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Administrivia
* Final exam will be open book.

« Material will be everything discussed in class
(slides, Handouts, Exercises).

* References to specific sections in Nielsen and
Chuang’s “Quantum Computation and Quantum
Information” will be posted on the web site.




This Week

Bell's proof of the nonlocality of quantum physics
Quantum Communication Complexity

The future and feasibility of quantum computing:
Quantum Error Correcting Codes

Future quantum algorithms

Experimental implementations




- * Hidden Variables

M

In a hidden variable theory, the particles have determined
beforehand what the measurement outcomes will be.

Several kinds of measurements are possible so each particle
has a list of answers that obeys the quantum predictions.

Hence for EPR pair (|00)+|11))/N2: ABlo 11+ -
If we measure A and B in the basis 0/1 v |y
then both answers have to be the same. . i
ldem for +/— basis. For example: i S P
A:[MO/]_:“O” e _u_n] and + :
B=[M,,="0", M,,_="“—"] gives the table - Y 1Y




Hidden Variable Theory

We can completely “explain” the statistics of an

EPR pair and measurements in the 0/1 or +/— basis
by assuming that the particles implement the one

of the following four tables at random (Prob. ¥ each).

pABlo 11+ - |aABlo 11+ -

oy ! Yl |o|Y v Note: The particles are
1 N allowed to coordinate
¥ | FY Y their answers, but they
il AN 1 b | have to do that before
ABlo 11+ | [ABlo 1]+ - the measurements are
0 | 0 i perfprmed (when the

1 yiov| |1 Yiy particles are far away).
+ i + Yy

- YioY] |- |




Bell’'s Theorem

Although there is a ‘classical theory’ for EPR qubits
and measurements in the 0/1 or +/— basis, this does
not hold in general.

Bell's Theorem : There are settings with separated
entangled qubits and measurements where it is not
possible to explain the statistics of qguantum physics
In a classical way.

Here we will discuss a 3 qubit proof for the state
IGHZ) = (|000)+|111))/N2 and simple measurements:




GHZ Experiment

. In the GHZ experiment we have 3 parties (A,B,C)

» that perform three (independent) measurements
parameterized by angles (a,B,y) and that
has as outcome three bits {0,1}3.

T
—
(\)
) Quantum mechanically speaking
J we say that we have the 3-qubit
state |GHZ) = (|000)+|111))/V2
and the ‘"Oq"> — ﬁ( O> + e 1>)

measurement ]
bases: "1,") =+(0)-e™|1))




E— Midterm Flashback

(d) (Save this question for last.) Change the circuit into

0) 4 l @—H - How the outcomes are

0) & (B determined by the angles
l a,3,y was the last

0) S—(—{H]- question on the Midterm.

How do the output bits depend on the angles ¢, 3,y € C?

* The three rotations have the global effect
(GHZ) — £(/000) +e"***¥|111))
o After the three Hadamard gates this become
—  1(1+e""*™v))(000)+|011) +|101) +|110))
+1(1-e"“**¥)(001) +|010) +|100) +|111))
o If the sum a+B+y = 0 mod 21T then the parity of the

outcome bits will be even. If a+p+y = 1T mod 2T,
then the parity of the three bits will be odd.




- Hidden Variables?

GHZ focuses on the cases where a,[3,yL{0,Y1r}.

If we want to explain this with a local, hidden variable
theory, then each particle must have a predetermined
outcome for the 2 measurements.

Denote these values: My, Mi, Mg, M; ,MCC,,MC

Such that for example MB =1 means that if B’'s particle
gets measured at the 1T angle then the outcome is “1”.

All M have bit values [1{0,1}. GHZ’s version of Bell’s
theorem shows that it is impossible to have M values
that are in accordance with the prediction of quantum
mechanics that says: MALOMBOMC® = (a+B+y mod 21)/1T.

How?...




- No Hidden Variables

Take 3 cases where a+B+y = 1 such that MAOMBOMC = 1.
Ms OMS OMS =1
ME OMEOMS =1
M2 OMS OMS =1

Adding these three equations (modulo 2) gives:
MAOMEOMS =1

But this contradicts the requirement for a+p+y = O such that
the 3 output bits must have even parity: M5 OME OMS =0




- GHZ Experiment

(\)

‘—\J

In the GHZ experiment we have 3 parties (A,B,C)
that perform three (independent) measurements
parameterized by angles (a,B,y) and that

has as outcome three bits {0,1}3.

s

Quantum mechanics says:
MACOMBLOMC = (a+B+y mod 21)/1T

for a,B,y U {0,211},
Bell: Impossible Classically.




| ocal Realism

The assumptions of a hidden variable theory for GHZ
that led to the contradiction are those of local realism.

