Mathematics of Quantum Computation III

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Notes for the graduate course "Quantum Computation and Quantum Information" (290A), Spring 2005. v1

Complete Measurements: Consider a quantum state $|\psi\rangle$ defined over the set of basis states ${\mathfrak X}$

$$|\psi\rangle = \sum_{x\in\mathcal{X}} \alpha_x |x\rangle.$$

If we measure the this state in the \mathcal{X} -basis, that is according to the vectors $\{|x\rangle : x \in \mathcal{X}\}$, then with probability $|\alpha_x^2|$ we observe the outcome $x \in \mathcal{X}$ and the state collapses according to

$$\sum_{x\in\mathcal{X}}\alpha_x\,|x\rangle\mapsto|x\rangle$$

Partial Measurements: Consider a quantum state $|\psi\rangle$ defined over the set of basis states $\mathfrak{X} \times \mathfrak{Y}$

$$|\psi\rangle = \sum_{x\in\mathcal{X},y\in\mathcal{Y}} \alpha_{x,y} |x,y\rangle$$

If we measure the \mathcal{Y} -part of this state, then we will observe one of the possibilities $y \in \mathcal{Y}$, and the state $|\psi\rangle$ will collapse accordingly. Quantitatively, the probability of measuring *y* equals

$$\Pr(y|\psi) = \sum_{x \in \mathcal{X}} |\alpha_{x,y}^2|$$

and the state changes as

$$\sum_{x \in \mathfrak{X}, y \in \mathfrak{Y}} \alpha_{x,y} | x, y \rangle \mapsto \frac{1}{\sqrt{\Pr(y|\psi)}} \sum_{x \in \mathfrak{X}} \alpha_{x,y} | x, y \rangle.$$

Note that the outcome state is properly normalized again.

An alternative description of the effect of a partial measurement is the following. Describe the quantum state ψ by the superposition

$$|\Psi\rangle = \sum_{y\in\mathcal{Y}} \beta_y |\phi_y, y\rangle.$$

Then the probability of measuring outcome $y \in \mathcal{Y}$ is simply $|\beta_y^2|$, and the induced collapse is $|\psi\rangle \mapsto |\phi_y, y\rangle$. The connection between these two descriptions is given by the equalities

$$\beta_{y} |\phi_{y}\rangle = \sum_{x \in \mathcal{X}} \alpha_{x,y} |x\rangle \text{ and } \beta_{y} = \sqrt{\sum_{x \in \mathcal{X}} |\alpha_{x,y}^{2}|}.$$

for all $y \in \mathcal{Y}$.

Note also that it does not matter whether we first measure the \mathcal{Y} part of $|\psi\rangle$ and then the \mathcal{X} -part, or first the \mathcal{X} -part and then the \mathcal{Y} -part, or if we perform one complete measurement over $\mathcal{X} \times \mathcal{Y}$. **Two Qubit Example:** Consider a Boolean measurement on the second qubit of the 2 qubit state

$$\frac{1}{\sqrt{3}}(|0,0\rangle + |0,1\rangle - |1,1\rangle).$$

With probability $\frac{1}{3}$ the outcome of the measurement will be "0" after which the state has changed into $|0,0\rangle$. With probability $\frac{2}{3}$ the outcome of the measurement will be "1" after which the state has changed into

$$\frac{1}{\sqrt{2}}(|0,1\rangle - |1,1\rangle) = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \otimes |1\rangle.$$

Periodic State Example: This example is relevant to understand Shor's factoring algorithm. Let the set of basis states be of size *NM* and labeled by $\{0, 1, \ldots, MN - 1\}$. Consider a function $F : \{0, \ldots, NM - 1\} \rightarrow \mathcal{Y}$ that has period *M* in the sense that F(x) = F(y) if and only if $x - y = 0 \mod M$. Because of the "if and only if" there are *M* different output values F(x), and each value occurs *N* times in the sequence $F(0), \ldots, F(NM - 1)$. Consider now what happens if we measure the \mathcal{Y} -register of the uniform superposition of *F* values $\sum_{x=0}^{NM-1} |x, F(x)\rangle / \sqrt{NM}$. With probability 1/M we will measure one of the *M* unique $y \in \mathcal{Y}$ values. Let $z \in \{0, \ldots, M - 1\}$ be the unique such that F(z) = y, then, by the periodicity requirement, we also have $y = F(z) = F(z+M) = F(z+2M) = \cdots = F(z+(N-1)M)$, hence the state collapses according to

$$\frac{1}{\sqrt{NM}}\sum_{x=0}^{NM-1}|x,F(x)\rangle\mapsto\frac{1}{\sqrt{N}}\sum_{\lambda=0}^{N-1}|z+\lambda M,F(z)\rangle.$$

Circuit Notation: A measurement of a single qubit $|\phi\rangle$ in the computational basis can be depicted by a 'meter'

$$|\phi\rangle$$
 — \checkmark

[The circuits in these exercises were drawn using the Q-circuit LATEXpackage of Bryan Eastin and Steven T. Flammia.]

Rotated Measurements: If we precede a standard qubit measurement by a Hadamard gate *H*, we can also say that we measure the qubit in the basis $\{|+\rangle, |-\rangle\} = \{\frac{|0+|1\rangle\rangle}{\sqrt{2}}, \frac{|0-|1\rangle\rangle}{\sqrt{2}}\}$. The reason for this terminology should be obvious. Given a qubit $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$, the probability of measuring a "0" on $H |\phi\rangle$ equals $|\langle 0|H |\phi\rangle|^2 = |\langle +|\phi\rangle|^2$, while the probability of measuring a "1" on $H |\phi\rangle$ equals $|\langle 1|H |\phi\rangle|^2 = |\langle -|\phi\rangle|^2$.

In general, if we apply an inverse unitary rotation U^{\dagger} to a quantum state $|\psi\rangle$ before measuring it in the computational basis, then we can consider this also as measurement of $|\psi\rangle$ in the rotated basis $\{U|0,...,0\rangle,...,U|1,...,1\rangle\}$.