CS290A, Spring 2005:

Quantum Information \& Quantum Computation

Wim van Dam
Engineering 1, Room 5109 vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

- Thursday, May 12: Talk by M. Steffen on "Nuclear Magnetic Resonance" (NMR) quantum computing.
- Handout will contain explanation of an efficient implementation of the quantum Fourier transform.
- Again, Final will be an exam à la last week's Midterm
- Questions?

Recapitulation

- There is no straightforward quantum algorithm to solve NP-complete problems $(\Theta(\sqrt{ } \mathrm{N})$ bound on searching $)$.
- We have to look at problems that -we think—are not in P (classically) but not NP-complete either.
- [Shor'94] Quantum computers can efficiently solve Factoring and Discrete Logarithms. This is done by the quantum algorithm for period finding (using the quantum Fourier transform).

Quantum Fourier Transform

Consider the mod N numbers $\{0,1,2, \ldots, \mathrm{~N}-1\}$. The "Quantum Fourier Transform over \mathbb{Z}_{N} " is defined for each $x \in\{0,1, \ldots, N-1\}$ by

$$
|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2 \pi i x y / N}|y\rangle
$$

Hence for each superposition over mod N:

$$
\sum_{x=0}^{N-1} \alpha_{x}|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} \alpha_{x} \cdot e^{2 \pi i \cdot x y / N}|y\rangle
$$

Important fact: The QFT can be efficiently implemented in circuit size poly $(\log (N))$ for each N.

Periodicity Problem

Consider function $\mathrm{F}:\{0, \ldots, \mathrm{~N}-1\} \rightarrow \mathrm{S}$

Assume that: F has period r
F is bijective on its period

$$
F(x)=F(y) \text { if and only if } x=y \text { modr }
$$

Task: determine r (efficiently ~ poly (log N)

Periodicity Algorithm

1) Create superposition of $F(x)$ values: $\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x, F(x)\rangle$
2) Measure the rightmost F -register. This will give a random value $F(c)$, and because of the periodicity $\mathrm{F}(\mathrm{c})=\mathrm{F}(\mathrm{c}+\mathrm{r})=\mathrm{F}(\mathrm{c}+2 \mathrm{r})=\ldots$..the left state is now:

3) Apply the Fourier transform over $\{0,1, \ldots, \mathrm{~N}-1\}$, yielding

$$
\left.\frac{\sqrt{r}}{N} \sum_{\mathrm{j}=0}^{N-1} \zeta_{N}^{\mathrm{jc}}\left(\sum_{\mathrm{t}=0}^{\mathrm{N} /-1} \zeta_{N}^{\mathrm{jr}}\right)|\mathrm{j}\rangle=\frac{1}{\sqrt{\mathrm{r}}} \sum_{\mathrm{k}=0}^{\mathrm{r}-1} \zeta_{N}^{\mathrm{ckN} / \mathrm{T}}|\mathrm{k} \cdot \mathrm{~N} / \mathrm{r}\rangle \right\rvert\,
$$

4) Measure, the value kN / r can be used to determine r . (Repeat if necessary).

Use of Periodicity Finding?

The quantum algorithm for periodicity finding works for a "black box function" F as long as it has the right properties (F is periodic, and unique within its period).

You can prove that any classical algorithm requires $\Theta($ poly(r)) time steps to solve the same problem.

We want to use this quantum subroutine to solve natural problems that are defined without reference to a black box function. That is: we want to look at explicit functions F.

Bad Example: The function $F(x)=x$ MOD r has the right characteristics, but is easy classically.

A Hard Periodic Function

Take a (large) integer N, and an element $x \in\{0,1, \ldots, N-1\}$ with $\operatorname{gcd}(N, x)=1$ (such that x has an inverse $\bmod N$).

The function $F: t \mapsto x^{t} \bmod N$ will be 'proper periodic'.
As $F(0)=1, F(1)=x, \ldots ; F(r)=F(0)=1$ shows that $x^{r}=1 \bmod N$.

With the quantum algorithm for period finding, we can efficiently solve the problem:
"Given N and x, determine r such that $x^{r}=1 \bmod N$ ".

Classically, this appears to be a hard problem.

Side Comments

- For the quantum algorithm to work, we have to efficiently implement the function $F: t \mapsto x^{t} \bmod N$.
- This can be done by the "repeated squaring trick": We can calculate $x \mapsto x^{2} \mapsto x^{4} \mapsto x^{8}$ mod $N . .$. fast; hence we can calculate $x^{t} \bmod N$ in time poly $(\log t)$.
- Initially, we do not know the period r of $F: \mathbb{N} \rightarrow\{0, \ldots, N-1\}$, so we have to 'guess' how many $F(0), F(1), F(2), \ldots$ we want to evaluate in the superposition.
You can show that $F(0), \ldots, F(\approx N)$ is sufficient. (Period finding is a robust algorithm: small mistakes in the function F do not matter.)