Locality: The assumption that the actions of remote
parties does not effect the outcome of local experiments.
For example: A’s outcome does not depend on the
measurement settings of B and C, and so on.

Realism: The assumption that the outcomes are
somehow predetermined for all experiments.
Example: We listed the measurement outcomes M,
and M_,, for particle on A’s side, and so on.




- GHZ Continued

For angles a,B,y U {0,%1r,1m,1%%1T}, We want to create
remote bits M such that M,LIMgUM. = a+B+y mod 21
under the promise that a+p+y = 0 mod T1r.

Quantum mechanically we can do this with 100% success.
Classically, the maximum success rate is 75%.

Experimentally, these better-than-classical bounds have
been broken: “nonlocality experiments”.

Besides proving profound facts about Nature, quantum
nonlocality can also be use for distributed computing
tasks if we want to minimize (classical) communication.




—  Communication Complexity

Take parties A and B, each with input x and y
(of length n bits). They want to calculate a
distributed function F:{0,1}"x{0,1}" - S,

with a minimum of communication.

Quantum communication complexity
looks at how much communication is required
If we are allowed to use prior entanglement.

Just as with quantum algorithms, it turns out that
for specific situations, entanglement can save
communication: QCC(F) < CC(F) = n.




- Some Examples

Equality function: f(x,y) = EQ(X,y) = “x=y"?
deterministic complexity is maximum: CC(EQ)=n

“X+y even or odd?” has one bit complexity for integer x,y.

If you allow a small error €, things can change:
CC,(EQ) = O(log n)

Communication Complexity is studied for to understa nd
better the efficiency of distributed computation



Example: Three Party
Even/Odd Problem

o Consider three parties A, B and C, which have three
real numbers x, y and z

— Promise: x+y+z is a natural number
— Question: is x+y+z even or odd?

« Using entanglement, this can be solved with only two
gubits of communication using the GHZ trick.




- General CC of Even/Odd

* In general for k parties: QCC(E/O) = k-1,

« Classical, deterministic three party complexity is 4 bits
and for k parties CC(E/O) = O(k log k)

Entanglement saves us a factor of log k bits.

Admittedly, this problem does not seem all that relevant...




Appointment Problem

e Two diaries with n days: X;...X, and y;...y,

* Isthere a day ] such that x; = y; = "free™?

e Using Grover’s search algorithm one can show that

QCC,(APP) =O(lognG/n)

* While classically:

CC.(APP) =0(n)




- Other Results

e Certain functions do not allow a quantum reduction in
communication complexity
Example: IP(x,y) = x,y,1...00x.y,, has complexity ©(n).

* There exist distributed tasks with an exponential gap
between classical and quantum complexity.

e The theory of guantum communication complexity Is
“applied philosophy”: What started as a theoretical
debate on the locality of Nature, evolved into a set
of algorithms that saves communication.
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- Q&A

The emphasis of the final examination will be on
guantum algorithms (Week 1-7).

“Mathematics of Quantum Computation IV” (on the
guantum Fourier transform) will be updated.

Don’t forget to return the course evaluation.




Current (Theoretical) Work

What do people work on in theoretical quantum
computation/information theory?

« Developing new quantum algorithms that are
exponentially faster than classical ones.

« Finding new applications for small quantum devices.

« Designing quantum error correcting codes.




Quantum Algorithms

* Polynomial speedup: Parity, Searching
« Exponential speedup: Factoring, Discrete Logarithms
What more can we do more efficiently?

Polynomial speedup for other general black-box functions:
Determining F, Collision problem, Counting, et cetera.

Exponential speedups?...




— More Quantum Algorithms

* Pell’'s equation: “What are the integer solutions (X,y)
to the equation: x>—dy2=1, with d>0 a non-square?”
(also “Principal Ideal Problem” in Number theory).
This breaks the Buchmann-Williams crypto system.

o Simulating quantum mechanical systems.
Could be relevant for calculations in Biochemistry.

« Several other problems in number theory:
- Counting solution F(x,y)=0 over finite fields x,yll,.
- Estimating Gaul3 sums.




Adiabatic Computation

Adiabatic quantum computation is a heuristic quantum
approach to combinatorial optimizations problems.

Just like the classical simulated annealing approach, it
tries to find an optimum by ‘quantum walking’ through
the large space of possible answers in a smart way.

