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Hadamard Transfrom

• Define the Hadamard transform:

• We have for this H:

• Note: H2 = Id.
It changes classical bits
into superpositions
and vice versa.

• It sees the difference between the uniform 
superpositions (|0〉+|1〉)/√2 and (|0〉–|1〉)/√2. 
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Hadamard as a Quantum Gate

• Often we will apply the H gate to several qubits.

• Take the n-zeros state |0,…,0〉 and perform in parallel 
n Hadamard gates to the zeros, as a circuit:

H (|0〉+|1〉)/√2|0〉
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Starting with the all-zero 
state and with only n 
elementary qubit gates 
we can create a uniform 
superposition of 2n states.

Typically, a quantum algorithm
will start with this state, then it 
will work in “quantum parallel”
on all states at the same time.



Combining Qubits

If we have a qubit |x〉 = (|0〉+|1〉)√2, then 2 qubits |x〉
give the state ½(|00〉+|01〉+|10〉+|11〉).

Tensor product notation for combining states |x〉∈ÂN

and |y〉∈ÂM:  |x〉⊗|y〉 = |x〉|y〉 = |x,y〉 ∈ ÂNM.

Example for two qubits: 

Note that we multiply the amplitudes of the states.
Also note the exponential growth of the dimensions.
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Braket Calculus

• See handout “Mathematics of Quantum Computation”

• To get familiar with the braket notation: 
Find patterns like (A⊗B)(C⊗D) = AC⊗BD,
Calculate ‘small’ examples in matrix notation;
Prove the general case using braket notation.

• See exercises in Chapter 2-2.1.7 in Nielsen&Chuang.

• Specific exercises will be announced this Friday.



The Tensor Product

• Keep in mind the picture

• The tensor product glues
two subspaces to one big one.

• Often states and operations in this big space can 
not be represented as a tensor product.
Example for a 2 qubit state space:
Entangled qubits: (|0,0〉+|1,1〉)/√2 ≠ |ψ〉⊗|φ〉
Joint Operations: CNOT ≠ U⊗W

Space A Space B⊗



Two Hadamard Gates

What does this circuit 
do on {00,01,10,11}?
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Controlled NOT Gate

• Define the 2 qubit gate CNOT by
• Depending on the first control

bit, the gate applies a NOT to
the second, target qubit. 

• Circuit notation:

• Note that b⊕1=NOT(b)

• As a matrix

0,11,1

1,10,1

1,01,0

0,00,0
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Hadamard + CNOT Gate

H What does this 2 
qubit circuit do
on {00,01,10,11}?
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Answer for the
four basis states:

Note that the output states are not tensor products
of 2 qubits.  Instead the qubits are entangled.



The Pauli Matrices
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Four elementary single qubit
gates, including the NOT gate
and the Identity.

Exercises: 
- What other gates can you 
make with these gates?
- Play around with them
and see how these gates 
“anti-commute”.



Some more Gates

• Controlled-Controlled-NOT gate CCNOT:
CCNOT:|a,b,c〉 # |a,b,c⊕(ab)〉 for all (a,b,c)∈{0,1}3

• Single qubit (–1)-Phase Flip: α|0〉+β|1〉 # α|0〉–β|1〉
• Single qubit φ-Phase Flip: α|0〉+β|1〉 # α|0〉+eiφβ|1〉

• Controlled-φ-Phase Flip: |a,b〉 # eiφab|a,b〉
for all (a,b)∈{0,1}2.

• And so on…



Quantum Circuits

- Start with n classical bits as input.
- Apply a sequence of elementary gates
- Measure the outcome ψoutput.

|0〉
|1〉
|0〉

|1〉
|0〉

|ψoutput〉?



Quantum Circuit Complexity

• Given an input size of |x|=n (classical) bits, 
we apply a quantum circuit Cn to the input x∈{0,1}n.

• Afterwards, we measure the output state ψ in the 
classical, computational basis {0,1}n. 

• The outcome of the quantum circuit algorithm is the 
probability distribution of ψ over {0,1}n.
(Typically this favors a specific string∈{0,1}n.)

• The quantum circuit algorithm is efficient if the size of 
the circuits grows polynomially in n: size(Cn) = poly(n).



Hadamard + CNOT Gate

What does this 2 
qubit circuit do?

H H

HH|0〉
|0〉

|?,?〉

“single qubit NOT gate”



Quantum Computing

The superposition principle in combination 
with the interference phenomenon of 
‘complex probabilities’ makes it hard to 

compute the behavior of say 1000 qubits.
We have no proof of this (yet), but we 

suspect that this task is inherently hard.
A 1000 qubit quantum computer would 

perform this computation efficiently.

classically

“ quantumly”


