CS290A, Spring 2005:

Quantum Information \& Quantum Computation

Wim van Dam
Engineering 1, Room 5109 vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Hadamard Transfrom

- Define the Hadamard transform: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)$
- We have for this H :
- Note: $\mathrm{H}^{2}=1 \mathrm{l}$.

It changes classical bits into superpositions and vice versa.

$$
\begin{aligned}
|0\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
|1\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) & \mapsto|0\rangle \\
\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) & \mapsto|1\rangle
\end{aligned}
$$

- It sees the difference between the uniform superpositions $(|0\rangle+|1\rangle) / \sqrt{ } 2$ and $(|0\rangle-|1\rangle) / \sqrt{ } 2$.

Hadamard as a Quantum Gate

- Often we will apply the H gate to several qubits.
- Take the n-zeros state $|0, \ldots, 0\rangle$ and perform in parallel n Hadamard gates to the zeros, as a circuit:

Starting with the all-zero state and with only n elementary qubit gates we can create a uniform superposition of 2^{n} states.

Typically, a quantum algorithm will start with this state, then it will work in "quantum parallel" on all states at the same time.

$$
\begin{array}{ccc}
|0\rangle & -\mathrm{H} & (|0\rangle+|1\rangle) / \sqrt{ } 2 \\
|0\rangle & -\mathrm{H} & (|0\rangle+|1\rangle) / \sqrt{ } 2 \\
\vdots & \vdots & \vdots \\
|0\rangle & \mathrm{H} & (|0\rangle+|1\rangle) / \sqrt{ } 2
\end{array}
$$

As an equation:

$$
|0, \ldots, 0\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle
$$

Combining Qubits

If we have a qubit $|x\rangle=(|0\rangle+|1\rangle) \sqrt{ } 2$, then 2 qubits $|x\rangle$ give the state $1 / 2(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$.

Tensor product notation for combining states $|\mathrm{x}\rangle \in \mathbb{C}^{N}$ and $|\mathrm{y}\rangle \in \mathbb{C}^{\mathrm{M}}:|\mathrm{x}\rangle \otimes|\mathrm{y}\rangle=|\mathrm{x}\rangle|\mathrm{y}\rangle=|\mathrm{x}, \mathrm{y}\rangle \in \mathbb{C}^{\mathrm{NM}}$.

Example for two qubits: $\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right) \otimes\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right)$

$$
=\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle
$$

Note that we multiply the amplitudes of the states. Also note the exponential growth of the dimensions.

Braket Calculus

- See handout "Mathematics of Quantum Computation"
- To get familiar with the braket notation: Find patterns like $(A \otimes B)(C \otimes D)=A C \otimes B D$, Calculate 'small' examples in matrix notation; Prove the general case using braket notation.
- See exercises in Chapter 2-2.1.7 in Nielsen\&Chuang.
- Specific exercises will be announced this Friday.

The Tensor Product

- Keep in mind the picture
- The tensor product glues two subspaces to one big one.

- Often states and operations in this big space can not be represented as a tensor product.
Example for a 2 qubit state space:
Entangled qubits: $(|0,0\rangle+|1,1\rangle) / \sqrt{ } 2 \neq|\Psi\rangle \otimes|\varphi\rangle$ Joint Operations: CNOT $\neq \mathrm{U} \otimes W$

Two Hadamard Gates

$$
\begin{aligned}
& \left.\left|\mathrm{x}_{1}\right\rangle \xrightarrow{\begin{array}{l}
\text { What does this circuit } \\
\text { do on }\{00,01,10,11\} ?
\end{array}} \right\rvert\, \begin{array}{l}
\text { H } \\
\left.\left|\mathrm{x}_{2}\right\rangle \xrightarrow{2}, ?\right\rangle
\end{array} \\
& \left|\mathrm{X}_{1}, \mathrm{X}_{2}\right\rangle \mapsto \frac{1}{2} \sum_{\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in\{0,1\}^{2}}(-1)^{x_{1} y_{1}+x_{2} y_{2}}\left|y_{1}, y_{2}\right\rangle
\end{aligned}
$$

