Clustering at Large Scales

Veronika Strnadová
CSC Lab
What is clustering?

Finding groups of highly similar objects in unlabeled datasets

or:

Finding groups of highly connected vertices in a graph
Applications

• Image Segmentation
 • *Normalized Cuts and Image Segmentation.*
 Jianbo Shi and Jitendra Malik, 2001

• Load Balancing in Parallel Computing
 • *Multilevel k-way Partitioning Scheme for Irregular Graphs.*
 George Karypis and Vipin Kumar. 1998

• Genetic Mapping
 • *Computational approaches and software tools for genetic linkage map estimation in plants.*
 Jitendra Cheema and Jo Dicks. 2009

• Community Detection
 • *Modularity and community structure in networks.*
 Mark E.J. Newman. 2006
Clustering in Genetic Mapping

“The problem of genetic mapping can essentially be divided into three parts: grouping, ordering, and spacing”

Computational approaches and software tools for genetic linkage map estimation in plants. Cheema 2009
Challenges in the large scale setting

Big Data: Many popular clustering algorithms are inherently difficult to parallelize, and inefficient at large scales
Challenges in the large scale setting

Big Data: Many popular clustering algorithms are inherently difficult to parallelize, and inefficient at large scales

“The computational issue becomes critical when the application involves large-scale data” Jain, *Data Clustering: 50 Years Beyond k-means*
Challenges in the large scale setting

Big Data: Many popular clustering algorithms are inherently difficult to parallelize, and inefficient at large scales

“The computational issue becomes critical when the application involves large-scale data” Jain, *Data Clustering: 50 Years Beyond k-means*

“There is no clustering algorithm that can be universally used to solve all problems” Xu & Wunsch, *A Comprehensive Overview of Basic Clustering Algorithms*
Popular Clustering Techniques

• *k*-means
 • K-means/K-medians/K-medoids
 • Better, bigger k-means

• Spectral
 • Optimizing *N*Cut
 • PIC

• Hierarchical
 • Single Linkage
 • BIRCH
 • CURE

• Density-based
 • DBSCAN
 • II DBSCAN

• Multilevel
 • Metis
 • ParMetis
 • Multithreaded Metis

• Modularity
 • Community Detection
\(k \)-means

- “...simpler methods such as \(k \)-means remain the preferred choice of
k-means

• “...simpler methods such as k-means remain the preferred choice of in many large-scale applications.” Kulis and Jordan, *Revisiting k-means: New Algorithms via Bayesian Nonparametrics*. 2012

• “The k-means algorithm is very simple and can be easily implemented in solving many practical problems.” Xu and Wunsch, *Survey of Clustering Algorithms*. 2005
k-means

• “...simpler methods such as k-means remain the preferred choice of in many large-scale applications.” Kulis and Jordan, Revisiting k-means: New Algorithms via Bayesian Nonparametrics. 2012

• “The k-means algorithm is very simple and can be easily implemented in solving many practical problems.” Xu and Wunsch, Survey of Clustering Algorithms. 2005

• “In spite of the fact that k-means was proposed over 50 years ago and thousands of clustering algorithms have been published since then, k-means is still widely used.” Jain, Data Clustering: 50 Years Beyond k-means.
Given: $x_1, x_2, ..., x_n \in \mathbb{R}^d, k$

Objective: minimize $\sum_{j=1}^{k} \sum_{i=1}^{n} r_{ij} ||x_i - \mu_j||_2^2$ where r_{ij} is an indicator function

Initialize $\mu_1, \mu_2, ..., \mu_k$

Repeat:

1. Find optimal assignments of x_i to μ_j
2. Re-evaluate μ_j given assignments x_i

Until $\sum_{j=1}^{k} \sum_{i=1}^{n} r_{ij} ||x_i - \mu_j||_2^2$ converges to a local minimum

Example: $k = 2$
Convergence of k means

Let $J = \sum_{j=1}^{k} \sum_{i=1}^{n} r_{ij} ||x_i - \mu_j||_2^2$

- Minimize J with respect to r: (discrete optimization)
 - Simply assigning each x_i to its closest μ ensures that $||x_i - \mu_j||$ is minimized for each x_i, so let:
 - $r_{ij} = \begin{cases} 1, & \text{if } j = \text{argmin}_{1,...,k} ||x_i - \mu_j||_2^2 \\ 0, & \text{otherwise} \end{cases}$

