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Administrivia

Thursday, May 12: Talk by M. Steffen on “Nuclear
Magnetic Resonance” (NMR) quantum computing.

Handout will contain explanation of an efficient
Implementation of the quantum Fourier transform.

Again, Final will be an exam a la last week’s Midterm

Questions?




Recapitulation

* There is no straightforward quantum algorithm to solve
NP-complete problems (©(¥N) bound on searching).

 We have to look at problems that —we think—are not
In P (classically) but not NP-complete either.

e [Shor'94] Quantum computers can efficiently solve
Factoring and Discrete Logarithms. This is done by the
guantum algorithm for period finding (using the
guantum Fourier transform).




— Quantum Fourier Transform

Consider the mod N numbers {0,1,2,...,N-1}.
The “Quantum Fourier Transform over ZN IS

defined for each x[{0,1,...,N-1} by

Ko 2™y

Hence for each superposition over mod N:
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Important fact: The QFT can be efficiently implemented
In circuit size poly(log(N)) for each N.




Periodicity Problem

Consider function F:{0,...,N-1} - S

Assume that: F has period r
F is bijective on its period

F(X) =F(y) ifandonly if x =y modr

Task: determine r (efficiently ~ poly(log N)
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- Periodicity Algorithm

N-1

)

1) Create superposition of F(x) values:|——

x=0

2) Measure the rightmost F-register. This will give N/—1

a random value F(c), and because of the periodicity \/72"” + C
F(c) = F(c+r) = F(c+2r) = ...the left state is now:

3) Apply the Fourier transform over {0,1,...,N-1}, yielding

SSuTa) = FEewm)

4) Measure, the value kN/r can be used to determine r.
(Repeat if necessary).




— Use of Periodicity Finding?

The quantum algorithm for periodicity finding works for
a “black box function” F as long as it has the right
properties (F is periodic, and unique within its period).

You can prove that any classical algorithm requires
©(poly(r)) time steps to solve the same problem.

We want to use this quantum subroutine to solve natural
problems that are defined without reference to a black box
function. That is: we want to look at explicit functions F.

Bad Example: The function F(x) = x MOD r has the right
characteristics, but is easy classically.



A Hard Periodic Function

Take a (large) integer N, and an element x({0,1,...,N-1}
with gcd(N,x)=1 (such that x has an inverse mod N).

The function F: t » xt mod N will be ‘proper periodic’.
As F(0)=1, F(1)=x,...; F(r)=F(0)=1 shows that x=1 mod N.

With the quantum algorithm for period finding, we can
efficiently solve the problem:
“Given N and x, determine r such that x’=1 mod N”.

Classically, this appears to be a hard problem.




Side Comments

e For the quantum algorithm to work, we have to
efficiently implement the function F:t —» xt mod N.

* This can be done by the “repeated squaring trick”:
We can calculate x = x2— x*— x8 mod N.... fast;

hence we can calculate xt mod N in time poly(log t).

« Initially, we do not know the period r of F:N—{0,...,N-1},

so we have to ‘guess’ how many F(0),F(1),F(2),... we
want to evaluate in the superposition.

You can show that F(0),...,F(= N) is sufficient.

(Period finding is a robust algorithm: small mistakes in
the function F do not matter.)




—  Factorizing by Period Finding
How to find a non-trivial factor of an integer N?

o Sketch of the algorithm using Period Finding mod N:
1. Pick random x<N with gcd(x,N)=1
2. Determine smallest r such that:| X" =1modN
3. Ifris even (*), note that

(x% —1)(x% +1) =0 modN

4. Possible that|x’? —1|or|x’ +1\will share
a non-trivial factor with N (use gcd for this) (*).

« (*) All this succeeds with high enough probability.
Repeat if necessary.




- Discrete Log Problem

 Let G be a finite group and take two elements Y and X,
determine the power k such that Xk=Y, or “log,(Y) = ?”

» This takes place in the cyclic group (X) = {1,X,X?,...}.

e Solving the Discrete Log Problem, also solves:

— Diffie-Hellman problem
— ElGamal Encryption (used for example in PGP)

— Elliptic Curve Cryptography




Discrete Log Algorithm (1)

First, determine order (M) of (X)={1,X,...,XM-1},

Next, create ‘double superposition’ and calculate
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“Xk=Y" tells us that this equals
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Observe right register (assume outcome “X¢”)



Discrete Log Algorithm (2)
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Measuring “c” gives SZO‘ > M s:O‘ >

* Apply double QFT to two left registers
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Discrete Log Algorithm (3)

* Discrete Log Problem (X,Y) can be solved by:
— Determine order X (let this be M)
— Create superposition of (s,t) 0 {0,1,...,M-1}?
— Calculate function s,t - Ys:Xt
— Apply two Fouriers over (s,t) 0 {0,1,...,M-1}?

— Read out (s,t) reqgister;
the outcome will be (jk,j) for some random |

— With high probability j is invertible mod M,
If so, use (jk,)) to conclude k = jk/} mod M

— This succeeds with high probability.




—  Elliptic Curve Cryptography

* Elliptic curve cryptography is based 06 .
on the group that you can make of an e¢eee CEFEICOM”™
elliptic curve (over a finite field). ve securing innovatior

The group operation + is defined
In a nontrivial way, but it works.

The problem is: “Given P and Q,
determine k such that k-P=Q.”
Appears to be hard classically,
but can be broken quantumly the
same way logarithms are solved.

(Instead of multiplication mod M, we have addition over the curve.)



