Mathematics of Quantum Computation III

Wim van Dam
Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Notes for the graduate course "Quantum Computation and Quantum Information" (290A), Spring 2005. v1

Complete Measurements: Consider a quantum state $|\psi\rangle$ defined over the set of basis states \mathcal{X}

$$
|\psi\rangle=\sum_{x \in \mathcal{X}} \alpha_{x}|x\rangle
$$

If we measure the this state in the X-basis, that is according to the vectors $\{|x\rangle: x \in X\}$, then with probability $\left|\alpha_{x}^{2}\right|$ we observe the outcome $x \in \mathcal{X}$ and the state collapses according to

$$
\sum_{x \in X} \alpha_{x}|x\rangle \mapsto|x\rangle
$$

Partial Measurements: Consider a quantum state $|\psi\rangle$ defined over the set of basis states $x \times y$

$$
|\psi\rangle=\sum_{x \in x, y \in y} \alpha_{x, y}|x, y\rangle .
$$

If we measure the y-part of this state, then we will observe one of the possibilities $y \in \mathcal{y}$, and the state $|\psi\rangle$ will collapse accordingly. Quantitatively, the probability of measuring y equals

$$
\operatorname{Pr}(y \mid \psi)=\sum_{x \in \mathcal{X}}\left|\alpha_{x, y}^{2}\right|
$$

and the state changes as

$$
\sum_{x \in X, y \in y} \alpha_{x, y}|x, y\rangle \mapsto \frac{1}{\sqrt{\operatorname{Pr}(y \mid \psi)}} \sum_{x \in X} \alpha_{x, y}|x, y\rangle .
$$

Note that the outcome state is properly normalized again.
An alternative description of the effect of a partial measurement is the following. Describe the quantum state ψ by the superposition

$$
|\psi\rangle=\sum_{y \in \mathcal{Y}} \beta_{y}\left|\phi_{y}, y\right\rangle .
$$

Then the probability of measuring outcome $y \in \mathcal{y}$ is simply $\left|\beta_{y}^{2}\right|$, and the induced collapse is $|\psi\rangle \mapsto\left|\phi_{y}, y\right\rangle$. The connection between these two descriptions is given by the equalities

$$
\beta_{y}\left|\phi_{y}\right\rangle=\sum_{x \in \mathcal{X}} \alpha_{x, y}|x\rangle \text { and } \beta_{y}=\sqrt{\sum_{x \in X}\left|\alpha_{x, y}^{2}\right|} .
$$

for all $y \in \mathcal{y}$.
Note also that it does not matter whether we first measure the y part of $|\psi\rangle$ and then the $X_{\text {-part, or first the }} X_{\text {-part and }}$ then the y-part, or if we perform one complete measurement over $x \times y$.

Two Qubit Example: Consider a Boolean measurement on the second qubit of the 2 qubit state

$$
\frac{1}{\sqrt{3}}(|0,0\rangle+|0,1\rangle-|1,1\rangle) .
$$

With probability $\frac{1}{3}$ the outcome of the measurement will be " 0 " after which the state has changed into $|0,0\rangle$. With probability $\frac{2}{3}$ the outcome of the measurement will be " 1 " after which the state has changed into

$$
\frac{1}{\sqrt{2}}(|0,1\rangle-|1,1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \otimes|1\rangle
$$

Periodic State Example: This example is relevant to understand Shor's factoring algorithm. Let the set of basis states be of size $N M$ and labeled by $\{0,1, \ldots, M N-1\}$. Consider a function $F:\{0, \ldots, N M-1\} \rightarrow y$ that has period M in the sense that $F(x)=F(y)$ if and only if $x-y=0 \bmod M$. Because of the "if and only if" there are M different output values $F(x)$, and each value occurs N times in the sequence $F(0), \ldots, F(N M-1)$. Consider now what happens if we measure the y-register of the uniform superposition of F values $\sum_{x=0}^{N M-1}|x, F(x)\rangle / \sqrt{N M}$. With probability $1 / M$ we will measure one of the M unique $y \in y$ values. Let $z \in\{0, \ldots, M-1\}$ be the unique such that $F(z)=y$, then, by the periodicity requirement, we also have $y=F(z)=F(z+M)=F(z+2 M)=$ $\cdots=F(z+(N-1) M)$, hence the state collapses according to

$$
\frac{1}{\sqrt{N M}} \sum_{x=0}^{N M-1}|x, F(x)\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{\lambda=0}^{N-1}|z+\lambda M, F(z)\rangle
$$

Circuit Notation: A measurement of a single qubit $|\phi\rangle$ in the computational basis can be depicted by a 'meter'

[The circuits in these exercises were drawn using the Q-circuit ${ }^{\mathrm{LET}}$ EXpackage of Bryan Eastin and Steven T. Flammia.]
Rotated Measurements: If we precede a standard qubit measurement by a Hadamard gate H, we can also say that we measure the qubit in the basis $\{|+\rangle,|-\rangle\}=\left\{\frac{|0+| 1\rangle\rangle}{\sqrt{2}}, \frac{|0-| 1\rangle\rangle}{\sqrt{2}}\right\}$. The reason for this terminology should be obvious. Given a qubit $|\phi\rangle=\alpha|0\rangle+\beta|1\rangle$, the probability of measuring a " 0 " on $H|\phi\rangle$ equals $|\langle 0| H| \phi\rangle\left.\right|^{2}=|\langle+\mid \phi\rangle|^{2}$, while the probability of measuring a " 1 " on $H|\phi\rangle$ equals $|\langle 1| H| \phi\rangle\left.\right|^{2}=|\langle-\mid \phi\rangle|^{2}$.

In general, if we apply an inverse unitary rotation U^{\dagger} to a quantum state $|\psi\rangle$ before measuring it in the computational basis, then we can consider this also as measurement of $|\psi\rangle$ in the rotated basis $\{U|0, \ldots, 0\rangle, \ldots, U|1, \ldots, 1\rangle\}$.

