
CS290A, Spring 2005:

Quantum Information &
Quantum Computation

Wim van Dam
Engineering 1, Room 5109

vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

• Do the exercises.

• Answers will be posted at the end of the week.

• Midterm examination will be Thursday, April 28
Open book, open everything.

• Bookstore will start returning books on April 25.

• Other questions?

Things that have come up

• Know how to take tensor products of vectors.

• Mind the ordering of qubits for quantum gates:
Example: CNOT between two bits

• In both cases: mind the ordering of the dimensions
in the vector/matrix notation.

This Week

Wrap-up of the quantum circuit model of efficient
quantum computation.

Effect of partial measurements on superpositions.

Small quantum algorithms.

Clean Reversible Computation

• With CCNot gates, we can implement NOT and AND.
• If we keep old memory around, any classical circuit

function F can be implemented efficiently as
UF:|x,0,0〉 # |x,gx,F(x)〉 (which is a classical transform).

• By copying the output F(x) and running the circuit UF
in reverse, we can erase the garbage bits gx:
|x,gx,F(x),0〉 # |x,gx,F(x),F(x)〉 # |x,0,0,F(x)〉.

• In sum: |x,0,0〉 # |x,F(x),0〉 can be implemented
efficiently as long as we have clean 0-qubits around.

• Also in superposition: Σx|x,0,0〉 # Σx|x,F(x),0〉.

Last Week’s Question

• Why can we copy the F(x) bit and run the circuit
UF in reverse to clean up the work space?

• Reason: UF:|x,0,0〉 # |x,gx,F(x)〉 implements a classical
transformation that does not create superpositions.

• If we have UF as a circuit, we can also apply it to a
superposition of states. General clean computation:

∑∑
∈∈ nn }1,0{x

x
}1,0{x

x)x(F,xα0,xα a

Power of Reversible Computation

• We showed that the requirement of reversibility does not
change (significantly) the efficiency of our computations:
Reversible Computation = General Computation.

• But what about the efficiency of implementing
general quantum transformations?

• We have to look at what it means to efficiently implement
a computation that uses quantum superpositions.

Closeness of States

• We know that unitary transformations are inner product
preserving. Hence the angle between two states |ψ〉
and |ψ’〉 is the same as the angle between C|ψ〉 and
C|ψ’〉 after we applied the circuit C to them.

• “If states are close, they remain close.”
• Measure of closeness: Fidelity
• If F(|ψ〉,|ψ’〉) ≈ 1, then the states are close.
• If F(|ψ〉,|ψ’〉) ≈ 0, then the states are ‘far away’.

• Close states lead to near identical probability
distributions when measured.

φψ)φ,ψ(F =

How Close?

2

}1,0{s
ss2

1 F1|qp|F1
n

−≤−≤− ∑
∈

Take two states |ψ〉 and |φ〉 with fidelity F.
Measuring the states in the computation basis {0,1}n

gives two probability distributions p and q respectively.

If the states are close (F≈1), then p and q have to be
close as well. How close?

“Quantum states that are close in terms of their
fidelity behave in all respects almost the same.”

Approximate Q-Computing

If F(ψ,ψ’)≈1, then having |ψ’〉 instead of |ψ〉 is equally
good when performing computations.

If our ideal quantum circuit produces the outcome state ψ,
then an approximate circuit that produces ψ’ also solves the
computational problem. (If in doubt, run the computation
several times and take the majority of the outcomes.)

Just as states can be close, so can gates and circuits.
For the task of quantum computation it is sufficient to
implement the wanted unitary transformation approximately.

Universal Q-Computing

• If we use a small set of standard gates {CCNOT, H, Rz}
then we can implement (approximately) any possible
unitary transformation U∈ÂD×D.

• Moreover, if a circuit is build using a different set of
gates {G1,…,Gr}, then we can approximate this circuit
efficiently using the {CCNOT, H, Rz} set. (You do this
by finding the proper replacement circuits for G1,…,Gr.)

• Other sets of gates are also possible.

• “It does not really matter which gates you use to
study quantum circuit complexity”.

Modern Church-Turing Thesis

• “Whatever we can build in the lab, we will be able to
simulate it efficiently using our quantum circuit model.”

• By studying quantum circuit complexity we are studying
the intrinsic computation complexity of problems in the
quantum mechanical world as-we-know it.

• Note that complexity theory does depend on the fact
that Nature is not classical (factoring, discrete log,…).

General Set Up

• Input size n
Consider a function F:{0,1}n T {0,1}m

We want to know some properties of F
F is easy to compute, but |{0,1}n| is too big.

• Quantum Approach: Create a superposition of F(x)
values by calculating F once on a superposition:

• Then, do something quantum smart with this state.

∑∑
∈∈ nn }1,0{x

x
}1,0{x

x)x(F,xα0,xα a

Partial Measurements

• What happens to Σxαx|x,F(x)〉 if we measure the F(x)
part of the register, but not the x-part?

• Compare the two cases:

 ⊗+

⊗+
+⊗+

"1" outcome1)10(

"0" outcome0)10(
)10()10(

2
1
2

1

2
1

a

+
"1" outcome1,1

"0" outcome0,0
)1,10,0(

2
1

a

Informal: The state collapses according to the
measurement outcome, but not more than that.

Partial Measurements II

• More formal description of Measurements
• Consider a Boolean measurement on a superposition:

• Rewrite the state according to the Boolean values.

• Depending on the outcome, the state collapses to one
of the two outcomes, with probability ΣΣΣΣx|αx|2

(sum over approriate x values F(x)=0 or F(x)=1).

