Generating Vulnerabllity Signatures for String ManipuigtPrograms
Using Automata-based Forward and Backward Symbolic Aeslys

Fang Yu, Muath Alkhalaf, Tevfik Bultan {yuf, muath, bultaf@cs.ucsb.edu

Overview Why do we need string analysis?

¢ \We present automata-based symbolic string analyses

automatic verification of string manipulating programs due to improper manipulation of strings:

e We compute there- and postconditions of common | o
string functions using deterministic finite automata (DfFAs Cross Site Scripting (XSS)

e We compute DFAs that characteria possible values 2-Injection Flaws (such as SQL injection)

that string expressions can take in any possible exec8-Malicious File Execution (MFE)
tion of a program using forward and backward symbolic

analyses
An example
1 <?php e Theecho statement in line 5 can contain a Cross Site,
5 Swww = $ GET["www"]; Scripting (XSS) vulnerabillity
3 $I_otherinfo_ = "URL"; e A malicious user may provide an input that contains the
A $www = preg_replace(string constankscript and execute a command lead-

"I"A-Za-z0-9 .-@://]/",

Ing to a XSS attack

Swww);

echo $l otherinfo . ™ " . $www ; tacks

6 7>

Detecting vulnerabillities Generating vulnerabillity

N | sighatures
e \We detect vulnerabilities using forward

analysis ¢ \\We generate vulnerability signatures us-
e Use automata-based forward symbolic analing backward analysis
ysis to identify the possible values of each e A vulnerability signature is a characteri-

string expression (uses post-condition com-zation that includes all malicious inputs |
putation) that can be used to generate attack strings

o Intersect the result of tr@nknodes with e Use backward analysis starting from the
the attack pattern sink nodes and traverse the dependency

graph backwards to find out malicious

Inputs (uses pre-condition computation)

e Both forward and backward analyses use
an automata-based widening operator [1]
to accelerate fixpoint computations

3: “URL”

Forward = URL
Backward = X

4: $|_otherinfo

Forward = URL
Backward = X

e If the Intersection Is empty then the pro-
gram Is not vulnerable with respect to
the attack pattern. Otherwise, it Is vul-
nerable

e \We uselanguagebased replacement [4]
to modelpreg replace() @ and PHP
sanitization routines, e.gddslashes()
andmysqgl real _escape _string()

Implementation

We use Pixy [3] as a front end and MONA [2] au-
tomata package for automata manipulation. The im-
plementation consists of the following parts:

Pixy Front End

CFG

Taint

e PHP Parser Parses the PHP program and con- Analyzer

structs the control flow graph (CFG)

e Taint Analyzer ldentifies sinks (sensitive func-
tions that may use tainted data) and generates their Graphs Symbolic String Analysis

dependency graphs using alias and dependency anal- String/Automata

Tainted
Dependency

. L . . Automata Based
yses. If no sinks are found, the application Is not String SLLEICIEN S tring Manipulation
vulnerable Analyzer Stranger Library l

e String Analyzer Implements vulnerability (for- Automata

ward and backward) analysis on dependency graphs

for all sinks that are found i String Analysis
Report
(Vulnerability

Signatures)

MONA Automata

e String Manipulation Library (SML)Handles all
Package

core string and automata operations such as con-
catenation, prefix, suffix, replace, intersection, union,
and widen

References

Computer Aided Verificatignpages 321-333, 2004.
BRICS. The MONA projecthttp://www.brics.dk/mona/

2.
3.

Verification Laboratory (VLab)
Department of Computer Science

Forward = [*A-Za-z0-9 .-@/]
Backward = X

10:
str_concat

Forward = URL:
Backward = X

Forward = URL: [A-Za-20-9 -@/]*

Backward =
URL: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

T —

What does our string analysis Aachieve?

1tThe top three vulnerabilities in OWASPs top ten list (which
®Ets the most serious web application vulnerabllitie® ar

e Detects vulnerabilities in web applications that are due
to string manipulation

¢ Proves the absence of vulnerabilities in web applications
that use proper sanitization

e Generates a characterization of all malicious inputs that
may compromise a vulnerable web application

Vulnerability

The replace operation In line 4 contains an error that
leads to a XSS vulnerability

® The erroris in the match pattern of the replace operation:
['A-Za-z0-9 .-@://]

e The expression@ should have beer-@

: e The goal of the replace statement in line 4 Is to remove
any special characters from the input to prevent such at-

Forward = X* 1: $ GET[www] @
Backward = [A<]*<Z*

5: [*A-Za-z0-9 .-@://] 6: " 2: www

Forward = ¢

Backward = X

Forward = X*

Backward = [A<]*<X*

9: %" preg_.repl

Forward = :
Forward =
Backward = X

[A-Za-z0-9 -@/]*

Backward =
[A-Za-z0-9 .-;=-@/]*<[A-Za-
l z0-9 .-@/1*

8: Swww

Forward = [A-Za-z0-9 .-@/]*

Backward =
11: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*
str_concat

Forward = URL: [A-Za-z0-9 .-@/]*

Backward =
URL: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

The Result of Forward and Backward Analyses

Contributions

e Sound verification technigues for PHP web applica-
tion vulnerabllity analysis and vulnerability signature
generation, focusing on SQLCI, XSS and MFE at-
tacks

e Combining forward and backward symbolic string anal-
yses for vulnerability signature generation

¢ Implementation of forward and backward image com-
putations for string operations (including complex op-
erations such apreg _replace()) using a sym-
bolic automata representation (MBDDS)

e The first automata-based string analysis tool that can
automatically generate vulnerabillity signatures of vul-
nerable PHP programs

e The implementation and benchmarks are available at:
http://www.cs.ucsb.edu/ ~Vlab/stranger

[1] Constantinos Bartzis and Tevfik Bultan. Widening arigtra automata. IiProceedings of the 16th International Conference on

Nenad Jovanovic, Christopher Kigel, and Engin Kirda. Pixy: A static analysis tool for deteg web application vulnerabillities
(short paper). IProceedings of the 2006 IEEE Symposium on Security and&ri@&P 2006)pages 258-263, 2006.

University of California, Santa Barbara [4]Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarram®ylic string verification: An automata-based approachl3tn
International SPIN Workshop on Model Checking Softward NSE08) pages 306—324, 2008.

