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Administrivia

• Final exam will be open book.

• Material will be everything discussed in class
(slides, Handouts, Exercises).

• References to specific sections in Nielsen and 
Chuang’s “Quantum Computation and Quantum 
Information” will be posted on the web site.



This Week

• Bell’s proof of the nonlocality of quantum physics
• Quantum Communication Complexity

• The future and feasibility of quantum computing:
- Quantum Error Correcting Codes
- Future quantum algorithms
- Experimental implementations



Hidden Variables

In a hidden variable theory, the particles have determined 
beforehand what the measurement outcomes will be.  

Several kinds of measurements are possible so each particle 
has a list of answers that obeys the quantum predictions.  

Hence for EPR pair (|00〉+|11〉)/√2:  
If we measure A and B in the basis 0/1 
then both answers have to be the same.  
Idem for +/– basis. For example: 
A=[M0/1=“0”, M+/–=“–”] and 
B=[M0/1=“0”, M+/–=“–”] gives the table YY
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Hidden Variable Theory

We can completely “explain” the statistics of an
EPR pair and measurements in the 0/1 or +/– basis
by assuming that the particles implement the one 
of the following four tables at random (Prob. ¼ each).
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Note: The particles are
allowed to coordinate
their answers, but they
have to do that before 
the measurements are
performed (when the 
particles are far away).



Bell’s Theorem

Although there is a ‘classical theory’ for EPR qubits
and measurements in the 0/1 or +/– basis, this does 
not hold in general.  

Bell’s Theorem : There are settings with separated 
entangled qubits and measurements where it is not
possible to explain the statistics of quantum physics
in a classical way.

Here we will discuss a 3 qubit proof for the state 
|GHZ〉 = (|000〉+|111〉)/√2 and simple measurements:

α?q 0/1?= HRα



γ?

GHZ Experiment

β?

α? In the GHZ experiment we have 3 parties (A,B,C) 
that perform three (independent) measurements 

parameterized by angles (α,β,γ) and that 
has as outcome three bits {0,1}3.

Quantum mechanically speaking 
we say that we have the 3-qubit 
state |GHZ〉 = (|000〉+|111〉)/√2 
and the 
measurement 
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Midterm Flashback

• The three rotations have the global effect

• After the three Hadamard gates this become

• If the sum α+β+γ = 0 mod 2π then the parity of the 
outcome bits will be even.  If α+β+γ = π mod 2π, 
then the parity of the three bits will be odd.

How the outcomes are
determined by the angles
α,β,γ was the last 
question on the Midterm.
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Hidden Variables?

GHZ focuses on the cases where α,β,γ∈{0,½π}.
If we want to explain this with a local, hidden variable 
theory, then each particle must have a predetermined
outcome for the 2 measurements.  
Denote these values:

Such that for example             means that if B’s particle
gets measured at the ½π angle, then the outcome is “1”.
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All M have bit values ∈{0,1}.  GHZ’s version of Bell’s
theorem shows that it is impossible to have M values
that are in accordance with the prediction of quantum
mechanics that says: MA⊕MB⊕MC = (α+β+γ mod 2π)/π.

How?…



No Hidden Variables

Take 3 cases where α+β+γ = π such that MA⊕MB⊕MC = 1.
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Adding these three equations (modulo 2) gives:
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B
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But this contradicts the requirement for α+β+γ = 0 such that 
the 3 output bits must have even parity: 0MMM C

0
B
0

A
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γ?

GHZ Experiment

β?

α? In the GHZ experiment we have 3 parties (A,B,C) 
that perform three (independent) measurements 

parameterized by angles (α,β,γ) and that 
has as outcome three bits {0,1}3.

Quantum mechanics says: 
MA⊕MB⊕MC = (α+β+γ mod 2π)/π
for α,β,γ ∈ {0,½π}.
Bell: Impossible Classically.



Local Realism

The assumptions of a hidden variable theory for GHZ 
that led to the contradiction are those of local realism.

Locality: The assumption that the actions of remote
parties does not effect the outcome of local experiments.
For example: A’s outcome does not depend on the
measurement settings of B and C, and so on.

