CS290A, Spring 2005:

Quantum Information \& Quantum Computation

Wim van Dam
Engineering 1, Room 5109 vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

- Exercises have been posted. Try to solve them, get help if you have problems
- Questions about the questions?
- Other questions?

Efficient Quantum Circuits

- Start with n classical bits as input.
- Apply a sequence of poly(n) elementary gates
- Measure the outcome $\Psi_{\text {output }}$.

This Week

Mathematics of Quantum Mechanics:

- Braket calculus.
- Finite dimensional unitary transformations; eigenvector/eigenvalue decompositions.
- Projection Operators.

Circuit Model of Quantum Computation:

- Examples of important gates.
- Composing quantum gates into quantum circuits.
- (Classical) Reversible computation.
- Universality results for quantum circuits.

Hermitian Conjugates

- See handout "Mathematics of Quantum Computation"
- Generalization of complex conjugate* to matrices.
- Procedure: "Flip \& conjugate"
- Notation: $|\psi\rangle^{\dagger}=\langle\psi|$ for vectors and M^{\dagger} for matrices:

$$
\begin{aligned}
& |\psi\rangle^{\dagger}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{D}
\end{array}\right)^{\dagger}=\left(\begin{array}{lllc}
\bar{a}_{1} & \bar{a}_{2} & \cdots & \bar{a}_{D}
\end{array}\right)=\langle\psi| \\
& \left(\begin{array}{cccc}
M_{11} & M_{12} & \cdots & M_{1 D} \\
M_{21} & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
M_{D 1} & \cdots & \cdots & M_{D D}
\end{array}\right)^{\dagger}=\left(\begin{array}{cccc}
\bar{M}_{11} & \bar{M}_{21} & \cdots & \bar{M}_{D 1} \\
\bar{M}_{12} & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\bar{M}_{1 D} & \cdots & \cdots & \bar{M}_{D D}
\end{array}\right)
\end{aligned}
$$

Inner / Outer Products

- $|\mathrm{x}\rangle$ is a column vector, $\langle\mathrm{x}|$ is a row vector.
- Inner Product $\langle x \mid y\rangle$ gives a C-valued scalar
- Outer product $|\mathrm{y}\rangle\langle\mathrm{x}|$ gives a $\mathrm{D} \times \mathrm{D} \mathbb{C}$-valued matrix:

$$
\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{D}
\end{array}\right) \cdot\left(\begin{array}{llll}
\bar{\beta}_{1} & \bar{\beta}_{2} & \cdots & \bar{\beta}_{D}
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{1} \bar{\beta}_{1} & \alpha_{1} \bar{\beta}_{2} & \cdots & \alpha_{1} \bar{\beta}_{D} \\
\alpha_{\beta_{1}} \bar{\beta}_{1} & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\alpha_{D} \bar{\beta}_{1} & \cdots & \cdots & \alpha_{D} \bar{\beta}_{D}
\end{array}\right)
$$

Notation: $|\mathrm{r}\rangle\langle\mathrm{c}|$ with $\mathrm{r}, \mathrm{c} \in\{1, \ldots, \mathrm{D}\}$ denotes the 0 -matrix, with a " 1 " in the r-th row and c-th column.
Hence for matrices $\mathrm{M}=\Sigma_{\mathrm{ij}} \mathrm{M}_{\mathrm{ij}} \mid \mathrm{i}\langle\mathrm{j}|$ and $\left.\mathrm{M}^{\dagger}=\Sigma_{\mathrm{ij}} \mathrm{M}^{*}{ }_{\mathrm{j} i} \mathrm{i}\right\rangle\langle\mathrm{j}|$

