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Administrivia

• Next week talk by Matthias Steffen on “Nuclear 
Magnetic Resonance” (NMR) quantum computing.

• Final will be an exam à la last week’s Midterm

• This week: quantum Fourier transform, Shor’s
algorithms for factoring and discrete logarithms, 
Grover’s search algorithm.

• Other questions?



Last Week

• Query complexity: Searching a database of size N 
can be done with Θ(√N) quantum queries to F.

• This quadratic speed-up is nice, but what we really 
want is an exponential speed-up.

• No snake oil; we cannot search blindly a database with 
O(log N) queries: there is no straightforward way of 
solving NP-complete problems in polynomial time.

• We are able to solve some problems efficiently with a 
quantum computer that —as far as we know— require 
exponential resources with a classical computer.



Primes vs Composite Numbers

“The problem of distinguishing prime numbers from 
composite numbers and of resolving the latter into their 
prime factors is known to be one of the most important 

and useful in arithmetic. It has engaged the industry 
and wisdom of ancient and modern geometers to such 

an extent that it would be superfluous to discuss the 
problem at length… Further, the dignity of the science 

itself seems to require that 
every possible means be 

explored for the solution of 
a problem so elegant and 

so celebrated.”
— Carl Friedrich Gauß , 

Disquisitiones Arithmeticæ 1801



Primality Testing

• Let N be an n-bit integer.
Question: Is N prime? (efficient ~ poly(n) operations)

• Efficient primality testing:

• Probabilistic tests of complexity O(n3):
Solovay-Strassen [1977], Miller-Rabin [1976/80]

• The Agarwal-Kayal-Saxena primality test [AKS2002] 
is a deterministic algorithm with running time O(n6+ε)

• (Assuming the Riemann hypothesis, the Miller-Rabin 
algorithm is deterministic as well.)



Factoring Integers

• Let N be an n-bit integer.
Question: What are the prime factors of N? 

• Relevant for breaking RSA cryptography

• Best known classical algorithm:
“Number Field Sieve” [Pollard 1988]
Time complexity:

• [NFSNET.ORG, September 2004]:
Factorization of a 173 digit number.

))1(O)Nlog(log)Nlog(exp( 3 23 ⋅⋅



Shor’s Factoring Algorithm

[Peter Shor, 1994]: 
There exists a quantum algorithm that finds the prime 
factors of an integer N in time O((log N)3)

[Chuang et al, 2001]
Experimental implementation for N=15.

To understand Shor’s algorithm we have to look at:
- Quantum Fourier Transform
- Classical Number Theory



Quantum Fourier Transform
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Consider the mod N numbers {0,1,2,…,N–1}.
The “Quantum Fourier Transform over �N” is 
defined for each x∈{0,1,…,N–1} by

Hence for each superposition over mod N:

Important fact: The QFT can be efficiently implemented 
in circuit size poly(log(N)) for each N.



Some Small Fourier Transforms

• For N=2,3,4 we have the following transformations:
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Properties of Four N
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Know your phase summations…



Example

• What happens if you apply FourN twice to |0〉?
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The (summation) is 0 if z≠0 and N if z=0.
Hence the outcome state is |0〉.

Question: What happens if we apply FourN twice 
to a basis state |x〉 with 0<x<N?



More About Fourier

• Traditionally, Fourier transforms are used to detect 
periodic signals (depending on their frequencies).

• In quantum computing we will use the QFT to 
determine the periodicity of a function F.

• Already interesting by itself, this periodicity finding 
subroutine can be used to factorize numbers and 
calculate discrete logarithms over ZN.

• See later Handouts for more technical details and a 
description of efficient circuits to implement FourN.



Periodicity Problem
Consider function F:{0,…,N–1} → S

rmodyx  ifonly  and if  )y(F)x(F ==

Assume that: F has period r
F is bijective on its period

Task: determine r (efficiently ~ poly(log N)

Note: This is the kind of global property 
that quantum computing is useful for.



Periodicity Algorithm (1)
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Calculate the periodic function F for these values:

“Measure” the rightmost register; assume outcome “F(c)”
with 0≤c<r [Cf. Handout 3.]…



Periodicity Algorithm (2)
… this yields the superposition for the left register:
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Apply the Fourier transform over ZN, giving:
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If j multiple of N/r, then
constructive interference

If j not a multiple of N/r, then
destructive interference



Periodicity Algorithm (3)
Calculating the j-dependent interference:
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Hence we have the output state:



Periodicity Algorithm (4)

With very high probability we will measure a multiple
of N/r, where r is the period of the function.

By repeating the procedure several times, we obtain
enough information to determine N/r and hence r.
(This is not entirely trivial and requires the usage of 
the “continued fractions method”, but it can be done.)

Being able to find the (hidden) period of a function
allows us to solve factoring, discrete logarithms and
other (presumed) hard problems.