Realism:  The assumption that the outcomes are 
somehow predetermined for all experiments.  
Example: We listed the measurement outcomes M0
and Mπ/2 for particle on A’s side, and so on.



GHZ Continued

For angles α,β,γ ∈ {0,½π,π,1½π}, we want to create
remote bits M such that MA⊕MB⊕MC = α+β+γ mod 2π
under the promise that α+β+γ = 0 mod π.

Quantum mechanically we can do this with 100% success.
Classically, the maximum success rate is 75%.

Experimentally, these better-than-classical bounds have
been broken: “nonlocality experiments”.

Besides proving profound facts about Nature, quantum
nonlocality can also be use for distributed computing
tasks if we want to minimize (classical) communication.



Communication Complexity

Take parties A and B, each with input x and y
(of length n bits).  They want to calculate a 
distributed function F:{0,1}n×{0,1}n T S,
with a minimum of communication.

Quantum communication complexity 
looks at how much communication is required 
if we are allowed to use prior entanglement.

Just as with quantum algorithms, it turns out that
for specific situations, entanglement can save 
communication: QCC(F) < CC(F) ≤ n.



Some Examples

• Equality function: f(x,y) = EQ(x,y) = “x=y”?
deterministic complexity is maximum: CC(EQ)=n

• “x+y even or odd?” has one bit complexity for integer x,y.

• If you allow a small error ε, things can change:
CCε(EQ) = O(log n)

Communication Complexity is studied for to understa nd 
better the efficiency of distributed computation



Example: Three Party 
Even/Odd Problem

• Consider three parties A, B and C, which have three 
real numbers x, y and z
– Promise: x+y+z is a natural number
– Question: is x+y+z even or odd?

• Using entanglement, this can be solved with only two 
qubits of communication using the GHZ trick.



General CC of Even/Odd

• In general for k parties: QCC(E/O) = k–1, 

• Classical, deterministic three party complexity is 4 bits
and for k parties CC(E/O) = Θ(k log k)

Entanglement saves us a factor of log k bits.   

Admittedly, this problem does not seem all that relevant…



Appointment Problem

• Two diaries with n days: x1…xn and y1…yn

• Is there a day j such that xj = yj = “free”?

• Using Grover’s search algorithm one can show that

• While classically:

)nnlogO()(APPQCC nε ⋅=

Θ(n))(APPCC nε =



Other Results

• Certain functions do not allow a quantum reduction in 
communication complexity 
Example: IP(x,y) = x1y1⊕…⊕xnyn has complexity Θ(n).

• There exist distributed tasks with an exponential gap 
between classical and quantum complexity.

• The theory of quantum communication complexity is
“applied philosophy”: What started as a theoretical
debate on the locality of Nature, evolved into a set
of algorithms that saves communication.
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Q&A

The emphasis of the final examination will be on 
quantum algorithms (Week 1–7).

“Mathematics of Quantum Computation IV” (on the 
quantum Fourier transform) will be updated.

Don’t forget to return the course evaluation. 



Current (Theoretical) Work

What do people work on in theoretical quantum 
computation/information theory?

• Developing new quantum algorithms that are 
exponentially faster than classical ones.

• Finding new applications for small quantum devices.

• Designing quantum error correcting codes.



Quantum Algorithms

• Polynomial speedup: Parity, Searching

• Exponential speedup: Factoring, Discrete Logarithms

What more can we do more efficiently?

Polynomial speedup for other general black-box functions:
Determining F, Collision problem, Counting, et cetera.

Exponential speedups?...



More Quantum Algorithms

• Pell’s equation: “What are the integer solutions (x,y) 
to the equation: x2–dy2=1, with d>0 a non-square?”
(also “Principal Ideal Problem” in Number theory).  
This breaks the Buchmann-Williams crypto system.

• Simulating quantum mechanical systems.
Could be relevant for calculations in Biochemistry.

• Several other problems in number theory: 
- Counting solution F(x,y)=0 over finite fields x,y∈Fq.
- Estimating Gauß sums.



Adiabatic Computation

• Adiabatic quantum computation is a heuristic quantum 
approach to combinatorial optimizations problems.

• Just like the classical simulated annealing approach, it 
tries to find an optimum by ‘quantum walking’ through 
the large space of possible answers in a smart way.

