CS290A, Spring 2005:

Quantum Information \& Quantum Computation

Wim van Dam
Engineering 1, Room 5109 vandam@cs

http://www.cs.ucsb.edu/~vandam/teaching/CS290/

Administrivia

- This Thursday: Talk by M. Steffen on "Nuclear Magnetic Resonance" (NMR) quantum computing.
- Handout on Fourier transform and new Exercises are posted on web site.
- Comprehensive exams will be closed book.
- Questions?

Last Week

- We can use the quantum Fourier transformation to find the unknown period of a proper periodic function F.
- By using functions like $F=x^{t}$ mod N, we can factorize N and calculate the discrete logarithm mod N .
- Some nontrivial number theory was involved, as well as some (hand waving) arguments that an approximation of the function F (where the period does not divide the size of the domain) works as well.

Quantum Fourier Transform

Consider the mod N numbers $\{0,1,2, \ldots, N-1\}$. The "Quantum Fourier Transform over \mathbb{Z}_{N} " is defined for each $x \in\{0,1, \ldots, N-1\}$ by

$$
|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{\mathrm{y}=0}^{\mathrm{N}-1} \mathrm{e}^{2 \pi \mathrm{ixy} / \mathrm{N}}|\mathrm{y}\rangle
$$

Hence for each superposition over mod N:

$$
\sum_{x=0}^{N-1} \alpha_{x}|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} \alpha_{x} \cdot e^{2 \pi i \cdot x y / N}|y\rangle
$$

Important fact: The QFT can be efficiently implemented in circuit size poly $(\log (N))$ for each N.

Quantum Searching

Consider function $\mathrm{F}:\{0, \ldots, \mathrm{~N}-1\} \rightarrow\{0,1\}$, where for one $0 \leq t<N$ we have $F(t)=1$.
Task: Find t with a minimum of F queries. Solution: Lov Grover's quantum search algorithm requires only $\mathrm{O}(\sqrt{ } \mathrm{N})$ queries (and is optimal).
This algorithm consists of a repeated sequence of Fourier transforms over \mathbb{Z}_{N}, phase flip operations

$$
U_{F}:|j\rangle \mapsto(-1)^{F(j)}|j\rangle
$$

and

$$
\mathrm{U}_{0}:|\mathrm{j}\rangle \mapsto\left\{\begin{array}{lc}
|0\rangle & \text { if } \mathrm{j}=0 \\
-|\mathrm{j}\rangle & \text { otherwise }
\end{array}\right.
$$

Grover Iteration

- The 'Grover Iteration' is defined by

$$
G_{F}=\text { Four }_{N} \cdot U_{0} \cdot \text { Four }_{N} \cdot U_{F}
$$

Note that U_{F} be implemented with one call to the blackbox function F in combination with the phase-flip trick:

Instead of the Fourier transformation over \mathbb{Z}_{N}, we can also use other 'mixing operations'. For example, if $\mathrm{N}=2^{\mathrm{n}}$ then $\mathrm{H} \otimes \ldots \otimes \mathrm{H}$ works as well.

The Grover iteration 'amplifies' the amplitude of the correct state $|t\rangle$ with $F(t)=1$, at the expense of the others.

Grover's Algorithm

Given a black box function $\mathrm{F}:\{0, \ldots, \mathrm{~N}-1\} \rightarrow\{0,1\}$.

1. Create the uniform superposition (using Four ${ }_{N}$):

$$
\left|\Psi_{0}\right\rangle=\frac{1}{\sqrt{N}} \sum_{\mathrm{j}=0}^{\mathrm{N}-1}|\mathrm{j}\rangle
$$

2. Apply the Grover iteration T times to $|\psi\rangle$.
3. Measure the register for answer t '.
4. (Check that t^{\prime} indeed gives $\mathrm{F}\left(\mathrm{t}^{\prime}\right)=1$.)

Analyzing Grover's Algorithm

A proper analysis of the previous algorithm shows that after the k-th iteration, the amplitude of the target state " t " is: $\left\langle\mathrm{t} \mid \Psi_{\mathrm{k}}\right\rangle=\sin (\theta(2 \mathrm{k}+1) / 2)$ with $\sin (\theta)=2 \sqrt{ }(\mathrm{~N}-1) / \mathrm{N}$.
For large enough N, this gives $\theta \approx 2 / \sqrt{N}$, such that $\left\langle t \mid \Psi_{k}\right\rangle \approx \sin ((2 k+1) / \sqrt{ } N)$, which shows that $k \approx 1 / 4 \pi \sqrt{ } N$ works.
[Nielsen\&Chuang "QC\&Ql", Sections 6-6.1.4] gives a more detailed analysis that also shows that with M solutions (instead of 1), you only need $\approx 1 / 4 \pi \sqrt{ }(N / M)$ queries to the black box function. (If $N / M=4$, then only one call is required.)

