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Administrivia

• Thursday, May 12: Talk by M. Steffen on “Nuclear 
Magnetic Resonance” (NMR) quantum computing.

• Handout will contain explanation of an efficient 
implementation of the quantum Fourier transform.

• Again, Final will be an exam à la last week’s Midterm

• Questions?



Recapitulation

• There is no straightforward quantum algorithm to solve 
NP-complete problems (Θ(√N) bound on searching).

• We have to look at problems that —we think—are not 
in P (classically) but not NP-complete either.

• [Shor’94] Quantum computers can efficiently solve 
Factoring and Discrete Logarithms.  This is done by the 
quantum algorithm for period finding (using the
quantum Fourier transform).



Quantum Fourier Transform
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Consider the mod N numbers {0,1,2,…,N–1}.
The “Quantum Fourier Transform over ZN” is 
defined for each x∈{0,1,…,N–1} by

Hence for each superposition over mod N:

Important fact: The QFT can be efficiently implemented 
in circuit size poly(log(N)) for each N.



Periodicity Problem
Consider function F:{0,…,N–1} → S

rmodyx  ifonly  and if  )y(F)x(F ==

Assume that: F has period r
F is bijective on its period

Task: determine r (efficiently ~ poly(log N)

0……………….…………….N
0……...r…….2r…….3r……4r

F:{0,1}→{                      }



Periodicity Algorithm
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1) Create superposition of F(x) values:

2) Measure the rightmost F-register.  This will give
a random value F(c), and because of the periodicity
F(c) = F(c+r) = F(c+2r) = …the left state is now:

∑
−

=

+
1

0t
N
r

r
N

ctr

3) Apply the Fourier transform over {0,1,…,N–1} , yielding
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4) Measure, the value kN/r can be used to determine r.
(Repeat if necessary).



Use of Periodicity Finding?

The quantum algorithm for periodicity finding works for 
a “black box function” F as long as it has the right 
properties (F is periodic, and unique within its period).

You can prove that any classical algorithm requires 
Θ(poly(r)) time steps to solve the same problem.

We want to use this quantum subroutine to solve natural 
problems that are defined without reference to a black box 
function.  That is: we want to look at explicit functions F.

Bad Example: The function F(x) = x MOD r has the right 
characteristics, but is easy classically.



A Hard Periodic Function

Take a (large) integer N, and an element x∈{0,1,…,N–1}
with gcd(N,x)=1 (such that x has an inverse mod N).

The function F: t # xt mod N will be ‘proper periodic’.

As F(0)=1, F(1)=x,…; F(r)=F(0)=1 shows that xr=1 mod N.

With the quantum algorithm for period finding, we can 
efficiently solve the problem: 
“Given N and x, determine r such that xr=1 mod N”.

Classically, this appears to be a hard problem.



Side Comments

• For the quantum algorithm to work, we have to 
efficiently implement the function F:t # xt mod N.

• This can be done by the “repeated squaring trick”:
We can calculate x # x2 # x4 # x8 mod N…. fast;
hence we can calculate xt mod N in time poly(log t).

• Initially, we do not know the period r of F:NT{0,…,N–1},
so we have to ‘guess’ how many F(0),F(1),F(2),… we 
want to evaluate in the superposition.
You can show that F(0),…,F(≈ N) is sufficient. 
(Period finding is a robust algorithm: small mistakes in 
the function F do not matter.)



Factorizing by Period Finding

• Sketch of the algorithm using Period Finding mod N:
1. Pick random x<N with gcd(x,N)=1
2. Determine smallest r such that:
3. If r is even (*), note that

4. Possible that            or            will share
a non-trivial factor with N (use gcd for this) (*).

• (*) All this succeeds with high enough probability.
Repeat if necessary.
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How to find a non-trivial factor of an integer N?



Discrete Log Problem

• Let G be a finite group and take two elements Y and X, 
determine the power k such that Xk=Y, or “logX(Y) = ?”

• This takes place in the cyclic group 〈X〉 = {1,X,X2,…}. 

• Solving the Discrete Log Problem, also solves:
– Diffie-Hellman problem
– ElGamal Encryption (used for example in PGP)
– Elliptic Curve Cryptography



Discrete Log Algorithm (1)

• First, determine order (M) of 〈X〉={1,X,…,XM–1}.

• Next, create ‘double superposition’ and calculate

• “Xk=Y” tells us that this equals

• Observe right register (assume outcome “Xc”)  
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Discrete Log Algorithm (2)

• Measuring “c” gives

• Apply double QFT to two left registers

• This equals:
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destructive interference for i≠jk mod M



Discrete Log Algorithm (3)

• Discrete Log Problem (X,Y) can be solved by:
– Determine order X (let this be M)

– Create superposition of (s,t) ∈ {0,1,…,M–1}2

– Calculate function s,t → Ys·Xt

– Apply two Fouriers over (s,t) ∈ {0,1,…,M–1}2

– Read out (s,t) register;
the outcome will be (jk,j) for some random j

– With high probability j is invertible mod M,
if so, use (jk,j) to conclude k = jk/j mod M

– This succeeds with high probability.



Elliptic Curve Cryptography

• Elliptic curve cryptography is based 
on the group that you can make of an 
elliptic curve (over a finite field).

The group operation + is defined 
in a nontrivial way, but it works.

The problem is: “Given P and Q,
determine k such that k·P=Q.”
Appears to be hard classically,
but can be broken quantumly the 
same way logarithms are solved.

(Instead of multiplication mod M, we have addition over the curve.)