- Minimize J with respect to μ: (set derivative of J wrt μ_j to 0)
 - $-2 \sum_{i=1}^{n} r_{nj} (x_i - \mu_j) = 0 \rightarrow \mu_j = \frac{1}{n_j} \sum_{i=1}^{n} r_{nj} x_i$
Distributed K-Means

Given: \(x_1, x_2, \ldots, x_n \in \mathbb{R}^d, k \)

Objective: minimize \(\sum_{j=1}^{k} \sum_{i=1}^{n} r_{ij} ||x_i - \mu_j||^2 \) where \(r_{ij} \) is an indicator function

Initialize \(\mu_1, \mu_2, \ldots, \mu_k \) and keep as a global variable

Repeat:

1. Map: Find optimal assignments of \(x_i \) to \(\mu_j \)
 (map: outputs key=j, value = \(x_i \))
2. Reduce: Re-evaluate \(\mu_j \) given assignments of \(x_i \)
 (combine: partial sums of \(x_i \) with same key)
 (reduce: takes j (key) and list of values \(x_i \), computes a new \(\mu_j \))

Until \(\sum_{j=1}^{k} \sum_{i=1}^{n} r_{ij} ||x_i - \mu_j||^2 \) converges to a local minimum

Parallel k-Means Using MapReduce. Zhao 2009
Divide-and-conquer k-Medians

Divide x_i into l groups χ_1, \ldots, χ_l
For each i, find $O(k)$ centers
Assign each x_i to its closest center
Weigh each center by the number of points assigned to it
Let χ' be the set of weighted centers
Cluster χ' to find exactly k centers

Clustering Data Streams: Theory and Practice by Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani. 2001
Disadvantages of k-means

• Assumes clusters are spherical in shape

• Assumes clusters are of approximately equal size

• Assumes we know k ahead of time

• Sensitivity to Outliers

• Converges to a local optimum of the objective
Disadvantages of k-means

• Assumes clusters are spherical in shape

• Assumes clusters are of approximately equal size

• Assumes we know k ahead of time

• Sensitivity to Outliers

• Converges to a *local* optimum of the objective
Disadvantages of k-means

• Assumes clusters are spherical in shape

• Assumes clusters are of approximately equal size

• Assumes we know k ahead of time

• Sensitivity to Outliers

• Converges to a *local* optimum of the objective
Disadvantages of k-means

• Assumes clusters are spherical in shape

• Assumes clusters are of approximately equal size

• Assumes we know k ahead of time

• Sensitivity to Outliers

• Converges to a *local* optimum of the objective
Addressing the k problem

• Assuming we know k ahead of time:
A parametric, probabilistic view of k-means

Assume that the points x_i were generated from a mixture of k (multivariate) Gaussian distributions:

$$N(x | \mu, \Sigma) = \frac{1}{2\pi^{D/2}} \frac{1}{\sqrt{\det{\Sigma}}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

$$p(x) = \sum_{k=1}^{K} \pi_k N(x | \mu_k, \Sigma) \quad \text{where} \quad \sum_{k=1}^{K} \pi_k = 1$$

Pattern Recognition and Machine Learning. Christopher M. Bishop. 2006
What is the *most likely* set of parameters $\theta = \{\{\pi_k\}, \{\mu_k\}\}$ that generated the points x_i?

We want to maximize the likelihood $p(x|\theta)$

\Rightarrow Solve by *Expectation Maximization*

Xu and Wunsch, *Survey of Clustering Algorithms*
DP-Means

• A probabilistic, nonparametric view of k-means:

• Assumes a “countably infinite” mixture of Gaussians, attempt to estimate the parameters of these Gaussians and the way they are combined

• Leads to an intuitive, k-means-like algorithm

DP-Means

Given: $x_1, \ldots, x_n, \lambda$

Goal: minimize $\sum_{j=1}^{k} \sum_i r_{ij} \|x_i - \mu_j\| + \lambda k$

Algorithm:

Initialize $k = 1$, $\mu = \text{global mean}$

Initialize $r_{ij} = 1$ for all $i = 1 \ldots n$

Repeat:

• For each x_i:
 • compute $d_{ij} = \|x_i - \mu_j\|_2^2, j = 1 \ldots k$
 • If $\min_j d_{ij} > \lambda$, start a new cluster: set $k = k + 1$;
 • Otherwise, set $r_{ij} = \arg\min_j d_{ij}$

