Project Location: /home/fse/PathComplexity
PAC => Path Complexity Analyzer
CFG => Control-Flow Graph

Quick start.

- Navigate to /home/fse/PathComplexity/scripts.

- Run ./simple tests to get a quick idea of how things work.

- This processes the example control flow graphs in cfgs/simple test cfgs.

- Output is saved to results/simple test results.csv.

- You can view the results in LibreOffice. You may have to adjust column width. To view a CFG
file you can run xdot. Try the following:

xdot ~/PathComplexity/cfgs/simple test cfgs/vlab cs ucsb test SimpleExample test4 0 basic.dot
Overview.
There are two major steps:
1. Extract CFGs from binaries.
This is done with a python script iterating over java CFG extraction program.

2. Compute cyclomatic, npath, and path complexities for each CFG.
This is done with a handful of Mathematica scripts with paths.m as the main driver.

Detailed instructions.

Directory Contents.

Contains scripts for extracting control-flow from java bytecodes. You can use that script to
generate graphs for new inputs. Given a folder it searches for .jar files in any level and
generates the CFGs as .dot files.

usage: python main.py -i path/to/a/folder/that/contains/jar/file(s)
ex : python main.py -1

home/fse/PathComplexity/lib jars/apache commons/bins/commons-cli-1.2/
output: generates .dot files (under scripts/cfgextractor/outputs/)

Once you have the new control-flow graphs, you use complexities* script to get path complexity
results.

usage: ./scripts/complexities /path/to/cfg/directory

Contains Apache commons libraries and Oracle Java 7 runtime libraries used in the experiments.
Subfolders under lib jars contains .jar files for the libraries. cfgextractor/ program navigates
through the folders and generated CFGs for each jar file in a separate folder. (We have included



generated CFG files under cfgs/ directory.)

Contains 6 scripts for demonstrating computation of path complexity, cyclomatic complexity, and
NPATH complexity. Also contains sub directory ‘cfgextractor’ to generated CFGs.

These scripts work on precomputed CFGs located in ~/PathComplexity/cfgs/
Output of all scripts contains

- testnumber

- filename

- cyclomatic complexity

- npath complexity

- path complexity classification: Constant, Polynomial, or Exponential
- path counting function

- asymptotic complexity

1. complexites*:

Computes results for a single cfg file or entire directory and outputs a line of comma separated
results to sdtout for each file.

usage: ./complexities /path/to/cfg/file
./complexities /path/to/cfg/directory
output: stdout
2. simple tests*:
Computes results for small set of six artificial CFGs in cfgs/simple tests.
usage : ./simple tests
output: csv file results/simple test results.csv
stdout

3. apache small sample*:

Computes results for a sample of ~800 apache CFGs in fgs/apache cfgs/commons/beanutils-1.9.2/.
Running time is approximately 5 minutes.

usage: ./apache small sample
output: csv file results/apache small sample results.csv
stdout

4. java small sample*

Computes results for a sample of ~800 java CFGs in cfgs/java cfgs/alt-rt/. Running time
approximately 5 minutes.



usage: ./java small sample
output: csv file results/apache small sample results.csv
stdout

5. apache all* (data used in the paper):

Computes results for all apache CFGs in the data set cfgs/apache cfgs/. Running time
approximately 3 hours.

usage: ./apache all
output: csv file results/apache all results.csv
stdout

6. Jjava all* (data used in the paper) :

Computes results for all apache CFGs in the data set cfgs/java cfgs. Running time approximately
10 hours.

usage: ./Jjava_all

output: csv file results/java all results.csv
stdout

Output folder for results from running scripts.

Contains directory 'expected', which has all of the results of running the scripts precomputed.
You can use scripts/cfgextractor/Classify.py to get the classification done on Table 4 column 1.
The rest of the columns and the Figure 6 is computed based on that.

usage: pythong Classify.py -i <input to file or folder>
output: .csv files for each classification (under scripts/cfgextractor/outputs)

Precomputed control flow graph files in graphviz dot format. These control-flow graphs were
generated using cfgextractor with the inputs lib jars/apache commons and lib jars/jre lib. There
are made available here for reference or to test the path complexity scripts.

To view a CFG use:
Sxdot path/to/cfg/file



Contains Mathematica scripts for computing complexities.

- paths.m is the main driver.
Loads filenames, loads and calls modules.
- pathComplexity.m
- cyclomaticComplexity.m
- nPathComplexity.m
- utils.m
- cfgextractor source.jar used to extract CFGs.

To run on a directory of CFGs

ex:

/usr/local/Wolfram/Mathematica/10.0/Executables/math -script
/home/fse/PathComplexity/src/paths.m <path/to/cfgs> Infinity
ex to output to a file
/usr/local/Wolfram/Mathematica/10.0/Executables/math -script

/home/fse/PathComplexity/src/paths.m <path/to/cfgs> Infinity > output.csv

The parameter ‘Infinity’ is the nesting depth of the directories. This will recursively compute
over all subdirectories.

Replicate experiments.

1 - run scripts/apache all* and scripts/java all*.
2 - (Optional) run scripts/cfgextractor/ to generate all CFGs with the inputs under lib jars/
3 - (Optional) run Classify.py to get classified results for the tables and figures in the paper.

Running on new input.

1 - use scripts/cfgextractor to extract CFGs from .jar files
2 - use scripts/complexities to run complexity analysis on CFGs
(Please refer to corresponding sections for example usages of scripts)



