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Administrivia

Exercises have been posted.
Try to solve them,
get help if you have problems

Questions about the questions?

Other questions?
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Efficient Quantum Circuits

I Woutput)?

-

- Start with n classical bits as input.
- Apply a sequence of poly(n) elementary gates
- Measure the outcome Y,




- This Week

Mathematics of Quantum Mechanics:
e Braket calculus.

* Finite dimensional unitary transformations;
eigenvector/eigenvalue decompositions.

 Projection Operators.

Circuit Model of Quantum Computation:
« Examples of important gates.

« Composing quantum gates into quantum circuits.
» (Classical) Reversible computation.

« Universality results for quantum circuits.




Hermitian Conjugates

See handout “Mathematics of Quantum Computation”
Generalization of complex conjugate* to matrices.
Procedure: “Flip & conjugate”

Notation: |p)' = (y| for vectors and MT for matrices:
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- Inner / Outer Products

e |X)Is a column vector, (x| is a row vector.
* Inner Product (x]y) gives a C-valued scalar

e Outer product |yXX| gives a DxD C-valued matrix:

( a; ) ( 01§1 0162 o alED )
0:2 E(El Ez cee ED) — 02:51 .
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Notation: |r)c| with r,cJ{1,...,D} denotes the O-matrix,
with a “1” in the r-th row and c-th column.

Hence for matrices M = 2;; My[iXj| and Mt = 2, M¥,[i)(j|




Products of Bras and Kets

 How to deal with product sequences?

« Leave out the bars and dots: (|-|@) = (w|P)

 They don’t commute: {(@|W)#Y|P)

« Keep on eye on the dimensions:

|lp) is a vector, (Y|y) a scalar and |wXy| is a matrix.

« They are distributive and associative:

@|(a|lw)+Bly?)) = al{p|w)+B{p|y’)
(lwXeD)(eXw]) = lw)P|le))XW| = |wXy|




Preserving Norms

 The norm of a vector alv)+B|w), is determined by:
[ alvy+BIw) || 2 = (ar(v]+B*(w])(a|v)+B|w)) =
a*a(v|v) + B*R(w|w) + a*B(viw) + B*aiwlv) =
a*a + B*B + 2Real(a*B{v|w))

 Two vectors |v), |w) are mutually orthogonal, if and
only if (vlw) = 0; in which case |[alv)+B|w)||2 = |a|2+|B|2.

o If Tis a linear, norm preserving transformation of |v),|w),
then the inner product between (T|v))T and T|w) has to
be the same as (v|w).

Hence: T has to be inner product preserving.




Unitarity 1

Let M be a linear, norm preserving (= unitary)
D-dimensional transformation on the Hilbert space CP.

When represented as a DxD C-valued matrix,
how do we determine that M is unitary?

Because M|1), M|2),..., M|D) have to have norm one,
the columns of M have to have norm one.

Because 1), |2),..., |D) are mutually orthogonal,
the columns of M have to be mutually orthogonal.




Unitarity 2

Let MLICP*P be the matrix of a unitary transformation.

The columns M|1), M|2),..., M|D) have to form a
D-dimensional orthonormal basis, hence M™M = I:
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M is invertible: M1 = MT, which is also unitary.
The identity matrix is unitary

The set of D-dimensional unitary transformations
IS a (matrix) group.




Recognizing Unitarity

Perform the matrix multiplication: MM = M-MT = |?
Simple for small matrices, impractical for larger ones.

Prove that M|1),..., M|D) are mutually orthogonal.

If M is a classical computation, then the above means
that M|1),..., M|D) has to be a permutation.
Alternatively, a classical M has to be reversible.

Topic of (classical) reversible computation.




Reversible Computation

Standard computation is irreversible: (a,b) — (a AND b)

Reversible gates have FAN-IN = FAN-OUT.

Irreversible gates: (a,b) » (a OR b), (a) — (0),
but also: (a,b) — (a, a OR b)

Reversible gates: (a) — (~a), CNOT:(a,b) - (a, blJa),
CCNOT:(a,b,c) — (a,b,cllab), and C-SWAP:

I

C-SWAP:|0,b,c) +— |0b,c)
C-SWAP:|1b,c) +— |[lc,b)




Reversibility Issues

For general F:{0,1}"-{0,1}
) —L B [F) IX) > |F(x)) is irreversible X

For reversible F:{0,1}"-{0,1}"
IX) > |[F(X)) Is reversible

) | F — IF(x))

or general F:{0,1}"-{0,1}"
X,¥) — |X,yUF(X)) is reversible

1X,y) —Id,0F— |x,yOF (XK

Which reversible functions can we implement efficiently
under the assumption that we can implement F efficiently?




—  CC-NOTs as Universal Gates

« With CCNot gates, we can implement NOT and AND:
CCNOT:|1,1,c) > |1,1,~c), CCNOT:|a,b,0) — |a,b,ab).

« If we keep old memory around, any circuit function F
can be implemented efficiently |x,0,0) — [x,g,,F(X))

« By copying the output F(x) and running the circuit in
reverse, we can erase the garbage bits g,:
1X,0,,F(X),0) - [X,9,,F(X),F(X)) — [x,0,0,F(X)).

e Insum: |x,0,0) > |x,F(x),0) can be implemented
efficiently as long as we have clean 0-qubits around.




—  Power of Reversible Computation

 We showed that the requirement of reversibility does not

change (significantly) the efficiency of our computations:
Reversible Computation = General Computation.

e But what about the efficiency of implementing of other
reversible computations?




Problematic Reversibility

If F is a reversible function (a permutation of {0,1}"),
then |x) — |F(X)) Is reversible.

Even if F can be implemented efficiently (classically),
It does not always hold that |x) —» |F(x)) can be
Implemented in a unitary/reversible way.

1X,0) > |X,F(X)) can be done efficiently, but
IX,F(X)) — |0,F(x)) can be hard.

Reason: F-1 may be hard to implement (one-way F).




More on Reversibility

* Reversibility also plays a role in the heat production
of bit operations: kg T In(2) ~ 10-22 Joule per bit.

« Remember: A Quantum Computation can always
just as easily be done in reverse:
Just read the circuit right from left,

and invert each unitary gate along the way.

o See In “Quantum Computation and Quantum
Information”: 83.2.5, “Energy and Computation”