• Generate clusters c_1, \ldots, c_k based on r_{ij}

• For each cluster compute μ_j

Optimizing a different Global Objective: Spectral Clustering and Graph Cuts
Spectral Clustering

Key idea: use the eigenvectors of a graph Laplacian matrix \(L(G) \) to cluster a graph

\[
L(G) = D - W = \begin{pmatrix}
3 & -1 & -1 & -1 & 0 \\
-1 & 2 & 0 & -1 & 0 \\
-1 & 0 & 3 & -1 & -1 \\
-1 & -1 & -1 & 4 & -1 \\
0 & 0 & -1 & -1 & 2
\end{pmatrix}
\]

Normalized Cuts and Image Segmentation. Jianbo Shi and Jitendra Malik. 2001

A Tutorial on Spectral Clustering. Ulrike von Luxburg. 2007
Spectral Clustering Algorithm

Given: data points x_i and a similarity function $s(x_i, x_i)$ between them, k

1. Construct (normalized) graph Laplacian $L(G(V, E)) = D - W$
2. Find the k eigenvectors corresponding to the k smallest eigenvalues of L
3. Let U be the $n \times k$ matrix of eigenvectors
4. Use k-means to find k clusters C' letting x'_i be the rows of U
5. Assign data point x_i to the jth cluster if x'_i was assigned to cluster j

A Tutorial on Spectral Clustering. Ulrike von Luxburg. 2007
Spectral Clustering Algorithm

Given: data points x_i and a similarity function $s(x_i, x_i)$ between them, k

Objective: minimize the ratio cut (or normalized cut)

1. Construct (normalized) graph Laplacian $L(G(V, E)) = D - W$
2. Find the k eigenvectors corresponding to the k smallest eigenvalues of L
3. Let U be the $n \times k$ matrix of eigenvectors
4. Use k-means to find k clusters C' letting x'_i be the rows of U
5. Assign data point x_i to the jth cluster if x'_i was assigned to cluster j

A Tutorial on Spectral Clustering. Ulrike von Luxburg. 2007
Graph Cuts

A graph cut of $G(V, E)$ is the sum of the weights on a set of edges $S_E \subseteq E$ which cross partitions A_i of the graph

$$W(A_i, \overline{A_i}) = \sum_{x_i \in A_i, x_j \in \overline{A_i}} w_{ij}$$

$$cut(A_1, \ldots, A_k) = \frac{1}{2} \sum_{i=1,\ldots,k} W(A_i, \overline{A_i})$$

Examples:

$cut(A_1, A_2) = 7$

$cut(A_1, A_2) = 2$
Normalized Cuts

\[\text{cut}(A_1, A_2) = 2 \]

\[\text{Ratiocut}(A_1, A_2, \ldots, A_k) = \sum_{i=1,\ldots,k} \frac{\text{cut}(A_i, \overline{A_i})}{|A_i|} \]

\[\text{Ncut}(A_1, A_2, \ldots, A_k) = \sum_{i=1,\ldots,k} \frac{\text{cut}(A_i, \overline{A_i})}{\text{vol}(A_i)} \]

\[\text{Ratiocut}(A_1, A_2) = 0.226 \]

\[\text{Ncut}(A_1, A_2) = 0.063 \]
Relationship between Eigenvectors and Graph Cuts

For some subset of vertices A, let:

$$f^T = (f_1, ..., f_n) \in R^n,$$

such that:

$$f_i = \begin{cases} \sqrt{|\overline{A}|/|A|} & \text{if } v_i \in A \\ -\sqrt{|A|/|\overline{A}|} & \text{if } v_i \in \overline{A} \end{cases}$$

Then:

$$f^T L f = |V| \cdot RatioCut(A, \overline{A}), \quad f \perp 1 = 0, \quad \|f\| = \sqrt{n}$$

Therefore, minimizing RatioCut is equivalent to minimizing $f^T L f$, subject to:

$$f \perp 1 = 0, \quad \|f\| = \sqrt{n}, \text{ and } f_i \text{ as defined above}$$

