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Quantum Fourier Transformation modulo N: Consider the
N dimensional state space where the basis states are the inte-
gers modulo N. (In computer science this group is often de-
noted by Zy, although it is more correct to write Z/NZ or
Z/(N) or Z/N.) The quantum Fourier transform (QFT) over
Zy is the unitary transformation defined by
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By its definition, the matrix representation of the Fourier
transformation is
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or, much more succinct,
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The Hermitian conjugate of Foury is
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which allows to prove the unitarity of Foury € C¥*N by (using
Y)Y (y| =1ify' =y and |y')(y| = 0 otherwise)
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Efficient Implementation of Foury To be able to use the
Fourier transform as part of an efficient quantum computation
we have to show that it can be implemented (approximately)
with a quantum circuit of size O(poly(logN)). For N = 2",
the transformation can be implemented as follows.

Each number x € Zy is represented by n bits xg,X1,...,X,—1
such that for example y = Y~ = 0 Vj 2. The Fourier transform of
X € Zy can then be written as the tensor product of n qubits:
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where the subscript in |b) ; indicates position of the j-th qubit.
Now, because exp(2mi - x;2*) = 1 for all integer s > 0, we see
that the j-th output qubit z; is in fact
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and hence only depends on the n — j input bits xo, ..., X;,—1—j.
To describe a quantum circuit that implements the Fourier
transform, we define the single phase rotations
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and the two qubit, Controlled-R, rotation with C-R, |a,b) —
e2™ab/2" |4 b)Y for a,b € {0, 1} such that

0 0

0 0 N

1 0 -

0 e2m/2" @

The circuit (of size O(n*)) on the next page uses these gates in
combination with n Hadamard gates to implement the quan-
tum Fourier transform over Zyn.
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FIG. 1: Circuit for Quantum Fourier Transform

Schematic overview of an efficient (size O(n?)) implementation of a
quantum Fourier transformation over the group Z,». Note how the
order of the n output bits zp,...,z,—1 is reversed in comparison with

the order of the input bits xp, ..., x,_1.

For more information, see Sections 5-5.1 in Nielsen and
Chuang’s Quantum Computation and Quantum Information.
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