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Standard Quantum Gates: The following gates are standard
single qubit gates:

Identity: I =
(

1 0
0 1

)
NOT: X =

(
0 1
1 0

)
X

Y =
(

0 −i
i 0

)
Y

Z =
(

1 0
0 −1

)
Z

Hadamard: H =
1√
2

(
1 1
1 −1

)
H

θ-Phase Rotation: Rz(θ) =
(

1 0
0 eiθ

) '& %$ ! "#θ

Typically, two qubit gates are of the kind where a control bit
determines whether or not a single qubit operation is applied
to the target bit or not.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •��������

C-Rz(θ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

 •
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Controlled-U =


1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

 •

U

The three qubit, CCNOT gate is crucial for the implementa-
tion of classical, reversible computation.

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


•
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Circuit Calculus: Each quantum gate has a matrix represen-
tation, and we assume that the ordering of the dimensions

is determined by the alphabetical ordering on the bit strings
{0,1}n. (See the Exercises of the course.) The joint behavior
of gates that work in parallel is calculated with the help of ten-
sor products, while sequential gates are expressed by matrix
products. In both cases one should pay attention to the order
of multiplication.
Universal Reversible Computation: With a CCNOT gate
we can implement an AND-operation by CCNOT : |a,b,0〉 7→
|a,b,ab〉 for all a,b ∈ {0,1}. Hence, using CCNOT and
NOT gates, we can implement any Boolean function F :
{0,1}n → {0,1} as efficient as is possible classically. How-
ever, such an implementation will not erase the input value
x and typically also produces ‘garbage’ bits that are a
side-effect of the computation. (Take for example the
computation of F(x,y,z) = xyz by the sequence of trans-
formations |x,y,z,0,0〉 7→ |x,y,z,xy,0〉 7→ |x,y,z,xy,xyz〉 =
|x,y,z,xy,F(x,y,z)〉, which has as garbage the intermediate bit
value xy.) Because of the reversibility requirement it is im-
possible to get rid of the input bits, but it is possible to erase
the garbage bits as follows.

Note that each quantum circuit can be reversed. Hence,
if there is a circuit C that implements the transformation
|x,0,0〉 7→ |x,gx,F(x)〉 (with gx the garbage bits specifically
for the input x ∈ {0,1}n), then the inverse circuit C−1 = C†

implements the mapping |x,gx,F(x)〉 7→ |x,0,0〉. Now, by ap-
plying a CNOT between C and C† we get the following circuit

|x〉

C C†

|x〉

|0〉 |0〉

|0〉 • |0〉

|0〉 �������� |F(x)〉

which implements the desired transformation |x,0,0,0〉 7→
|x,0,0,F(x)〉 for all x.

Note that this construction applies to all possible quan-
tum circuits C, which gives us the following important result.
Clean Quantum Computation Theorem: If there is a quan-
tum circuit C that implements the unitary mapping |x,0,0〉 7→
|x,gx,F(x)〉 for a Boolean function F : {0,1}n →{0,1}m, then
there exists a quantum circuit (only twice the size of C) that
implements the clean computation |x,0,0〉 7→ |x,0,F(x)〉. No-
tice that it is crucial for this construction that we have clean
working qubits bits lying around that we can use during the
computation.
Acknowledgment: The circuits in these exercises were drawn
using the Q-circuit LATEXpackage of Bryan Eastin and Steven
T. Flammia.