A Tutorial on Spectral Clustering. Ulrike von Luxburg. 2007
Discrete Optimization:
\[
\min_{f \in \mathbb{R}^n} f^T L f \quad \text{subject to } f \perp 1, \|f\| = \sqrt{n}, \text{ and } f_i \text{ as defined previously}
\]

Relaxed Optimization:
\[
\min_{f \in \mathbb{R}^n} f^T L f \quad \text{subject to } f \perp 1, \|f\| = \sqrt{n}
\]

Since \(1\) is the first eigenvector of \(L\), the solution to this is given by the Rayleigh-Ritz theorem, and we have that the optimal solution to the relaxed optimization problem is the second eigenvector of \(L\)

But this solution is real-valued, so we need to transform the values of \(f\) back into discrete values

A Tutorial on Spectral Clustering. Ulrike von Luxburg. 2007
Spectral Clustering: key ideas

• The k real eigenvectors of the (normalized) graph Laplacian are the optimal solutions to a relaxed version of the ratio (or normalized) cut problem

• An approximate solution is found by mapping the values of the indices in the k real eigenvectors back to the discrete set $(1, \ldots, k)$

• Advantage: works well in practice

• Disadvantages:
 • computationally expensive (need to solve for eigenvectors)
 • approximate solution is not guaranteed to be close to the true solution
Power Iteration Clustering (PIC)

• Large-scale extension to spectral clustering
• Key idea: Use power iteration on \(I - D^{-1}L = D^{-1}W \) until convergence to a linear combination of the \(k \) smallest eigenvectors

\[
\text{Applicable to large-scale text-document classification, works well for small values of } k
\]

\[
\text{If } FF^T = W \text{ then } (D^{-1}W)v = D^{-1}FF^Tv
\]

Power Iteration Clustering. Lin and Cohen. 2010,
A Very Fast Method for Clustering Big Text Datasets. Lin and Cohen. 2010
Addressing the shape problem

Assuming clusters are spherical in shape
Hierarchical Clustering

- Produces a hierarchy of clusterings
 - Agglomerative or Divisive

Density-based Clustering

- key idea: clusters are sets of data points in regions of high density
Hierarchical Clustering

- Single Linkage
 [Sibson72], [Gower69]
Density-Based Clustering
DBSCAN – Algorithm

Given: x_i in dataset \mathcal{X}, \mathcal{E}, MinPts

For each x_i in dataset \mathcal{X} do:

If x_i is note yet assigned to a cluster then:

Build a cluster around x_i using \mathcal{E} and MinPts

Building clusters:

All points that are *density-reachable* from x_i are added to the cluster containing x_i

A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Ester et al. KDD96
Example of density reachability:

Suppose \(\text{MinPts} = 4 \)
Parallel DBSCAN

• DBSCAN using the disjoint set data structure:
 • Initially each point is its own “disjoint set”
 • For each point not yet assigned to a cluster, merge its disjoint set with the disjoint sets of all clusters in its ε-neighborhood

• In Parallel:
 • Merge all local disjoint sets that satisfy density reachability, keeping a list of nonlocal vertices that should be merged with local vertices
 • Then, merge in parallel across threads using a union-lock (shared memory)

BIRCH Algorithm

• Goal: cluster large datasets efficiently and handle outliers
• Dynamically build a tree in which leaf nodes are clusters with all points within distance t, and all non-leaf nodes are unions of their child nodes
• Then, cluster the leaf nodes using an agglomerative clustering algorithm
BIRCH Algorithm

• Dynamically build a tree in which leaf nodes are clusters with all points within distance \(t \), and all non-leaf nodes are unions of their child nodes
• Then, cluster the leaf nodes using an agglomerative clustering algorithm
BIRCH Algorithm

• Dynamically build a tree in which leaf nodes are clusters with all points within distance t, and all non-leaf nodes are unions of their child nodes.
• Then, cluster the leaf nodes using an agglomerative clustering algorithm.
BIRCH Algorithm

• Dynamically build a tree in which leaf nodes are clusters with all points within distance t, and all non-leaf nodes are unions of their child nodes
• Then, cluster the leaf nodes using an agglomerative clustering algorithm
BIRCH Algorithm

- Dynamically build a tree in which leaf nodes are clusters with all points within distance t, and all non-leaf nodes are unions of their child nodes.
- Then, cluster the leaf nodes using an agglomerative clustering algorithm.
BIRCH