• The problem of getting stuck in a local minimum occurs 
also for adiabatic algorithms, but the quantum algorithm 
is (sometimes) better at getting out of it.

• Ultimate complexity is unknown and hard to determine.



Where to Look for New Problems?

• The consensus is that we have to look for problems 
that are not in P, but that are not NP-complete either.
(A somewhat forgotten category.)

• Two very interesting candidates:
- Graph automorphism/automorphism problem
- Shortest vector problem

• Both have not been solved yet.



Graph Automorphism

• Graph G, is its automorphism group trivial?
• Example:

• Mathematically: “π∈Sn, π(G)=G if and only if π=()”?

π=(34)
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Not known to be in NP-complete or in P



Shortest Vector

Consider a d-dimensional basis B=[B1,…,Bd], 
with Bj ∈ Zd for all 1≤j≤d.  The lattice of B is defined by 
L(D) = { β1B1+…+βdBd : βj∈Z} (this is not a vector space).

The shortest/closest vector problem asks for a vector 
W ∈ Zd if there is a point in L(D) that is ‘close’ to W.

Variants of this problem are between P and NP-complete
and are used in cryptographic protocols.



Experimental Work

• Implementations of quantum communication protocols 
using photon polarization.

• Implementations of small quantum algorithms (“proof 
of principle”) using NMR, trapped ions,…

• Towards a scalable quantum computer using ion traps, 
solid state NMR, superconducting qubits,…

• Will it work for imperfect devices?



Problems with Quantum
Error Correcting Codes

• We cannot copy a state to protect against errors.

• We cannot just measure the state to inspect the 
error that might have occurred. 

• Many ways one can disturb one qubit α|0〉+β|1〉.  

• What error model do we assume?

• How to use the encoded states in a computation?



Quantum Error Correction

• Consider quantum bit wires that sometimes flip bits.
This changes qubit values: α|0〉+β|1〉#β|0〉+α|1〉.

• How to protect oneself against this?

• Exercises 6, Question 3:
• If we use the encoding

α|0L〉+β|1L〉 = α|000〉+β|111〉
then we are protected
against single bit flips.

• What about general qubit errors?



The 4 Qubit Errors:

1α0β −

1α0β + 1β0α −

10 β+α

“Bit flip” “Phase flip”

“Bit & Phase flip”Happy Fact:
If we can correct for these 4 errors,
then we can correct any qubit error.

(Classical error correction deals with bit-flips only.)

“Identity”



A [9,1] Quantum Error Code

LL 1β0α +Logical qubit:
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Combined, this gives 
the 9 qubit ‘Shor code’:

This code protects against an arbitrary bit error.



Quantum Error Correction

• Using the results of classical error correction,
many quantum codes can be devised.

• Fault-tolerant computation is also possible.

• Combined, they give rise to several “thresholds
for reliable quantum computation” results.

An error rate of ~0.0001 is sufficient
to have a working quantum computer.



Will It Work?

• Nobody knows for sure.

• Regardless, quantum computing forces us to rethink 
our assumptions about computation and information.

• For physicists it has come as a big surprise that 
quantum mechanics can be so useful, and that 
you can think about q.m. in a CS kind-of-way.

• “The border between classical and quantum 
phenomena is just a question of money”, [A–Z]



One Last Issue

• If we believe that the whole world is quantum 
mechanical, what does it mean to measure?

• One can argue that if one observes a qubit, 
what happens is unitary as well:
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Many-Worlds Interpretation of QM .



Relevant Sections in QC&QI

These are the relevant sections for the final of Nielsen 
and Chuang’s “Quantum Computation and Quantum 
Information”.  (This is a significant overestimation.)

• Sections 1–1.4.5
• Sections 2–2.1.4, 2.1.6–2.1.7, 2.2–2.2.5, 2.2.7–2.3, 2.6
• Sections 3–3.3
• Sections 4–4.5, 4.5.5–4.6
• Sections 5–5.1, 5.3–5.4.2
• Sections 6–6.1.4, 6.4–6.5
• Sections 12.6–12.6.1, 12.6.3
• Appendix 4–4.3