Products of Bras and Kets

- How to deal with product sequences?
- Leave out the bars and dots: $\langle\psi| \cdot|\varphi\rangle=\langle\psi \mid \varphi\rangle$
- They don't commute: $\langle\varphi \mid \psi\rangle \neq\langle\psi \mid \varphi\rangle$
- Keep on eye on the dimensions: $|\psi\rangle$ is a vector, $\langle\psi \mid \psi\rangle$ a scalar and $|\psi\rangle\langle\psi|$ is a matrix.
- They are distributive and associative: $\langle\varphi|\left(\alpha|\psi\rangle+\beta\left|\psi^{\prime}\right\rangle\right)=\alpha\langle\varphi \mid \psi\rangle+\beta\left\langle\varphi \mid \psi^{\prime}\right\rangle$ $(|\psi\rangle\langle\varphi|)(|\varphi\rangle\langle\psi|)=|\psi\rangle(\langle\varphi \mid \varphi\rangle)\langle\psi|=|\psi\rangle\langle\psi|$

Preserving Norms

- The norm of a vector $\alpha|v\rangle+\beta|w\rangle$, is determined by:
$\| \alpha|v\rangle+\beta|w\rangle \|^{2}=\left(\alpha^{*}\langle v|+\beta^{*}\langle w|\right)(\alpha|v\rangle+\beta|w\rangle)=$
$\alpha^{*} \alpha\langle v \mid v\rangle+\beta^{*} \beta\langle w \mid w\rangle+\alpha^{*} \beta\langle v \mid w\rangle+\beta^{*} \alpha\langle w \mid v\rangle=$ $\alpha^{*} \alpha+\beta^{*} \beta+2 \operatorname{Real}\left(\alpha^{*} \beta\langle v \mid w\rangle\right)$
- Two vectors $|\mathrm{v}\rangle,|\mathrm{w}\rangle$ are mutually orthogonal, if and only if $\langle v \mid w\rangle=0$; in which case $\| \alpha|v\rangle+\beta|w\rangle \|^{2}=|\alpha|^{2}+|\beta|^{2}$.
- If T is a linear, norm preserving transformation of $|v\rangle,|w\rangle$, then the inner product between $(\mathrm{T}|\mathrm{v}\rangle)^{\dagger}$ and $\mathrm{T}|\mathrm{w}\rangle$ has to be the same as $\langle v \mid w\rangle$. Hence: \mathbf{T} has to be inner product preserving.

Unitarity 1

- Let M be a linear, norm preserving (= unitary) D-dimensional transformation on the Hilbert space \mathbb{C}^{D}.
- When represented as a $\mathrm{D} \times \mathrm{D} \mathbb{C}$-valued matrix, how do we determine that M is unitary?
- Because $\mathrm{M}|1\rangle, \mathrm{M}|2\rangle, \ldots, \mathrm{M}|\mathrm{D}\rangle$ have to have norm one, the columns of M have to have norm one.
- Because $|1\rangle,|2\rangle, \ldots,|D\rangle$ are mutually orthogonal, the columns of M have to be mutually orthogonal.

Unitarity 2

- Let $M \in \mathbb{C}^{D \times D}$ be the matrix of a unitary transformation.
- The columns $\mathrm{M}|1\rangle, \mathrm{M}|2\rangle, \ldots, \mathrm{M}|\mathrm{D}\rangle$ have to form a D-dimensional orthonormal basis, hence $\mathrm{M}^{\dagger} \mathrm{M}=\mathrm{I}$:

$$
\mathrm{M}^{\dagger} \cdot \mathrm{M}=(\underset{\longleftrightarrow}{\longleftrightarrow}) \cdot\left(\uparrow \uparrow \uparrow \downarrow \left\lvert\,\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)=\mathrm{I}\right.\right.
$$

- M is invertible: $\mathrm{M}^{-1}=\mathrm{M}^{\dagger}$, which is also unitary.
- The identity matrix is unitary
- The set of D-dimensional unitary transformations is a (matrix) group.

Recognizing Unitarity

- Perform the matrix multiplication: $\mathrm{M}^{\dagger} \cdot \mathrm{M}=\mathrm{M} \cdot \mathrm{M}^{\dagger}=\mathrm{I}$? Simple for small matrices, impractical for larger ones.
- Prove that $\mathrm{M}|1\rangle, \ldots, \mathrm{M}|\mathrm{D}\rangle$ are mutually orthogonal.
- If M is a classical computation, then the above means that $\mathrm{M}|1\rangle, \ldots, \mathrm{M}|\mathrm{D}\rangle$ has to be a permutation. Alternatively, a classical M has to be reversible.
- Topic of (classical) reversible computation.