• Key idea: store important cluster information in *cluster feature vectors* CF_i for each cluster i

$$CF_i = (N_i, LS_i, SS_i)$$

- $N_i =$ number of points in cluster i,
- $LS_i = \sum_{i=1}^{N} x_i$, $SS_i = \sum_{i=1}^{N} x_i^2$
The CF-tree

\[CF_1 = CF_1 + CF_2 + CF_3 + CF_4 \]

\[CF_2 = CF_1 + CF_2 + CF_3 + CF_4 \]

Leaf Nodes: \([CF_1], [CF_2], ..., [CF_L]\)
CURE

• Attempts to address the inability of k-means to find clusters of arbitrary shape and size and the computational complexity of hierarchical algorithms

• Key idea: store a “well-scattered” set of points to capture the size and shape of the cluster

Cure: An Efficient Clustering Algorithm for Large Databases. Sudipto Guha, Rajeev Rastogi and Kyusek Shim. 2001
CURE Algorithm

• Input: k, the number of clusters
• Draw a random sample of the points
• Each point is its own cluster initially
• Each cluster stores a point of representative points and a mean
• Build a kd-tree of all clusters
• Use the tree to build a heap that stores u.closest for each cluster u
• While size(heap) > k:
 • Merge together the two closest clusters in the heap
 • Update the representative points in each cluster
 • Update the tree and the heap
• Merging step:
 • New mean is a mean of the means of the clusters being merged
 • Select c well-scattered points based on their distance from the new mean
 • Shrink each representative point closer to the mean
CURE Algorithm: Initial Data
CURE Algorithm: Random Sample
CURE Algorithm: Nearest neighbors
Cure Algorithm: Nearest neighbor heap
CURE: merge
Advantages & Disadvantages of CURE

Advantages:
- Finds arbitrarily shaped clusters
- Sample size relative to the dataset size is relatively small if clusters are well-separated
- Reduces sensitivity to outliers due to the shrinkage of representative points

Disadvantages:
- $O(n^2 \log_2 n)$
- “a middle ground between centroid-based and all-point extremes”
Highly Application-Specific Clustering Methods

• Multilevel Schemes for load balancing

• Modularity Clustering for community detection
Multilevel k-way partitioning for load balancing

- Goal: Partition a graph into k clusters of approximately equal size
- Key Idea: First, condense the graph into a smaller graph, partition/cluster the condensed graph, then expand the small graph back out and refine it

Multilevel partitioning example
Multilevel partitioning example

find a maximal matching
Multilevel partitioning example

find a maximal matching

coarsen
Multilevel partitioning example

find a maximal matching

partition

coarsen
Multilevel partitioning example

find a maximal matching

refine and expand

partition

coarsen
Distributed Multilevel Partitioning

• Coarsening Stage:
 • first, compute a graph coloring using Luby’s algorithm
 • next, for all vertices of the same color in parallel:
 • all vertices with the same color select a match using the heavy edge heuristic
 • after all vertices select a neighbor, synchronize
 • Coarsening ends when there are $O(p)$ vertices

• Partitioning Stage:
 • Recursive bisection, based on nested dissection and greedy partitioning

• Refinement Stage:
 • greedy refinement is used on all vertices of the same color in parallel, based on the gain of each vertex

Parallel Multilevel k-Way Partitioning Scheme for Irregular Graphs. George Karypis and Vipin Kumar. 1999
Multi-Threaded Multilevel Partitioning

• Each thread owns a subset of vertices
• Coarsening Stage
 • “unprotected matching”: let M be a shared vector of “matchings”
 • Each thread populates M as it finds a match for its local vertex, writes are done unprotected
 • After all threads finish, each thread corrects the piece of M corresponding to its slice of vertices
• Partitioning Stage
 • “parallel k-sectioning”: each thread computes a k-partitioning and the one with best edge cut is selected
• Refinement Stage
 • “coarse-grained refinement”: each thread keeps a local queue of vertices sorted by gain values
 • After each thread has moved a fixed number of vertices from the priority queue, all threads communicate and moves are undone until the potential partition weights would result in a balanced partitioning

Multi-Threaded Graph Partitioning. Dominique LaSalle and George Karypis. 2013
Modularity Clustering

- Key idea: find groups of vertices in a graph that have more edges than expected
Modularity

