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Complete Measurements: Consider a quantum state |ψ〉 de-
fined over the set of basis states X

|ψ〉= ∑
x∈X

αx |x〉.

If we measure the this state in the X-basis, that is according to
the vectors {|x〉 : x∈X}, then with probability |α2

x |we observe
the outcome x ∈ X and the state collapses according to

∑
x∈X

αx |x〉 7→ |x〉 .

Partial Measurements: Consider a quantum state |ψ〉 de-
fined over the set of basis states X×Y

|ψ〉= ∑
x∈X,y∈Y

αx,y |x,y〉.

If we measure the Y-part of this state, then we will observe
one of the possibilities y ∈ Y, and the state |ψ〉 will collapse
accordingly. Quantitatively, the probability of measuring y
equals

Pr(y|ψ) = ∑
x∈X

|α2
x,y|

and the state changes as

∑
x∈X,y∈Y

αx,y |x,y〉 7→
1√

Pr(y|ψ) ∑
x∈X

αx,y |x,y〉.

Note that the outcome state is properly normalized again.
An alternative description of the effect of a partial measure-

ment is the following. Describe the quantum state ψ by the
superposition

|ψ〉= ∑
y∈Y

βy |φy,y〉.

Then the probability of measuring outcome y ∈ Y is simply
|β2

y |, and the induced collapse is |ψ〉 7→ |φy,y〉. The connection
between these two descriptions is given by the equalities

βy |φy〉= ∑
x∈X

αx,y |x〉 and βy =
√

∑
x∈X

|α2
x,y|.

for all y ∈ Y.
Note also that it does not matter whether we first measure

the Y part of |ψ〉 and then the X-part, or first the X-part and
then the Y-part, or if we perform one complete measurement
over X×Y.

Two Qubit Example: Consider a Boolean measurement on
the second qubit of the 2 qubit state

1√
3
(|0,0〉+ |0,1〉− |1,1〉).

With probability 1
3 the outcome of the measurement will be

“0” after which the state has changed into |0,0〉. With prob-
ability 2

3 the outcome of the measurement will be “1” after
which the state has changed into

1√
2
(|0,1〉− |1,1〉) =

1√
2
(|0〉− |1〉)⊗|1〉 .

Periodic State Example: This example is relevant to under-
stand Shor’s factoring algorithm. Let the set of basis states
be of size NM and labeled by {0,1, . . . ,MN − 1}. Consider
a function F : {0, . . . ,NM − 1} → Y that has period M in
the sense that F(x) = F(y) if and only if x− y = 0 mod M.
Because of the “if and only if” there are M different output
values F(x), and each value occurs N times in the sequence
F(0), . . . ,F(NM−1). Consider now what happens if we mea-
sure the Y-register of the uniform superposition of F values
∑

NM−1
x=0 |x,F(x)〉/

√
NM. With probability 1/M we will mea-

sure one of the M unique y ∈ Y values. Let z ∈ {0, . . . ,M−1}
be the unique such that F(z) = y, then, by the periodicity re-
quirement, we also have y = F(z) = F(z+M) = F(z+2M) =
· · ·= F(z+(N−1)M), hence the state collapses according to

1√
NM

NM−1

∑
x=0

|x,F(x)〉 7→ 1√
N

N−1

∑
λ=0

|z+λM,F(z)〉.

Circuit Notation: A measurement of a single qubit |φ〉 in the
computational basis can be depicted by a ‘meter’

|φ〉 FE
[The circuits in these exercises were drawn using the Q-circuit
LATEXpackage of Bryan Eastin and Steven T. Flammia.]
Rotated Measurements: If we precede a standard qubit mea-
surement by a Hadamard gate H, we can also say that we mea-
sure the qubit in the basis {|+〉 , |−〉}= { |0+|1〉〉√

2
, |0−|1〉〉√

2
}. The

reason for this terminology should be obvious. Given a qubit
|φ〉= α |0〉+β |1〉, the probability of measuring a “0” on H |φ〉
equals | 〈0|H |φ〉 |2 = |〈+|φ〉|2, while the probability of mea-
suring a “1” on H |φ〉 equals | 〈1|H |φ〉 |2 = |〈−|φ〉|2.

In general, if we apply an inverse unitary rotation U† to a
quantum state |ψ〉 before measuring it in the computational
basis, then we can consider this also as measurement of |ψ〉 in
the rotated basis {U |0, . . . ,0〉 , . . . ,U |1, . . . ,1〉}.