Controlled NOT Gate

- Define the 2 qubit gate CNOT by $|0,0\rangle \mapsto|0,0\rangle$
- Depending on the first control $\quad|0,1\rangle \mapsto|0,1\rangle$ bit, the gate applies a NOT to
$|1,0\rangle \mapsto|1,1\rangle$
$|1,1\rangle \mapsto|1,0\rangle$
- Circuit notation:
- Note that $\mathrm{b} \oplus 1=\mathrm{NOT}(\mathrm{b})$

- As a matrix \quad CNOT $=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

Hadamard + CNOT Gate

> What does this 2 qubit circuit do on $\{00,01,10,11\} ?$
$|0,0\rangle \quad \mapsto \quad \frac{1}{\sqrt{2}}(|0,0\rangle+|1,1\rangle)$
Answer for the four basis states:

$$
\begin{aligned}
|0,1\rangle & \mapsto \frac{1}{\sqrt{2}}(|0,1\rangle+|1,0\rangle) \\
|1,0\rangle & \mapsto \frac{1}{\sqrt{2}}(|0,0\rangle-|1,1\rangle) \\
|1,1\rangle & \mapsto \frac{1}{\sqrt{2}}(|0,1\rangle-|1,1\rangle)
\end{aligned}
$$

Note that the output states are not tensor products of 2 qubits. Instead the qubits are entangled.

The Pauli Matrices

Four elementary single qubit gates, including the NOT gate and the Identity.

Exercises:

- What other gates can you make with these gates?
- Play around with them and see how these gates "anti-commute".
$\sigma_{0}=I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\sigma_{1}=\sigma_{x}=X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$\sigma_{2}=\sigma_{y}=Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
$\sigma_{3}=\sigma_{z}=Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Some more Gates

- Controlled-Controlled-NOT gate CCNOT: CCNOT: $|a, b, c\rangle \mapsto|a, b, c \oplus(a b)\rangle$ for all $(a, b, c) \in\{0,1\}^{3}$
- Single qubit (-1)-Phase Flip: $\quad \alpha|0\rangle+\beta|1\rangle \mapsto \alpha|0\rangle-\beta|1\rangle$
- Single qubit φ-Phase Flip:

$$
\alpha|0\rangle+\beta|1\rangle \mapsto \alpha|0\rangle+e^{i \varphi} \beta|1\rangle
$$

- Controlled- φ-Phase Flip: $|a, b\rangle \mapsto e^{i \varphi a b}|a, b\rangle$ for all $(a, b) \in\{0,1\}^{2}$.
- And so on...

Quantum Circuits

- Start with n classical bits as input.
- Apply a sequence of elementary gates
- Measure the outcome $\Psi_{\text {output }}$.

Quantum Circuit Complexity

- Given an input size of $|x|=n$ (classical) bits, we apply a quantum circuit C_{n} to the input $x \in\{0,1\}^{n}$.
- Afterwards, we measure the output state ψ in the classical, computational basis $\{0,1\}^{n}$.
- The outcome of the quantum circuit algorithm is the probability distribution of ψ over $\{0,1\}^{n}$. (Typically this favors a specific string $\in\{0,1\}^{n}$.)
- The quantum circuit algorithm is efficient if the size of the circuits grows polynomially in n : size $\left(\mathrm{C}_{\mathrm{n}}\right)=\operatorname{poly}(\mathrm{n})$.

Hadamard + CNOT Gate

Quantum Computing

The superposition principle in combination with the interference phenomenon of 'complex probabilities' makes it hard to compute the behavior of say 1000 qubits. We have no proof of this (yet), but we suspect that this task is inherently hard.
A 1000 qubit quantum computer would perform this computation efficiently.