Reversible Computation

- Standard computation is irreversible: $(\mathrm{a}, \mathrm{b}) \mapsto(\mathrm{a}$ AND b)
- Reversible gates have FAN-IN = FAN-OUT.
- Irreversible gates: $(a, b) \mapsto(a$ OR $b),(a) \mapsto(0)$, but also: $(a, b) \mapsto(a, a$ OR $b)$
- Reversible gates: $(a) \mapsto(\sim a)$, CNOT:(a,b) $\mapsto(a, b \oplus a)$, CCNOT:(a,b,c) $\mapsto(a, b, c \oplus a b)$, and C-SWAP:

$$
\begin{array}{ll}
\text { C-SWAP:|0,b,c } & \mapsto|0, b, c\rangle \\
\text { C-SWAP:|1,b,c }\rangle & \mapsto|1, c, b\rangle
\end{array}
$$

Reversibility Issues

$$
\begin{array}{ll}
|x\rangle-F \rightarrow|F(x)\rangle & \begin{array}{l}
\text { For general } F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
|x\rangle \mapsto|F(x)\rangle \text { is irreversible }
\end{array} \\
|x\rangle-F \rightarrow|F(x)\rangle & \begin{array}{l}
\text { For reversible } F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
|x\rangle \mapsto|F(x)\rangle \text { is reversible }
\end{array} \\
|x, y\rangle \rightarrow|d, \oplus F \rightarrow| x, y \oplus F(x) & \begin{array}{l}
\text { For general } F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
x, y\rangle \mapsto|x, y \oplus F(x)\rangle \text { is reversible }
\end{array}
\end{array}
$$

Which reversible functions can we implement efficiently under the assumption that we can implement F efficiently?

CC-NOTs as Universal Gates

- With CCNot gates, we can implement NOT and AND: CCNOT:|1,1,c $\rangle \mapsto|1,1, \sim c\rangle$, CCNOT:|a,b,0 $\rangle \mapsto|a, b, a b\rangle$.
- If we keep old memory around, any circuit function F can be implemented efficiently $|x, 0,0\rangle \mapsto\left|x, g_{x}, F(x)\right\rangle$
- By copying the output $F(x)$ and running the circuit in reverse, we can erase the garbage bits g_{x} : $\left|\mathrm{x}, \mathrm{g}_{\mathrm{x}}, \mathrm{F}(\mathrm{x}), 0\right\rangle \mapsto\left|\mathrm{x}, \mathrm{g}_{\mathrm{x}}, \mathrm{F}(\mathrm{x}), \mathrm{F}(\mathrm{x})\right\rangle \mapsto|\mathrm{x}, 0,0, \mathrm{~F}(\mathrm{x})\rangle$.
- In sum: $|x, 0,0\rangle \mapsto|x, F(x), 0\rangle$ can be implemented efficiently as long as we have clean 0 -qubits around.

Power of Reversible Computation

- We showed that the requirement of reversibility does not change (significantly) the efficiency of our computations: Reversible Computation $=$ General Computation.
- But what about the efficiency of implementing of other reversible computations?

Problematic Reversibility

- If F is a reversible function (a permutation of $\{0,1\}^{n}$), then $|x\rangle \mapsto|F(x)\rangle$ is reversible.
- Even if F can be implemented efficiently (classically), it does not always hold that $|x\rangle \mapsto|F(x)\rangle$ can be implemented in a unitary/reversible way.
- $|x, 0\rangle \mapsto|x, F(x)\rangle$ can be done efficiently, but $|x, F(x)\rangle \mapsto|0, F(x)\rangle$ can be hard.
- Reason: F^{-1} may be hard to implement (one-way F).

More on Reversibility

- Reversibility also plays a role in the heat production of bit operations: $k_{B} T \ln (2) \sim 10^{-22}$ Joule per bit.
- Remember: A Quantum Computation can always just as easily be done in reverse: Just read the circuit right from left, and invert each unitary gate along the way.
- See in "Quantum Computation and Quantum Information": §3.2.5, "Energy and Computation"