• The expected number of edges between vertices v_i and v_j with degrees d_i and d_j is:
 \[
 \frac{d_i d_j}{2m} \text{ where } m = \frac{1}{2} \sum_i d_i
 \]

• Suppose we have divided the network into clusters C_1, \ldots, C_l

• The modularity can be expressed as:

• $Q = \sum_{v_i, v_j \in C_k} \left(A_{ij} - \frac{d_i d_j}{2m} \right)$ where A is the adjacency matrix and the sum is over all v_i and v_j that fall in the cluster C_k
Modularity Clustering Algorithm

- Maximizing modularity for two clusters is equivalent to finding the principal eigenvalue/eigenvector pair of a “modularity matrix”
- Proceed by recursive bisection:
 - First, find the principal eigenvalue and eigenvector by power iteration
 - Next, in each successive split:
 - find the principal eigenvector of the “generalized” modularity matrix
 - Stop when modularity no is no longer positive
Advantages of Modularity Clustering

• A “natural” stopping criterion: we don’t need to know k ahead of time

• Seems to be a suitable objective for community detection
Parallel Modularity Clustering

• Agglomerative clustering scheme:
 • Each vertex starts as its own "community"
 • Communities are merged based on their potential contribution to the modularity score
 • Merging is done in parallel using a maximal matching on potential contributions of merging particular edges

Parallel community detection for massive graphs. Riedy, E. Jason, Henning Meyerhenke, David Ediger, and David A. Bader. 2012
Frameworks

• CombBLAS
 • *The Combinatorial BLAS: Design, Implementation, and applications*. Aydin Buluc and John Gilbert. 2011
 • A set of primitives for graph computations based on linear algebra
 • Applicable to:
 • K-means clustering
 • Power iteration clustering
 • Markov clustering

• GraphLab
 • *GraphLab: A New Parallel Framework for Machine Learning*. Low, Yucheng, et al. 2010
 • A large-scale library for machine learning
 • Smart scheduling and relaxed data/computational consistency
 • a graph-based data model which simultaneously represents data and computational dependencies
 • Good for:
 • Gibbs Sampling => “fuzzy” DP Means

• ParMetis
 • *ParMetis: Parallel Graph Partitioning and Sparse Matrix Ordering Library*. Karypis, George, Kirk Schloegel and Vipin Kumar. 2003
 • an MPI-based parallel library that implements a partitioning algorithms for unstructured graphs and meshes
 • Multilevel partitioning schemes
Summary: Popular Clustering Techniques

- k-means
 - K-means/K-medians/K-medoids
 - Better, bigger k-means

- Spectral
 - Optimizing NCut
 - PIC

- Hierarchical
 - Single Linkage
 - BIRCH
 - CURE

- Density-based
 - DBSCAN
 - II DBSCAN

- Multilevel
 - Metis
 - ParMetis
 - Multithreaded Metis

- Modularity
 - Community Detection
Conclusion and Future work

“The tradeoff among different criteria and methods is still dependent on the applications themselves.” A Comprehensive Overview of Basic Clustering Algorithms. Xu & Wunsch. 2005

Future Work:

• Large-scale Nonparametric methods – don’t specify k to start with
 • Decomposing the similarity function in genetic mapping into an inner product in order to use it for PIC
 • Parallel DP-Means
Thank you

John Gilbert, Linda Petzold, Xifeng Yan

Aydin Buluc, Stefanie Jegelka, Joseph Gonzalez

Adam Lugowski, Kevin Deweese
References

Backup Slides
Power Iteration Clustering (PIC)

- Large-scale extension to spectral clustering
- Key ideas: power iteration and the spectral gap
 - Power iteration: $D^{-1}L = I - D^{-1}S$
 \[
 v^{t+1} = \frac{(I - D^{-1}L)v^t}{\| (I - D^{-1}L)v^t \|} \]
 - Let:
 \[
 \delta^{t+1} = \| v^{t+1} - v^t \| \]
 - Stop when:
 \[
 \delta^{t+1} - \delta^t \approx 0 \]
- Applicable to large-scale text-document classification, works well for small values of k
 - If $FF^T = S$ then $(I - D^{-1}S)v = v - D^{-1}FF^Tv$

Power Iteration Clustering. Lin and Cohen. 2010,
A Very Fast Method for Clustering Big Text Datasets. Lin and Cohen. 2010
Utility of CF vectors in BIRCH

Because we have the additivity property of CF vectors:

\[\text{CF}_i + \text{CF}_j = (N_i + N_j, LS_i + LS_j, SS_i + SS_j) \]

We can easily compute updates to the mean, radius, or diameter of a CF vector, and we can use CF vectors to compute distances between centroids and incoming points.

