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Complex Values: Let α ∈ C, then we can write this com-
plex value as α = x + yi with the real and imaginary compo-
nents x,y ∈ R. It is often useful to write the value as α = reiϕ

with the norm r ∈ R≥0 and the phase ϕ ∈ [0,2π). The “norm
squared” of α equals |α2|= x2 +y2 = r2. The complex conju-
gate of α is defined by ᾱ = α∗ = x−yi = re−iϕ, which can be
used in |α|2 = αα∗. The norm |α| =

√
x2 + y2 = r obeys the

triangle inequality |α+β| ≤ |α|+ |β| for all α,β ∈ C.
Finite Dimensional Hilbert Space: Let A be a finite set

of N = |A| basis states. A quantum state, which is in super-
position over all basis states A, is represented by a norm one,
complex valued vector ∈CN . In Dirac’s braket notation, a col-
umn vector is denoted by a |ket〉 and a row vector by a 〈bra|.
If |ψ〉 = ∑x∈A αx|x〉, then 〈ψ| := ∑x∈A α∗

x〈x| (note the com-
plex conjugation of αx). Given column vector |ψ〉, the row
vector 〈ψ| is also denoted by |ψ〉† and is called the conjugate
transpose of |ψ〉. If A = {1, . . . ,N}, we can write in vector
notation:

|ψ〉† =


α1
α2
...

αN


†

=
(
α∗

1 α∗
2 · · · α∗

N
)

= 〈ψ|. (1)

We equip this space with an inner product 〈·|·〉 : CN×CN →
C such that it becomes a finite dimensional Hilbert space. For
the vectors

|ψ〉= ∑
x∈A

αx|x〉 and |φ〉= ∑
x∈A

βx|x〉 (2)

the inner product 〈ψ||φ〉 is expressed by the braket

〈ψ|φ〉= ∑
x∈A

α
∗
xβx = 〈φ|ψ〉∗, (3)

where α∗ is the complex conjugate of α ∈ C. The norm of
a vector in CN is defined by ‖|ψ〉‖ :=

√
〈ψ|ψ〉, which for a

valid state representation is always one: ∑x∈A αxα∗
x = 1 (the

normalization restriction). For vectors the triangle inequality
holds as well: ‖α|ψ〉+β|φ〉‖ ≤ ‖α|ψ〉‖+‖β|φ〉‖.

The outer product |·〉〈·| : CN ×CN → CN×N maps two N-
dimensional vectors to an N×N matrix:

|ψ〉〈φ|= ∑
x,y∈A

αxβ
∗
y |x〉〈y|, (4)

where |x〉〈y| is the all-zero matrix with one 1 value in the x-th
row and the y-th column.

Braket Calculus: The difference between the inner and
the outer product shows that ‘multiplying’ bras and kets

does not commute: 〈ψ||φ〉 6= |φ〉〈ψ|. However, this multi-
plication is associative and distributive. Hence, for exam-
ple, |ψ〉(〈φ|+ 〈φ′|) = |ψ〉〈φ|+ |ψ〉〈φ′| and (|ψ〉〈φ|)(|ψ〉〈φ|) =
|ψ〉(〈φ|φ〉)〈ψ|= |ψ〉〈ψ| (because 〈φ|φ〉= 1).

Measurement Projection: According to quantum me-
chanics, the ‘inner product squared’ |〈ψ|φ〉|2 = 〈ψ|φ〉〈φ|ψ〉
between two states |ψ〉 and |φ〉 gives the probability that
one observes the outcome “|ψ〉” when one observes the state
“|φ〉”. It is straightforward to verify that 0 ≤ |〈ψ|φ〉|2 ≤ 1. If
〈ψ|φ〉 = 0, the two states are orthogonal. If |〈ψ|φ〉| = 1, then
the two states are identical up to a general phase factor (be-
cause we can still have 〈ψ|φ〉= eiγ). Although mathematically
present, such a general phase difference can never be observed
in reality, hence it has no physical relevance.

Tensor Product Construction: We can combine the
spaces CN and CM to a joint space CNM := CN ⊗CM . If A

and B are the respective basis sets of these two spaces, then
the joint basis of CN ⊗CM is given by the Cartesian product
A×B. As a result, using the tensor product ⊗ : CN ×CM →
CNM , we can combine the states

|ψ〉= ∑
x∈A

αx|x〉 ∈ CN and |φ〉= ∑
y∈B

βy|y〉 ∈ CM (5)

to the tensor product state

|ψ〉⊗ |φ〉= |ψ,φ〉= ∑
x∈A,y∈B

αxβy|x,y〉 ∈ CNM. (6)

For the conjugate transpose of a tensor product it holds that
(|ψ〉⊗ |φ〉)† = 〈ψ|⊗ 〈φ|.

If we assume A = {1, . . . ,N} and B = {1, . . . ,M}, then this
tensor product equation is described in vector notation by


α1
α2
...

αN

⊗


β1
β2
...

βM

 =



α1β1
α1β2

...
α1βM
α2β1

...