The problem of getting stuck in a local minimum occurs
also for adiabatic algorithms, but the quantum algorithm
IS (sometimes) better at getting out of it.

Ultimate complexity is unknown and hard to determine.




= Where to Look for New Problems?

 The consensus is that we have to look for problems
that are not in P, but that are not NP-complete either.
(A somewhat forgotten category.)

« Two very interesting candidates:

- Graph automorphism/automorphism problem
- Shortest vector problem

« Both have not been solved yet.




Graph Automorphism

o Graph G, is its automorphism group trivial?
 Example:

T=(34)

e Mathematically: “riJS,,, T{(G)=G if and only if T=()"?

Not known to be in NP-complete orin P




Shortest Vector

Consider a d-dimensional basis B=[B,,...,B],
with B; 00 Zd for all 1sjsd. The lattice of B is defined by
L(D) ={B,B;+...+B4By : B;LIZ} (this is not a vector space).

The shortest/closest vector problem asks for a vector
W O Z4 if there is a point in L(D) that is ‘close’ to W.

Variants of this problem are between P and NP-complete
and are used in cryptographic protocols.

tru



- Experimental Work

* Implementations of quantum communication protocols
using photon polarization.

* Implementations of small quantum algorithms (“proof
of principle”) using NMR, trapped ions,...

 Towards a scalable quantum computer using ion traps,
solid state NMR, superconducting qubits,...

« Will it work for imperfect devices?




Problems with Quantum
Error Correcting Codes

We cannot copy a state to protect against errors.

We cannot just measure the state to inspect the
error that might have occurred.

Many ways one can disturb one qubit alO)+3]|1).
What error model do we assume?

How to use the encoded states in a computation?




Quantum Error Correction

Consider quantum bit wires that sometimes flip bits.
This changes qubit values: a|0)+|1)—[(3|0)+a|1).

How to protect oneself against this?

Question 3. (Towards Quantum Error Correction) Consider

Exercises 6, QueStlon 3: the following 5 qubit circuit
If we use the encoding 0) j i A
al0)+B|1,) = a]000)+p[111) £)
then we are protected |‘§'}> 1
against single bit flips.

: ) P 0) = \,l/ A

What about general qubit errors?



- The 4 Qubit Errors:

B|0) +al1) a[0) - B|1)
“Bit flip” “Phase flip”
“ldentity” B\ O> - a\ 1>

Happy Fact: Bit & Phase flip

If we can correct for these 4 errors,
then we can correct any qubit error.

(Classical error correction deals with bit-flips only.)




- A[9,1] Quantum Error Code
Logical qubit: |a|0, ) +B[1, )

Bit-flip code: Phase-flip code:
a/000) + B|111)

Combined, this gives
the 9 qubit ‘Shor code’:

a BL (000} +[111)) 0 ((000) +|111)) O (|000) +|111))
;%Qoom ~|111)) 0 000) -|111)) 01 ( 000) - [111))

This code protects against an arbitrary bit error.



Quantum Error Correction

» Using the results of classical error correction,
many gquantum codes can be devised.

 Fault-tolerant computation is also possible.

 Combined, they give rise to several “thresholds
for reliable quantum computation” results.

An error rate of ~0.0001 is sufficient

to have a working quantum computer.



Will It Work?

Nobody knows for sure.

Regardless, quantum computing forces us to rethink
our assumptions about computation and information.

For physicists it has come as a big surprise that
guantum mechanics can be so useful, and that
you can think about g.m. in a CS kind-of-way.

“The border between classical and quantum
phenomena is just a question of money”, [A—Z]




One Last Issue

« If we believe that the whole world is quantum
mechanical, what does it mean to measure?

 One can argue that if one observes a qubit,

what happens is unitary as

well:

(a/0) +B|1)) O | You) > a

0) 0| You saw a"zero")

+B|1) 0 |You saw a "one")

Many-Worlds Interpretation of QM




—  Relevant Sections in QC&QI

These are the relevant sections for the final of Nielsen
and Chuang’s “Quantum Computation and Quantum
Information”. (This is a significant overestimation.)

e Sections 1-1.4.5

e Sections 2-2.1.4,2.1.6-2.1.7, 2.2-2.2.5, 2.2.7-2.3, 2.6
e Sections 3-3.3

e Sections 4-4.5,4.5.5-4.6

e Sections 5-5.1, 5.3-5.4.2

e Sections 6-6.1.4, 6.4—6.5

e Sections 12.6-12.6.1, 12.6.3

* Appendix 4-4.3