Example: distance between centroid \(\mu_i \) of cluster \(i \) and centroid \(\mu_j \) of cluster \(j \)

\[\| \mu_i - \mu_j \| = \left(\left(\frac{LS_i}{N_i} - \frac{LS_j}{N_j} \right)^T \left(\frac{LS_i}{N_i} - \frac{LS_j}{N_j} \right) \right)^{1/2} \]
Multilevel k-Way: Matching & Coarsening Step

Randomly select a vertex, and match it with the neighbor that has the heaviest edge ("heavy edge matching")

Multilevel k-way Partitioning Scheme for Irregular Graphs. George Karypis and Vipin Kumar. 1998
Multilevel k-Way: Partition Step

Use spectral clustering to find k clusters
Multilevel k-Way: Uncoarsening and Refinement Step

- Expand the vertices and edges back out to the finer graph
- Use the $gain$ heuristic to move vertices one at a time, and keep the configuration that gives the best balanced partitioning

The gain of a vertex v is the net reduction in the weight of edges that would result in moving v from partition A to partition B

Example: gain of moving vertex 3 to partition B

$gain(v_3) = 2 - 4 = -2$
Generative Process specification

- A convention for specifying a probability distribution in a more compact way, by leaving out certain conditional independence properties in the specification; these properties are implied.
- At each step, the distribution depends only on the previously defined random variables
- Example of a generative process specification:

\[
X_1, X_2 \sim \text{Bernoulli}\left(\frac{1}{2}\right) \\
X_3 \sim N(X_1 + X_2, \sigma^2) \\
X_4 \sim N(aX_2 + b, 1) \\
X_5 \sim \begin{cases}
1 & \text{if } X_4 \geq 0 \\
0 & \text{else}
\end{cases}
\]

This specification means that: If \(X \) is a vector such that: \(X = (X_1, \ldots, X_5) \) then it respects this graphical model:

In other words, the multivariate distribution on \(X \) respects the following conditional independence probabilities:

\[
p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2)p(x_3|x_1, x_2)p(x_4|x_2)p(x_5|x_4)
\]
A Gaussian Process

We can equivalently look at a mixture of Gaussians as a generative model:

- Choose a cluster, then choose a point from that cluster

A real-valued stochastic process \(\{X_t, t \in T\} \) where \(T \) is an index set, is a Gaussian process if for any choice of distinct values \(t_1, ..., t_k \in T \), the random vector \(\mathbf{X} = (X_{t_1}, ..., X_{t_k})' \) has a multivariate normal distribution with mean \(\mu = E[\mathbf{X}] \) and covariance matrix \(\Sigma = \text{cov}(\mathbf{X}, \mathbf{X}) \).

Example: \(T = \{1, 2, 3, 4, 5, 6\} \), \(X = (X_1, X_2, X_3, X_4) \)

\[
p(X = x) = p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3|x_1, x_2)p(x_4|x_2) = N(E[X], \text{cov}(X, X))
\]

\[
X_1, X_2 \sim N\left(\frac{1}{2}, \sigma^2\right)
\]

\[
X_3 \sim N(X_1 + X_2, \sigma^2)
\]

\[
X_4 \sim N(aX_2 + b, 1)
\]
A Dirichlet Process

• In Bayesian modelling, we assume we have an underlying and unknown distribution that we wish to infer given some observed data. We can do this by assuming a prior, and then computing the posterior given some data using that: posterior \propto likelihood \times prior. But constraining the prior to be parametric limits the types of inferences we can make. The nonparametric approach solves this problem, but we have to choose a prior that makes the posterior calculation tractable.