∑
∈ n}1,0{x

x)x(F,xα

∑∑
==

+
1)x(F

x
0)x(F

x 1,xα0,xα

Partial Measurements III

• Even more Formal Description of Measurement
• Let M be the set of measurement outcomes,

each quantum state φ can be written as

• When measuring the M quantity:
- We observe m∈M with probability |βm|2
- State collapses as |φ〉#|ψm,m〉

• Note that this ψm can still be a superposition.

• The state |ψm,m〉 is again properly normalized.

∑
∈

=
Mm

mm m,ψβφ

Common Computational Setting

• We create a superposition of F:{0,1}n values,
where the amplitudes are uniform over all x∈{0,1}n.
After that we measure an F(x)=y value, such that

• For each y∈M this happens randomly with
probability Sy/2n, where Sy = |{x : F(x)=y}|.

• You can not use this to fast search F(0),F(1),…

∑∑
=∈ y)x(Fy}1,0{x

n
y,x

S

1
)x(F,x

2

1
n

a

CS290A, Spring 2005:

Quantum Information &
Quantum Computation

Wim van Dam
Engineering 1, Room 5109

vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

• Remember: Midterm is next Thursday, April 28
Open book, open notes.

• New handout has been posted (on measurements).

• Do the exercises.

• New exercises and answers to old ones will be posted
tomorrow (Friday).

• Tuesday: Q&A session of Midterm material.

General Set Up

• Input size n
Consider a function F:{0,1}n T {0,1}m

We want to know some properties of F
F is easy to compute, but |{0,1}n| is too big.

• Quantum Approach: Create a superposition of F(x)
values by calculating F once on a superposition:

• Then, do something quantum smart with this state.

∑∑
∈∈ nn }1,0{x

x
}1,0{x

x)x(F,xα0,xα a

A First Example (1)

• Consider a Boolean function: F:{0,1}→{0,1},
Implemented by the unitary evolution
|x,b〉 # |x,b⊕F(x)〉 for all x,b.

• Question: “F(0)=F(1)”?

• Single Call Quantum Solution: After calculating
F only once in superposition we can answer the
question perfectly.

A First Example (2)

• Single Call Quantum Solution:
1. Apply Hadamard,Hadamard to 0,1 state
2. Apply F to superposition

Thus from |0,1〉 we get:

)10(1)10(0

)10()10(HH

2
1

2
1

2
1

−⊗+−⊗=

−⊗+⊗ a

[])10(1)1(0)1(

)10(1)1()10(0)1(F
)1(F)0(F

2
1

)1(F
2
1)0(F

2
1

−⊗−+−=

−⊗−+−⊗−a

Phase-Flip
 Tric

k

A First Example (3)

• Look at the left bit:

• (|0〉+|1〉)/√2 and (|0〉–|1〉)/√2 are orthogonal states

• Using a Hadamard on the first bit we can reliably
distinguish between these two cases.

)10()10()1(:have weF(1)F(0) If

)10()10()1(:have weF(1)F(0) If
)0(F

2
1

)0(F
2
1

−⊗−−≠

−⊗+−=

A Simple Example (4)

• Summary:
Using two qubits, a few Hadamards, a single
application of the function F:|x,b〉#|x,b⊕F(x)〉
and a final measurement we can determine
if “F(0)=F(1)” or not.

• Classically you would need two evaluations
of F to decide this problem.

• If evaluating F is very expensive, then this might
be a useful speed-up to solve the problem.

• Crucial ingredient: Phase-Flip Trick:

2

10
x)1(

2

10
x:F)x(F −

⊗−
−

⊗ a

Deutsch-Jozsa Algorithm

• Generalization of the previous algorithm.
• Let F:{0,1}n T {0,1} with either:

F is “constant”: F(0…0) = … = F(1…1), or
F is “balanced”: 50% cases F(x)=0 and 50% F(x)=1

• Deutsch-Jozsa Algorithm decides this distinction with
only one quantum-query F:|x,b〉#|x,b⊕F(x)〉.

• First create superposition of x values and apply
Phase-Flip Trick with F(x) values to the appended
qubit state (|0〉–|1〉)/√2 = |–〉, yielding:

−⊗−−⊗ ∑∑
∈∈ nn }1,0{x

)x(F

n
}1,0{x

n
x)1(

2

1
x

2

1
a

Deutsch-Jozsa Algorithm 2

• Depending on whether F is constant or balanced,
the (±1)-phases in the superposition are very different.

• Generalization of previous small example:
apply n Hadamard gates to the n qubits.

• This gives

• If we measure these bits then for the outcomes:
“0…0” proves that F = constant; otherwise, F = balanced.
Classically this requires 2n/2 + 1 queries.

 −

−∑
∈ balanced F if

constant F if

0,...,0 but nythinga

 0,...,0)1(
x)1(

2

1)0(F

}1,0{x

)x(F

n n

a

Central Question

• The crucial question that we try to answer in the
theory of quantum algorithms is:

For which functions F can we determine which
properties much faster than classically?

For which F/properties combinations can we use
this into a quantum algorithm that solves a
relevant problem?

Quantum Query Results for
Function F:{1,…,N} →→→→ {0,1}

• Searching “∃x:F(x)=1” ?

–Grover’s search: Θ(√N) versus classical Ω(N)

• Parity “F(1) + … + F(N) mod2” ?

–Classical: N; Quantum: ½·N

• Interrogation “F(1),…,F(N)” ?

–(probabilistic) quantum: ½N+√N instead of N.

