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Complete Measurements: Consider a quantum state |y) de-
fined over the set of basis states X
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If we measure the this state in the X-basis, that is according to
the vectors {|x) : x € X}, then with probability |aZ| we observe
the outcome x € X and the state collapses according to
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Partial Measurements: Consider a quantum state |y) de-
fined over the set of basis states X x Y
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If we measure the Y-part of this state, then we will observe
one of the possibilities y € Y, and the state |[y) will collapse

accordingly. Quantitatively, the probability of measuring y
equals
Priviy) = Y fod,
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and the state changes as
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Note that the outcome state is properly normalized again.

An alternative description of the effect of a partial measure-
ment is the following. Describe the quantum state y by the
superposition
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Then the probability of measuring outcome y € Y is simply
[ is [y) — |dy,y). The connection
between these two descriptions is given by the equalities
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Note also that it does not matter whether we first measure
the Y part of |y) and then the X-part, or first the X-part and
then the Y-part, or if we perform one complete measurement
over X x Y.

Two Qubit Example: Consider a Boolean measurement on
the second qubit of the 2 qubit state
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With probability % the outcome of the measurement will be
“0” after which the state has changed into |0,0). With prob-
ability % the outcome of the measurement will be “1” after
which the state has changed into

[1,1)).
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Periodic State Example: This example is relevant to under-
stand Shor’s factoring algorithm. Let the set of basis states
be of size NM and labeled by {0,1,...,MN — 1}. Consider
a function F : {0,...,NM — 1} — Y that has period M in
the sense that F(x) = F(y) if and only if x —y = 0 mod M.
Because of the “if and only if” there are M different output
values F(x), and each value occurs N times in the sequence
F(0),...,F(NM—1). Consider now what happens if we mea-
sure the Y-register of the uniform superposition of F values

YMM=1|x, F(x)) /v/NM. With probability 1/M we will mea-
sure one of the M unique y € Y values. Let z € {0,...,M — 1}
be the unique such that F(z) =y, then, by the periodicity re-
quirement, we also have y = F(z) = F(z+ M) = F(z+2M) =

-+ =F(z+4 (N —1)M), hence the state collapses according to
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Circuit Notation: A measurement of a single qubit |¢) in the
computational basis can be depicted by a ‘meter’
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[The circuits in these exercises were drawn using the Q-circuit
I&TgXpackage of Bryan Eastin and Steven T. Flammia. ]
Rotated Measurements: If we precede a standard qubit mea-
surement by a Hadamard gate H, we can also say that we mea-
sure the qubit in the basis {|+),|—)} = {lO’L‘1 ,L=1h) |1 }. The
reason for this terminology should be 0bv10us leen a qubit
|¢) = ot |0) +B|1), the probability of measuring a “0” on H |9)
equals | (0| H |) |> = |(+]0)|, while the probability of mea-
suring a “17 on H [o) equals | (1| H|0) > = |(—|0) -

In general, if we apply an inverse unitary rotation U' to a
quantum state |y) before measuring it in the computational
basis, then we can consider this also as measurement of |y) in
the rotated basis {U |0,...,0),...,U|1,...,1)}.
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