• The Dirichlet Process is a stochastic process used in Bayesian nonparametric models of data. Each draw from a Dirichlet process is itself a distribution. The Dirichlet process has Dirichlet distributed finite dimensional marginal distributions. Distributions drawn from a Dirichlet process are discrete, but cannot be described using a finite number of parameters, “hence the classification as a nonparametric model.”
A Dirichlet Mixture

Assume G_0 is a prior distribution over the means of the Gaussians:

$$\mu_1, \mu_2, \ldots, \mu_k \sim G_0$$

The mixing coefficients are distributed according to a Dirichlet distribution:

$$\pi \sim Dir(k, \pi_0)$$

We choose one of the clusters from a discrete distribution over π, such as a multinomial distribution:

$$z_1, \ldots, z_n \sim Discrete(\pi)$$

Finally, we choose x_i according to the Gaussian distribution with mean μ_z

$$x_1, \ldots, x_n \sim N(\mu_z, \sigma I)$$

“A way to view the DP mixture model is to take the limit of the above model as $k \to \infty$, when choosing π_0 to be $(\alpha/k)1$”
• The Dirichlet distribution is a commonly used as a prior distribution over θ when $p(x|\theta)$ is a multinomial distribution over k values (it’s the conjugate prior to the multinomial)

• Computing $E(X)$ from p is difficult/intractable/inefficient
 • Instead, approximate $E(f(X))$ using an MCMC method such as Gibbs Sampling
 • Construct a markov chain that has p as its stationary distribution
 • Ergodic theorem says: if we run chain long enough, it will converge to the st. dist. And so the end state is approximately what it truly is
 • Ergodic theorem + irreducibility: just use sample mean over all states that markov chain takes to approximate sample mean
A clustering function

A clustering function takes a distance function d on a set S of $n \geq 2$ points and outputs a clustering Γ.

Example: $S = \{1,2,3,4,5,6,7\}$

$f(d) = \Gamma = \{\{1,2,3\}, \{4,5,6,7\}\}$

An Impossibility Theorem for Clustering. Jon Kleinberg. 2003
Scale Invariance: \(f(d) = f(\alpha \ast d) \)

\[
\begin{align*}
 f(d_1) &= \Gamma = \{\{1,2,3\}, \{4,5,6,7\}\} \\
 f(\alpha \ast d_1) &= \Gamma = \{\{1,2,3\}, \{4,5,6,7\}\}
\end{align*}
\]
Consistency

\[f(d) = \Gamma = \{\{1,2,3\}, \{4,5,6,7\}\} \]

\[f(d') = \Gamma = \{\{1,2,3\}, \{4,5,6,7\}\} \]
Richness:

Range(f) is equal to the set of all partitions of S. etc...
Impossibility Theorem for Clustering

A clustering function should have the three following properties:

\textit{scale invariance, consistency, and richness}

Theorem: \textit{For each }\(n \geq 2 \), \textit{there is no clustering function that satisfies scale invariance, consistency, and richness}

“...there is no solution that simultaneously satisfies a small collection of simple properties”

− Jon Kleinberg, \textit{An Impossibility Theorem for Clustering}. 2003
Possibility of Clustering

Instead of thinking about clustering functions, let’s think about clustering results – what makes a good clustering?

There exist *Clustering Quality Measures* that satisfy consistency, richness, scalability

\[m(\{\{1,2,3\}, \{4,5,6,7\}\}) = \alpha \in R \]

Measures of Clustering Quality: A Working Set of Axioms for Clustering. Margareta Ackerman and Shai Ben-David. 2009
Modularity

• Suppose we have divided the network into two groups
• The expected number of edges between vertices v_i and v_j with degrees d_i and d_j is:
 \[\frac{d_id_j}{2m} \text{ where } m = \frac{1}{2} \sum_i d_i \]
• The modularity can be expressed a modularity is defined as:
 \[Q = \sum_{i,j} (A_{ij} - \frac{d_id_j}{2m}) \text{ where } A \text{ is the adjacency matrix and the sum is over all } \]
 \[u_i^T s \frac{1}{4m} s^T B s \text{ where } s_i = 1 \text{ if } v_i \text{ is in group 1 and } s_i = -1 \text{ if } v_i \text{ is in group 2, and } \]
 \[B_{ij} = A_{ij} - \frac{d_id_j}{2m} \]
• We can therefore write the modularity as:
 \[Q = \frac{1}{4m} \sum_{i=1,...,n} (u_i^T s)^2 \lambda_i \]
Gibbs Sampling

• An MCMC method:
 • tool for sampling from and computing expectations with respect to very complicated and high dimensional probability distribution
 • MCMC constructs a markov chain whose stationary distribution is the complicated distribution
 • Can be used in DP means for expectation maximization