Complete Measurements: Consider a quantum state $|\psi\rangle$ defined over the set of basis states \mathcal{X}

$$|\psi\rangle = \sum_{x \in \mathcal{X}} \alpha_x |x\rangle.$$

If we measure the state in the \mathcal{X}-basis, that is according to the vectors $\{|x\rangle : x \in \mathcal{X}\}$, then with probability $|\alpha_x|^2$ we observe the outcome $x \in \mathcal{X}$ and the state collapses according to

$$\sum_{x \in \mathcal{X}} \alpha_x |x\rangle \mapsto |x\rangle.$$

Partial Measurements: Consider a quantum state $|\psi\rangle$ defined over the set of basis states $\mathcal{X} \times \mathcal{Y}$

$$|\psi\rangle = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \alpha_{x,y} |x,y\rangle.$$

If we measure the \mathcal{Y}-part of this state, then we will observe one of the possibilities $y \in \mathcal{Y}$, and the state $|\psi\rangle$ will collapse accordingly. Quantitatively, the probability of measuring y equals

$$\Pr(y|\psi) = \sum_{x \in \mathcal{X}} |\alpha_{x,y}|^2$$

and the state changes as

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \alpha_{x,y} |x,y\rangle \mapsto \frac{1}{\sqrt{\Pr(y|\psi)}} \sum_{x \in \mathcal{X}} \alpha_{x,y} |x,y\rangle.$$

Note that the outcome state is properly normalized again.

An alternative description of the effect of a partial measurement is the following. Describe the quantum state ψ by the superposition

$$|\psi\rangle = \sum_{y \in \mathcal{Y}} \beta_y |\phi_y, y\rangle.$$

Then the probability of measuring outcome $y \in \mathcal{Y}$ is simply $|\beta_y|^2$, and the induced collapse is $|\psi\rangle \mapsto |\phi_y, y\rangle$. The connection between these two descriptions is given by the equalities

$$\beta_y |\phi_y\rangle = \sum_{x \in \mathcal{X}} \alpha_{x,y} |x\rangle \text{ and } \beta_y = \sqrt{\sum_{x \in \mathcal{X}} |\alpha_{x,y}|^2}.$$

for all $y \in \mathcal{Y}$.

Note also that it does not matter whether we first measure the \mathcal{Y}-part of $|\psi\rangle$ and then the \mathcal{X}-part, or first the \mathcal{X}-part and then the \mathcal{Y}-part, or if we perform one complete measurement over $\mathcal{X} \times \mathcal{Y}$.

Two Qubit Example: Consider a Boolean measurement on the second qubit of the 2 qubit state

$$\frac{1}{\sqrt{3}} (|0,0\rangle + |0,1\rangle - |1,1\rangle).$$

With probability $\frac{1}{2}$ the outcome of the measurement will be “0” after which the state has changed into $|0,0\rangle$. With probability $\frac{1}{2}$ the outcome of the measurement will be “1” after which the state has changed into

$$\frac{1}{\sqrt{2}} (|0,1\rangle - |1,1\rangle) = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \otimes |1\rangle.$$

Periodic State Example: This example is relevant to understand Shor’s factoring algorithm. Let the set of basis states be of size NM and labeled by $\{0,1,\ldots,NM-1\}$. Consider a function $F : \{0,\ldots,NM-1\} \rightarrow \mathcal{Y}$ that has period M in the sense that $F(x) = F(y)$ if and only if $x - y \equiv 0 \mod M$. Because of the “if and only if” there are M different output values $F(x)$, and each value occurs N times in the sequence $F(0),\ldots,F(NM-1)$. Consider now what happens if we measure the \mathcal{Y}-register of the uniform superposition of F values $\sum_{i=0}^{NM-1} |x,F(x)\rangle / \sqrt{NM}$. With probability $1/M$ we will measure one of the M unique $y \in \mathcal{Y}$ values. Let $z \in \{0,\ldots,M-1\}$ be the unique such that $F(z) = y$, then, by the periodicity requirement, we also have $y = F(z) = F(z+M) = F(z+2M) = \cdots = F(z+(N-1)M)$, hence the state collapses according to

$$\frac{1}{\sqrt{NM}} \sum_{x=0}^{NM-1} |x,F(x)\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{z=0}^{N-1} |z + \lambda M, F(z)\rangle.$$

Circuit Notation: A measurement of a single qubit $|\phi\rangle$ in the computational basis can be depicted by a ‘meter’

$$|\phi\rangle \quad \overset{\text{meter}}{\longrightarrow}$$

[The circuits in these exercises were drawn using the Q-circuit IsabelleXpackage of Bryan Eastin and Steven T. Flammia.]

Rotated Measurements: If we precede a standard qubit measurement by a Hadamard gate H, we can also say that we measure the qubit in the basis $\{|+, -\rangle\} = \{|\beta_0, 0\rangle, |\beta_1, 1\rangle\}$. The reason for this terminology should be obvious. Given a qubit $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$, the probability of measuring a “0” on $H |\phi\rangle$ equals $|\alpha|^2 + |\beta|^2 = |\langle + |\phi\rangle|^2$, while the probability of measuring a “1” on $H |\phi\rangle$ equals $|\langle - |\phi\rangle|^2 = |\langle 1 |\phi\rangle|^2$.

In general, if we apply an inverse unitary rotation $U \dagger$ to a quantum state $|\psi\rangle$ before measuring it in the computational basis, then we can consider this also as measurement of $|\psi\rangle$ in the rotated basis $\{U |0\rangle, \ldots, U |N-1\rangle\}$.

Mathematics of Quantum Computation III

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Notes for the graduate course “Quantum Computation and Quantum Information” (290A), Spring 2005. v1