
CS290A, Spring 2005:

Quantum Information &
Quantum Computation

Wim van Dam
Engineering 1, Room 5109

vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

• Exercises have been posted.
Try to solve them,
get help if you have problems

• Questions about the questions?

• Other questions?

Efficient Quantum Circuits

- Start with n classical bits as input.
- Apply a sequence of poly(n) elementary gates
- Measure the outcome ψoutput.

|0〉
|1〉
|0〉

|1〉
|0〉

|ψoutput〉?

This Week

Mathematics of Quantum Mechanics:
• Braket calculus.
• Finite dimensional unitary transformations;

eigenvector/eigenvalue decompositions.
• Projection Operators.

Circuit Model of Quantum Computation:
• Examples of important gates.
• Composing quantum gates into quantum circuits.
• (Classical) Reversible computation.
• Universality results for quantum circuits.

Hermitian Conjugates

• See handout “Mathematics of Quantum Computation”
• Generalization of complex conjugate* to matrices.
• Procedure: “Flip & conjugate”

• Notation: |ψ〉† = 〈ψ| for vectors and M† for matrices:

() ψααα†ααα†ψ D21

D

2

1

=== LM
= DDD1

12

1D2111

DD1D

21

D11211

MM

M

MMM
†

MM

M

MMM LL MOM MO LLL MOM MO L

Inner / Outer Products

• |x〉 is a column vector, 〈x| is a row vector.
• Inner Product 〈x|y〉 gives a Â-valued scalar
• Outer product |y〉〈x| gives a D×D Â-valued matrix:

()

=⋅

DD1D

12

D12111

D21

D

2

1

βαβα

βα
βαβαβα

βββ
α

α
α

LL

MOM

MO

L

L
M

Notation: |r〉〈c| with r,c∈{1,…,D} denotes the 0-matrix,
with a “1” in the r-th row and c-th column.

Hence for matrices M = Σij Mij|i〉〈j| and M† = Σij M*ji|i〉〈j|

Products of Bras and Kets

• How to deal with product sequences?

• Leave out the bars and dots: 〈ψ|·|φ〉 = 〈ψ|φ〉
• They don’t commute: 〈φ|ψ〉≠〈ψ|φ〉
• Keep on eye on the dimensions:

|ψ〉 is a vector, 〈ψ|ψ〉 a scalar and |ψ〉〈ψ| is a matrix.

• They are distributive and associative:
〈φ|(α|ψ〉+β|ψ’〉) = α〈φ|ψ〉+β〈φ|ψ’〉
(|ψ〉〈φ|)(|φ〉〈ψ|) = |ψ〉(〈φ|φ〉)〈ψ| = |ψ〉〈ψ|

Preserving Norms

• The norm of a vector α|v〉+β|w〉, is determined by:║α|v〉+β|w〉║2 = (α*〈v|+β*〈w|)(α|v〉+β|w〉) = α*α〈v|v〉 + β*β〈w|w〉 + α*β〈v|w〉 + β*α〈w|v〉 = α*α + β*β + 2Real(α*β〈v|w〉)

• Two vectors |v〉, |w〉 are mutually orthogonal, if and
only if 〈v|w〉 = 0; in which case ║α|v〉+β|w〉║2 = |α|2+|β|2.

• If T is a linear, norm preserving transformation of |v〉,|w〉,
then the inner product between (T|v〉)† and T|w〉 has to
be the same as 〈v|w〉.
Hence: T has to be inner product preserving.

Unitarity 1

• Let M be a linear, norm preserving (= unitary)
D-dimensional transformation on the Hilbert space ÂD.

• When represented as a D×D Â-valued matrix,
how do we determine that M is unitary?

• Because M|1〉, M|2〉,…, M|D〉 have to have norm one,
the columns of M have to have norm one.

• Because |1〉, |2〉,…, |D〉 are mutually orthogonal,
the columns of M have to be mutually orthogonal.

Unitarity 2

• Let M∈ÂD×D be the matrix of a unitary transformation.

• The columns M|1〉, M|2〉,…, M|D〉 have to form a
D-dimensional orthonormal basis, hence M†·M = I:

• M is invertible: M-1 = M†, which is also unitary.
• The identity matrix is unitary
• The set of D-dimensional unitary transformations

is a (matrix) group.

I

100

0

10

001

MM† ==⋅=⋅ L OOM MOL

Recognizing Unitarity

• Perform the matrix multiplication: M†·M = M·M† = I?
Simple for small matrices, impractical for larger ones.

• Prove that M|1〉,…, M|D〉 are mutually orthogonal.

• If M is a classical computation, then the above means
that M|1〉,…, M|D〉 has to be a permutation.
Alternatively, a classical M has to be reversible.

• Topic of (classical) reversible computation.

Reversible Computation

• Standard computation is irreversible: (a,b) # (a AND b)

• Reversible gates have FAN-IN = FAN-OUT.

• Irreversible gates: (a,b) # (a OR b), (a) # (0),
but also: (a,b) # (a, a OR b)

• Reversible gates: (a) # (~a), CNOT:(a,b) # (a, b⊕a),
CCNOT:(a,b,c) # (a,b,c⊕ab), and C-SWAP:

b,c,1c,b,1:SWAP-C

c,b,0c,b,0:SWAP-C aa

Reversibility Issues

F|x〉 For general F:{0,1}nT{0,1}n

|x〉 # |F(x)〉 is irreversible

Id,⊕F|x,y〉 For general F:{0,1}nT{0,1}n

|x,y〉 # |x,y⊕F(x)〉 is reversible

|F(x)〉

|x,y⊕F(x)〉

F|x〉 For reversible F:{0,1}nT{0,1}n

|x〉 # |F(x)〉 is reversible|F(x)〉

Which reversible functions can we implement efficiently
under the assumption that we can implement F efficiently?

CC-NOTs as Universal Gates

• With CCNot gates, we can implement NOT and AND:
CCNOT:|1,1,c〉 # |1,1,~c〉, CCNOT:|a,b,0〉 # |a,b,ab〉.

• If we keep old memory around, any circuit function F
can be implemented efficiently |x,0,0〉 # |x,gx,F(x)〉

• By copying the output F(x) and running the circuit in
reverse, we can erase the garbage bits gx:
|x,gx,F(x),0〉 # |x,gx,F(x),F(x)〉 # |x,0,0,F(x)〉.

• In sum: |x,0,0〉 # |x,F(x),0〉 can be implemented
efficiently as long as we have clean 0-qubits around.

Power of Reversible Computation

• We showed that the requirement of reversibility does not
change (significantly) the efficiency of our computations:
Reversible Computation = General Computation.

• But what about the efficiency of implementing of other
reversible computations?

Problematic Reversibility

• If F is a reversible function (a permutation of {0,1}n),
then |x〉 # |F(x)〉 is reversible.

• Even if F can be implemented efficiently (classically),
it does not always hold that |x〉 # |F(x)〉 can be
implemented in a unitary/reversible way.

• |x,0〉 # |x,F(x)〉 can be done efficiently, but
|x,F(x)〉 # |0,F(x)〉 can be hard.

• Reason: F-1 may be hard to implement (one-way F).

More on Reversibility

• Reversibility also plays a role in the heat production
of bit operations: kBT ln(2) ~ 10–22 Joule per bit.

• Remember: A Quantum Computation can always
just as easily be done in reverse:
Just read the circuit right from left,
and invert each unitary gate along the way.

• See in “Quantum Computation and Quantum
Information”: §3.2.5, “Energy and Computation”