...
αNβM


. (7)

If |ψ〉 and |φ〉 are norm one vectors, then so is |ψ〉 ⊗ |φ〉.
Note that the tensor product does not commute: |ψ〉⊗ |φ〉 6=
|φ〉⊗ |ψ〉, but that it is associative and distributive. For exam-
ple, |ψ〉⊗ (|φ〉⊗ |φ′〉) = (|ψ〉⊗ |φ〉)⊗|φ′〉, and |ψ〉⊗ (α|φ〉+
β|φ′〉) = |ψ〉⊗α|φ〉+ |ψ〉⊗β|ψ′〉= α|ψ,φ〉+β|ψ,φ′〉.
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Unitary Operations: The group of norm preserving, lin-
ear operations on CN is the group U(N) of unitary, com-
plex valued N ×N matrices U ∈ CN×N that obey the equality
U ·U† = I. Here U† is the Hermitian conjugate (or the conju-
gate transpose) of U defined by U†

i j := U∗
ji for all 1≤ i, j ≤ N,

and I is the N-dimensional identity matrix. As these opera-
tions are linear, we have

U |ψ〉= ∑
x∈A

αxU |x〉 (8)

for all |ψ〉 ∈ CN . Hence, if we know the values of U on the
basis states |x ∈ A〉, we know the values of U on all quantum
states in CN . We can describe U ∈ U(N) as a summation of
outer products by

U := ∑
x,y∈A

Uxy|x〉〈y|, (9)

or equivalently Uxy := 〈x|U |y〉, such that by linearity we see
that

U |ψ〉= ∑
x,y∈A

Uxy|x〉〈y|∑
z∈A

αz|z〉= ∑
x,z∈A

αzUxz|x〉. (10)

Unitary matrices are inner product preserving (and hence
also norm preserving) as is shown by 〈φ|ψ〉 = 〈φ|I|ψ〉 =
〈φ|U†U |ψ〉 = 〈φ′|ψ′〉, where |φ′〉 := U |φ〉 and |ψ′〉 := U |ψ〉.
This shows that U is unitary if and only if the row vectors of
U form a orthonormal basis of CN (similarly for the columns
of U).

Just as with vectors, we can define the tensor product be-
tween two matrices. Specifically, if U ∈ U(N) and W ∈ U(M)
are unitary matrices defined by

U := ∑
x,y∈A

Uxy|x〉〈y| and W := ∑
p,q∈B

Wpq|p〉〈q|, (11)

then for the tensor product ⊗ : CN×N ×CM×M →CNM×NM we
have

U ⊗W = ∑
x,y∈A

∑
p,q∈B

UxyWpq|x, p〉〈y,q| ∈ CNM×NM. (12)

This matrix acts on the space CNM = CN ⊗CM spanned by
the set of basis states A×B. For the states |ψ〉 ∈ CN and
|φ〉 ∈CM we have (U⊗W )(|ψ〉⊗|φ〉) =U |ψ〉⊗W |φ〉 ∈CNM .
Again assuming A = {1, . . . ,N} and B = {1, . . . ,M}, the ten-
sor product of two matrices is described in matrix notation by

U ⊗W =


U11W U12W · · · U1NW

U21W
. . .

...
...

. . .
...

UN1W · · · · · · UNNW

 (13)

=


U11W11 U11W12 · · · U1NW1M

U11W21
. . . U1NW2M

...
. . .

...
UN1WM1 · · · · · · UNNWMM

 ∈ CNM×NM.

As was the case with vectors, the tensor product of matrices is
not commutative, but it is distributive and associative. Also, if
U,U ′ ∈ U(N) and W,W ′ ∈ U(M), then (U ⊗W )(U ′⊗W ′) =
UU ′⊗WW ′; if U,W are unitary, then so is U ⊗W and (U ⊗
W )† = U† ⊗W †.

Eigenvector / Eigenvalue Decomposition: We can de-
compose a unitary matrix U ∈ U(N) into its eigenvectors
|ψ1〉, . . . , |ψN〉 and its corresponding eigenvalues λ1, . . . ,λN ∈
C. With these values we can express the operator as

U =
N

∑
i=1

λi|ψi〉〈ψi|. (14)

The unitarity of U corresponds with the requirement that all
eigenvalues λi have norm one, and that the eigenvectors form
a orthonormal basis of CN . The identity matrix I has for all
eigenvalues λi = 1. The conjugate transpose of this U is given
by

U† =
N

∑
i=1

λ
∗
i |ψi〉〈ψi|. (15)

When U is as above and W ∈ U(M) has eigenvector decom-
position W = ∑

M
j=1 µ j|φ j〉〈φ j| then for the tensor product we

have

V ⊗W =
N

∑
i=1

M

∑
j=1

λiµ j|ψi,φ j〉〈ψi,φ j|. (16)

Quantum Computing: The typical setting for a quantum
circuit is quantum mechanical system that is described by
an n-fold tensor product of two dimensional Hilbert spaces:
C2 ⊗C2 ⊗ ·· · ⊗C2 = C2n

(where each C2 corresponds to a
single qubit). The elementary quantum gates that we can ap-
ply to an initial state |0, . . . ,0〉 are unitary operators that act
only a small number of qubits. For example, if we apply the
NOT gate X = (0 1

1 0) to the second qubit, then the overall uni-
tary operator is described by I⊗X⊗ I⊗·· ·⊗ I ∈U(2n), where
the I are the identity operators on the qubits 1,3, . . . ,n. For
operators that act on two non-adjacent qubits, the notation be-
comes a bit tricky. Consider for example a CNOT gate that
acts on the first and the last qubit. To avoid these problems
one can introduce the notation where the identity operators
are omitted, and a subscript is used to indicate on which qubit
the gates act. Hence the previous NOT circuit has the much
shorter description X2 ∈ U(2n), and the CNOT example be-
comes CNOT1,n ∈ U(2n). Regardless, it is often advisable to
draw a quantum circuit diagram to explain the operation.

Further Reading: For more information see Sections 1.2,
1.3 and especially Sections 2–2.1.7 in

• Quantum Computation and Quantum Information,
M.A. Nielsen and I.L. Chuang, Cambridge University
Press (2000).


