
CS290A, Spring 2005:

Quantum Information &
Quantum Computation

Wim van Dam
Engineering 1, Room 5109

vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

• Next week talk by Matthias Steffen on “Nuclear
Magnetic Resonance” (NMR) quantum computing.

• Final will be an exam à la last week’s Midterm

• This week: quantum Fourier transform, Shor’s
algorithms for factoring and discrete logarithms,
Grover’s search algorithm.

• Other questions?

Last Week

• Query complexity: Searching a database of size N
can be done with Θ(√N) quantum queries to F.

• This quadratic speed-up is nice, but what we really
want is an exponential speed-up.

• No snake oil; we cannot search blindly a database with
O(log N) queries: there is no straightforward way of
solving NP-complete problems in polynomial time.

• We are able to solve some problems efficiently with a
quantum computer that —as far as we know— require
exponential resources with a classical computer.

Primes vs Composite Numbers

“The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into their
prime factors is known to be one of the most important

and useful in arithmetic. It has engaged the industry
and wisdom of ancient and modern geometers to such

an extent that it would be superfluous to discuss the
problem at length… Further, the dignity of the science

itself seems to require that
every possible means be

explored for the solution of
a problem so elegant and

so celebrated.”
— Carl Friedrich Gauß ,

Disquisitiones Arithmeticæ 1801

Primality Testing

• Let N be an n-bit integer.
Question: Is N prime? (efficient ~ poly(n) operations)

• Efficient primality testing:

• Probabilistic tests of complexity O(n3):
Solovay-Strassen [1977], Miller-Rabin [1976/80]

• The Agarwal-Kayal-Saxena primality test [AKS2002]
is a deterministic algorithm with running time O(n6+ε)

• (Assuming the Riemann hypothesis, the Miller-Rabin
algorithm is deterministic as well.)

Factoring Integers

• Let N be an n-bit integer.
Question: What are the prime factors of N?

• Relevant for breaking RSA cryptography

• Best known classical algorithm:
“Number Field Sieve” [Pollard 1988]
Time complexity:

• [NFSNET.ORG, September 2004]:
Factorization of a 173 digit number.

))1(O)Nlog(log)Nlog(exp(3 23 ⋅⋅

Shor’s Factoring Algorithm

[Peter Shor, 1994]:
There exists a quantum algorithm that finds the prime
factors of an integer N in time O((log N)3)

[Chuang et al, 2001]
Experimental implementation for N=15.

To understand Shor’s algorithm we have to look at:
- Quantum Fourier Transform
- Classical Number Theory

Quantum Fourier Transform

∑−

=

⋅
1N

0y

N/xyiπ2 ye
N

1
x a

∑∑∑ −

=

−

=

⋅
−

=

⋅
1N

0y

1N

0x

N/xyiπ2
x

1N

0x
x yeα

N

1
xα a

Consider the mod N numbers {0,1,2,…,N–1}.
The “Quantum Fourier Transform over �N” is
defined for each x∈{0,1,…,N–1} by

Hence for each superposition over mod N:

Important fact: The QFT can be efficiently implemented
in circuit size poly(log(N)) for each N.

Some Small Fourier Transforms

• For N=2,3,4 we have the following transformations:

)H(
11

11

2

1
Four2 =




−
=

3/iπ2

2

2
3 eω with

ωω1

ωω1

111

3

1
Four =













=

















−−
−−
−−

=

i1i1

1111

i1i1

1111

2
1

Four4 Note unita
rit

y

Properties of Four N

∑−

=

⋅
1N

0y

N/xyiπ2
N ye

N

1
x:Four aThe definition:

N/xyiπ2
N e

N

1
xFoury ⋅=Hence:

∑−

=

⋅=
1N

0y,x

N/xyiπ2
N xye

N

1
Fourand:

∑−

=

⋅−−
1N

0z

N/yziπ21 ze
N

1
y:Four

N
aThe inverse:

Know your phase summations…

Example

• What happens if you apply FourN twice to |0〉?

ze
N
1

ze
N

1

N

1

y
N

1
0

1N

0z

1N

0y

N/iyzπ2

1N

0y

1N

0z

N/iyzπ2

1N

0y

∑ ∑

∑ ∑
∑

−

=

−

=

−

=

−

=

−

=

=

aa
The (summation) is 0 if z≠0 and N if z=0.
Hence the outcome state is |0〉.

Question: What happens if we apply FourN twice
to a basis state |x〉 with 0<x<N?

More About Fourier

• Traditionally, Fourier transforms are used to detect
periodic signals (depending on their frequencies).

• In quantum computing we will use the QFT to
determine the periodicity of a function F.

• Already interesting by itself, this periodicity finding
subroutine can be used to factorize numbers and
calculate discrete logarithms over ZN.

• See later Handouts for more technical details and a
description of efficient circuits to implement FourN.

Periodicity Problem
Consider function F:{0,…,N–1} → S

rmodyx ifonly and if)y(F)x(F ==

Assume that: F has period r
F is bijective on its period

Task: determine r (efficiently ~ poly(log N)

Note: This is the kind of global property
that quantum computing is useful for.

Periodicity Algorithm (1)

∑−

=

1N

0x

0,x
N

1

Start with a uniform superposition of x values:

∑ ∑∑ −

=

−

=

−

=

⊗





+≈
1r

0y

1

0t

1N

0x

)y(Fytr
N

1
)x(F,x

N

1 r
N

Calculate the periodic function F for these values:

“Measure” the rightmost register; assume outcome “F(c)”
with 0≤c<r [Cf. Handout 3.]…

Periodicity Algorithm (2)
… this yields the superposition for the left register:

∑
−

=

+
1

0t
N
r

r
N

ctr

Apply the Fourier transform over ZN, giving:

() ∑ ∑∑∑ −

=

−

=

−

=

−

=

+ 





=
1N

0j

1

0t

jtr
N

jc
N

1

0t

1N

0j

ctrj
N jζζ

N
r

jζ
N
r r

N
r

N

If j multiple of N/r, then
constructive interference

If j not a multiple of N/r, then
destructive interference

Periodicity Algorithm (3)
Calculating the j-dependent interference:

N of multiple a is jr if
r
Nζ

1

0t

jtr
N

r
N

≈∑
−

=

N of multiple a not is jr if0
1ζ
1ζζ jr

N

jN
N

1

0t

jtr
N

r
N

=
−
−≈∑

−

=

∑∑ ∑ −

=

−

=

−

=

⋅≈



 1r

0k
r

Nck
N

1N

0j

1

0t

jtr
N

jc
N kζ

r

1
jζζ

N
r

r
N

r
N

Hence we have the output state:

Periodicity Algorithm (4)

With very high probability we will measure a multiple
of N/r, where r is the period of the function.

By repeating the procedure several times, we obtain
enough information to determine N/r and hence r.
(This is not entirely trivial and requires the usage of
the “continued fractions method”, but it can be done.)

Being able to find the (hidden) period of a function
allows us to solve factoring, discrete logarithms and
other (presumed) hard problems.

