Psi\rangle \otimes (\alpha|\phi\rangle + \beta|\phi'\rangle) = |\Psi\rangle \otimes \alpha|\phi\rangle + |\Psi\rangle \otimes \beta|\Psi'\rangle = \alpha|\Psi, \phi\rangle + \beta|\Psi, \phi'\rangle$. **Unitary Operations:** The group of norm preserving, linear operations on \mathbb{C}^N is the group U(N) of unitary, complex valued $N \times N$ matrices $U \in \mathbb{C}^{N \times N}$ that obey the equality $U \cdot U^{\dagger} = I$. Here U^{\dagger} is the *Hermitian conjugate* (or the *conjugate transpose*) of U defined by $U_{ij}^{\dagger} := U_{ji}^*$ for all $1 \le i, j \le N$, and I is the *N*-dimensional identity matrix. As these operations are linear, we have

$$U|\psi\rangle = \sum_{x \in A} \alpha_x U|x\rangle \tag{8}$$

for all $|\psi\rangle \in \mathbb{C}^N$. Hence, if we know the values of U on the basis states $|x \in A\rangle$, we know the values of U on all quantum states in \mathbb{C}^N . We can describe $U \in U(N)$ as a summation of outer products by

$$U := \sum_{x,y \in A} U_{xy} |x\rangle \langle y|, \tag{9}$$

or equivalently $U_{xy} := \langle x | U | y \rangle$, such that by linearity we see that

$$U|\psi\rangle = \sum_{x,y\in A} U_{xy}|x\rangle\langle y|\sum_{z\in A} \alpha_z|z\rangle = \sum_{x,z\in A} \alpha_z U_{xz}|x\rangle.$$
(10)

Unitary matrices are inner product preserving (and hence also norm preserving) as is shown by $\langle \phi | \psi \rangle = \langle \phi | I | \psi \rangle =$ $\langle \phi | U^{\dagger} U | \psi \rangle = \langle \phi' | \psi' \rangle$, where $| \phi' \rangle := U | \phi \rangle$ and $| \psi' \rangle := U | \psi \rangle$. This shows that U is unitary if and only if the row vectors of U form a orthonormal basis of \mathbb{C}^N (similarly for the columns of U).

Just as with vectors, we can define the tensor product between two matrices. Specifically, if $U \in U(N)$ and $W \in U(M)$ are unitary matrices defined by

$$U := \sum_{x,y \in \mathcal{A}} U_{xy} |x\rangle \langle y| \text{ and } W := \sum_{p,q \in \mathcal{B}} W_{pq} |p\rangle \langle q|, \qquad (11)$$

then for the tensor product $\otimes : \mathbb{C}^{N \times N} \times \mathbb{C}^{M \times M} \to \mathbb{C}^{NM \times NM}$ we have

$$U \otimes W = \sum_{x,y \in \mathcal{A}} \sum_{p,q \in \mathcal{B}} U_{xy} W_{pq} | x, p \rangle \langle y, q | \in \mathbb{C}^{NM \times NM}.$$
(12)

This matrix acts on the space $\mathbb{C}^{NM} = \mathbb{C}^N \otimes \mathbb{C}^M$ spanned by the set of basis states $\mathcal{A} \times \mathcal{B}$. For the states $|\Psi\rangle \in \mathbb{C}^N$ and $|\phi\rangle \in \mathbb{C}^M$ we have $(U \otimes W)(|\Psi\rangle \otimes |\phi\rangle) = U|\Psi\rangle \otimes W|\phi\rangle \in \mathbb{C}^{NM}$. Again assuming $\mathcal{A} = \{1, \dots, N\}$ and $\mathcal{B} = \{1, \dots, M\}$, the tensor product of two matrices is described in matrix notation by

$$U \otimes W = \begin{pmatrix} U_{11}W & U_{12}W & \cdots & U_{1N}W \\ U_{21}W & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ U_{N1}W & \cdots & \cdots & U_{NN}W \end{pmatrix}$$
(13)
$$= \begin{pmatrix} U_{11}W_{11} & U_{11}W_{12} & \cdots & U_{1N}W_{1M} \\ U_{11}W_{21} & \ddots & U_{1N}W_{2M} \\ \vdots & & \ddots & \vdots \\ U_{N1}W_{M1} & \cdots & \cdots & U_{NN}W_{MM} \end{pmatrix} \in \mathbb{C}^{NM \times NM}.$$

As was the case with vectors, the tensor product of matrices is not commutative, but it is distributive and associative. Also, if $U, U' \in U(N)$ and $W, W' \in U(M)$, then $(U \otimes W)(U' \otimes W') =$ $UU' \otimes WW'$; if U, W are unitary, then so is $U \otimes W$ and $(U \otimes$ $W)^{\dagger} = U^{\dagger} \otimes W^{\dagger}$.

Eigenvector / Eigenvalue Decomposition: We can decompose a unitary matrix $U \in U(N)$ into its eigenvectors $|\psi_1\rangle, \ldots, |\psi_N\rangle$ and its corresponding eigenvalues $\lambda_1, \ldots, \lambda_N \in \mathbb{C}$. With these values we can express the operator as

$$U = \sum_{i=1}^{N} \lambda_i |\psi_i\rangle \langle \psi_i|.$$
 (14)

The unitarity of *U* corresponds with the requirement that all eigenvalues λ_i have norm one, and that the eigenvectors form a orthonormal basis of \mathbb{C}^N . The identity matrix *I* has for all eigenvalues $\lambda_i = 1$. The conjugate transpose of this *U* is given by

$$U^{\dagger} = \sum_{i=1}^{N} \lambda_{i}^{*} |\psi_{i}\rangle \langle \psi_{i}|.$$
(15)

When *U* is as above and $W \in U(M)$ has eigenvector decomposition $W = \sum_{j=1}^{M} \mu_j |\phi_j\rangle \langle \phi_j |$ then for the tensor product we have

$$V \otimes W = \sum_{i=1}^{N} \sum_{j=1}^{M} \lambda_{i} \mu_{j} |\psi_{i}, \phi_{j}\rangle \langle \psi_{i}, \phi_{j}|.$$
(16)

Quantum Computing: The typical setting for a quantum circuit is quantum mechanical system that is described by an *n*-fold tensor product of two dimensional Hilbert spaces: $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = \mathbb{C}^{2^n}$ (where each \mathbb{C}^2 corresponds to a single qubit). The elementary quantum gates that we can apply to an initial state $|0, \ldots, 0\rangle$ are unitary operators that act only a small number of qubits. For example, if we apply the NOT gate $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ to the second qubit, then the overall unitary operator is described by $I \otimes X \otimes I \otimes \cdots \otimes I \in U(2^n)$, where the *I* are the identity operators on the qubits $1, 3, \ldots, n$. For operators that act on two non-adjacent qubits, the notation becomes a bit tricky. Consider for example a CNOT gate that acts on the first and the last qubit. To avoid these problems one can introduce the notation where the identity operators are omitted, and a subscript is used to indicate on which qubit the gates act. Hence the previous NOT circuit has the much shorter description $X_2 \in U(2^n)$, and the CNOT example becomes $\text{CNOT}_{1,n} \in U(2^n)$. Regardless, it is often advisable to draw a quantum circuit diagram to explain the operation.

Further Reading: For more information see Sections 1.2, 1.3 and especially Sections 2–2.1.7 in

• Quantum Computation and Quantum Information, M.A. Nielsen and I.L. Chuang, Cambridge University Press (2000).