Factorizing by Period Finding

How to find a non-trivial factor of an integer \mathbf{N} ?

- Sketch of the algorithm using Period Finding mod N :

1. Pick random $x<N$ with $\operatorname{gcd}(x, N)=1$
2. Determine smallest r such that: $X^{r}=1 \operatorname{modN}$
3. If r is even (*), note that

$$
\left(x^{r / 2}-1\right)\left(x^{r / 2}+1\right)=0 \bmod N
$$

4. Possible that $x^{1 / 2}-1$ or $x^{1 / 2}+1$ will share a non-trivial factor with N (use gcd for this) (*).

- (*) All this succeeds with high enough probability. Repeat if necessary.

Discrete Log Problem

- Let G be a finite group and take two elements Y and X, determine the power k such that $X^{k}=Y$, or " $\log _{x}(Y)=$?"
- This takes place in the cyclic group $\langle X\rangle=\left\{1, X, X^{2}, \ldots\right\}$.
- Solving the Discrete Log Problem, also solves:
- Diffie-Hellman problem
- ElGamal Encryption (used for example in PGP)
- Elliptic Curve Cryptography

Discrete Log Algorithm (1)

- First, determine order (M) of $\langle\mathrm{X}\rangle=\left\{1, \mathrm{X}, \ldots, \mathrm{X}^{\mathrm{M}-1}\right\}$.
- Next, create 'double superposition’ and calculate

$$
\frac{1}{\mathrm{M}} \sum_{\mathrm{s}, \mathrm{t}=0}^{\mathrm{M}-1}|\mathrm{~s}, \mathrm{t}, 0\rangle \quad \mapsto \quad \frac{1}{\mathrm{M}} \sum_{\mathrm{s}, \mathrm{t}=0}^{\mathrm{M}-1}\left|\mathrm{~s}, \mathrm{t}, \mathrm{Y}^{\mathrm{s}} \cdot \mathrm{X}^{\mathrm{t}}\right\rangle
$$

- " $X^{k}=Y$ " tells us that this equals $\frac{1}{M} \sum_{s, t}\left|s, t, X^{k s+t}\right\rangle$
- Observe right register (assume outcome " X "")

Discrete Log Algorithm (2)

- Measuring "c" gives $\frac{1}{M} \sum_{s, t=0}^{M-1}\left|s, t, X^{k s+1}\right\rangle \mapsto \frac{1}{\sqrt{M}} \sum_{s=0}^{M-1}\left|s, c-k s, X^{c}\right\rangle$
- Apply double QFT to two left registers

$$
\mapsto \frac{1}{M} \sum_{s=0}^{M-1} \sum_{i=0}^{M-1} \zeta_{M}^{i s}|i\rangle \otimes \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} \zeta_{M}^{j(c-k s)}|j\rangle
$$

- This equals:

$$
=\frac{\left.\frac{1}{M \sqrt{M}} \sum_{i, j=0}^{M-1} \zeta_{M}^{i c}\left(\sum_{s=0}^{M-1} \zeta_{M}^{s(i-j k)}\right) i, j\right\rangle=\frac{1}{\sqrt{M}} \sum_{j=j}^{M} \zeta_{M}^{j c}|j k, j\rangle}{\text { destructive interference for } \mathrm{i} \neq j \mathrm{jk} \bmod \mathrm{M}}
$$

Discrete Log Algorithm (3)

- Discrete Log Problem (X,Y) can be solved by:
- Determine order X (let this be M)
- Create superposition of $(s, t) \in\{0,1, \ldots, M-1\}^{2}$
- Calculate function $\mathrm{s}, \mathrm{t} \rightarrow \mathrm{Y}^{\mathrm{s} . \mathrm{X}^{\mathrm{t}}}$
- Apply two Fouriers over $(\mathrm{s}, \mathrm{t}) \in\{0,1, \ldots, \mathrm{M}-1\}^{2}$
- Read out (s,t) register; the outcome will be (jk, j) for some random j
- With high probability j is invertible mod M , if so, use (jk, j) to conclude $\mathrm{k}=\mathrm{jk} / \mathrm{j}$ mod M
- This succeeds with high probability.

Elliptic Curve Cryptography

- Elliptic curve cryptography is based on the group that you can make of an elliptic curve (over a finite field).

The group operation + is defined in a nontrivial way, but it works.

The problem is: "Given P and Q , determine k such that $\mathrm{k} \cdot \mathrm{P}=\mathrm{Q}$." Appears to be hard classically, but can be broken quantumly the same way logarithms are solved.
(Instead of multiplication mod M, we have addition over the curve.)

