Midterm CS290A: Quantum Information & Quantum Computation

Wim van Dam

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA

Question 1. (10 + 10 points) Take the 3 dimensional state space $\mathcal{A} = \{1,2,3\}$ and its *qutrits* $\alpha |1\rangle + \beta |2\rangle + \gamma |3\rangle$, with amplitudes $\alpha, \beta, \gamma \in \mathbb{C}$.

(a) Define the two qutrits $|\psi\rangle = \frac{1}{\sqrt{2}}|1\rangle - \frac{1}{2}|2\rangle + \frac{i}{2}|3\rangle$ and $|\phi\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{1}{2}|2\rangle - \frac{1}{2}|3\rangle$. What is the inner product $\langle \psi | \phi \rangle$? **Answer:**

$$\langle \psi | \phi \rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{i}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \frac{1+i}{4}.$$

(b) Take the unitary transformation U that has

$$U: |1\rangle \mapsto |3\rangle$$
$$U: |2\rangle \mapsto \frac{3}{5}|1\rangle + \frac{4}{5}|2\rangle$$

What can you say about the state $U|3\rangle$?

Answer: Because U is unitary, the vector $U|3\rangle$ has to have unit length and it has to be orthogonal to $U|1\rangle$ and $U|2\rangle$. Hence $U|3\rangle = e^{i\phi}(\frac{4}{5}|1\rangle - \frac{3}{5}|2\rangle)$ with $\phi \in [0, 2\pi)$.

Question 2. (10+10+10 points) Take a state $|1,...,1\rangle$ of *n* qubits that are all "1" and apply *k* Hadamard gates *H* to this string at *k* distinct places. Afterwards, we observe the *n* qubits in the computational basis $\{0,1\}^n$.

(a) Take n = 3 and k = 2, what is the probability of observing the 'all ones' state $|1, 1, 1\rangle$?

Answer: $\frac{1}{4}$.

(b) As a function of $n \in \mathbb{Z}^+$ and $0 \le k \le n$, what is the probability of observing the 'all ones' state $|1, ..., 1\rangle$? Answer: $\frac{1}{2^k}$.

(c) As a function of $n \in \mathbb{Z}^+$ and $0 \le k \le n$, what is the probability of observing the 'all zeros' state $|0, \ldots, 0\rangle$?

Answer: If k < n the probability is 0; if k = n then the probability is $\frac{1}{2^n}$.

Question 3. (10+15+10+15 points)(a) Consider the following 3 qubit circuit:

With its input state $|0,0,0\rangle$, what will the output state be? Answer: The output state will be $|0,0,0\rangle$. (b) Consider the more general circuit

with general angles $\alpha, \beta, \gamma \in [0, 2\pi)$ for the phase rotation gates. How does the output state depend on these angles?

Answer: The angles α, β, γ will only effect the first qubit of the output state, which will be $\frac{1}{2}(1 + e^{i(\alpha+\beta+\gamma)})|0\rangle + \frac{1}{2}(1 - e^{i(\alpha+\beta+\gamma)})|1\rangle \otimes |0,0\rangle$. Hence the output state is uniquely determined by the sum $\alpha + \beta + \gamma \mod 2\pi$, and the probability of observing "0,0,0" is $\cos^2(\frac{1}{2}(\alpha+\beta+\gamma))$, while the probability of observing "1,0,0" is $\sin^2(\frac{1}{2}(\alpha+\beta+\gamma))$.

(c) How can you generalize the circuit and the result of the previous question (b) to *n* qubits?

Answer: The generalized *n* qubit circuit is

The output of this circuit depends on the sum $\sum_{j=1}^{n} \alpha_j \mod 2\pi$ and will be

$$\frac{1}{2}(1+e^{i(\alpha_1+\cdots+\alpha_n)})|0\rangle+\frac{1}{2}(1-e^{i(\alpha_1+\cdots+\alpha_n)})|1\rangle\otimes|0,\ldots,0\rangle.$$

Hence, this time the probability of observing "0,0,...,0" is $\cos^2(\frac{1}{2}(\alpha_1 + \cdots + \alpha_n))$, while the probability of observing "1,0,...,0" is $\sin^2(\frac{1}{2}(\alpha_1 + \cdots + \alpha_n))$.

(d) (Save this question for last.) Change the circuit into

How do the output bits depend on the angles $\alpha, \beta, \gamma \in [0, 2\pi)$?

Answer: The output state depends on the sum $\alpha + \beta + \gamma \mod 2\pi$ and will be $\frac{1}{4}(1 + e^{i(\alpha+\beta+\gamma)})(|0,0,0\rangle + |0,1,1\rangle + |1,0,1\rangle + |1,1,0\rangle) + \frac{1}{4}(1 - e^{i(\alpha+\beta+\gamma)})(|0,0,1\rangle + |0,1,0\rangle + |1,0,0\rangle + |1,1,1\rangle)$. Hence the probability of observing one of the 3-bit strings with even parity ($\in \{000,011,101,111\}$) is $\cos^2(\frac{1}{2}(\alpha+\beta+\gamma))$, while the probability of observing one of the odd parity, 3-bit strings ($\in \{001,010,100,111\}$) is $\sin^2(\frac{1}{2}(\alpha+\beta+\gamma))$.