
Generating Vulnerability Signatures for String Manipulating Programs Using
Automata-based Forward and Backward Symbolic Analyses

Fang Yu Muath Alkhalaf Tevfik Bultan
Computer Science Department, University of California at Santa Barbara

Email: {yuf,muath,bultan}@cs.ucsb.edu

Abstract

Given a program and an attack pattern (specified
as a regular expression), we automatically generate
string-based vulnerability signatures, i.e., a charac-
terization that includes all malicious inputs that can
be used to generate attacks. We use an automata-
based string analysis framework. Using forward reach-
ability analysis we compute an over-approximation
of all possible values that string variables can take
at each program point. Intersecting these with the
attack pattern yields the potential attack strings if the
program is vulnerable. Using backward analysis we
compute an over-approximation of all possible inputs
that can generate those attack strings. In addition to
identifying existing vulnerabilities and their causes,
these vulnerability signatures can be used to filter
out malicious inputs. Our approach extends the prior
work on automata-based string analysis by providing
a backward symbolic analysis that includes a sym-
bolic pre-image computation for deterministic finite
automata on common string manipulating functions
such as concatenation and replacement.

1. Introduction

Web applications provide critical services over the
Internet and frequently handle sensitive data. Unfor-
tunately, Web application development is error prone
and results in applications that are vulnerable to at-
tacks by malicious users. According to the Open Web
Application Security Project (OWASP)’s top ten list
that identifies the most serious web application vul-
nerabilities, the top three vulnerabilities are: 1) Cross
Site Scripting (XSS), 2) Injection Flaws (such as SQL
injection) and 3) Malicious File Execution. All these
vulnerabilities are due to improper string manipulation.

This work is supported by NSF grants CCF-0614002 and CCF-
0716095.

Programs that propagate and use malicious user inputs
without sanitization or with improper sanitization are
vulnerable to these well-known attacks.

In this paper, we propose a string analysis approach
that 1) identifies if a web application is vulnera-
ble to attacks, and 2) if it is vulnerable, generates
a characterization of user inputs that might exploit
that vulnerability. Such a characterization is called
a vulnerability signature. We focus on vulnerabilities
related to string manipulation such as the ones listed
above. Vulnerabilities related to string manipulation
can be characterized as attack patterns, i.e., regular
expressions that specify vulnerable values for sensitive
operations (called sinks).

Given an application, vulnerability analysis identi-
fies if there are any input values that a user can provide
to the application that could lead to a vulnerable value
to be passed to a sensitive operation. Once a vulnera-
bility is identified, the next important question is what
set of input values can exploit the given vulnerability.
A vulnerability signature is a characterization of all
such input values [1]. A vulnerability signature can
be used to identify how to sanitize the user input to
eliminate the identified vulnerability, or it can be used
to dynamically monitor the user input and reject the
values that can lead to an exploit.

We use automata-based string analysis techniques
for vulnerability analysis and vulnerability signature
generation. Our tool takes an attack pattern specified
as a regular expression and a PHP program as input
and 1) identifies if there is any vulnerability based on
the given attack pattern, 2) generates a DFA charac-
terizing the set of all user inputs that may exploit the
vulnerability.

Our string analysis framework uses deterministic
finite automaton (DFA) to represent values that string
expressions can take. At each program point, each
string variable is associated with a DFA. To deter-
mine if a program has any vulnerabilities, we use a
forward reachability analysis that computes an over-

1 <?php
2 $www = $_GET["www"];
3 $l_otherinfo = "URL";
4 $www = preg_replace(

"/[ˆA-Za-z0-9 .-@://]/",
"",
$www);

5 echo $l_otherinfo . ": " . $www ;
6 ?>

Figure 1. A Small Example

approximation of all possible values that string vari-
ables can take at each program point. Intersecting the
results of the forward analysis with the attack pattern
gives us the potential attack strings if the program is
vulnerable. The backward analysis computes an over-
approximation of all possible inputs that can generate
those attack strings. The result is a DFA for each user
input that corresponds to the vulnerability signature.

The techniques proposed in this paper build on our
earlier results on string analysis reported in [2], where
we only discuss forward symbolic analysis and do
not address vulnerability signature generation prob-
lem. The vulnerability signature generation approach
presented in [3] is a backward analysis similar to the
second phase of our analysis. However, they require
loop invariants to be provided by the user in order to
handle loops whereas we use an automated approach
based on widening, and they focus on weakest precon-
dition computation for binary programs whereas we
focus on string manipulation operations. Compared to
recent work on attack generation (for example [4]),
we propose a sound static analysis approach that
characterizes all possible inputs that can exploit a
given attack pattern, rather than generation of concrete
attacks using dynamic analysis techniques based on
given exploits. Our key contributions in this paper are
1) The backward symbolic analysis based on backward
image computation for string operations such as con-
catenation and replacement, and 2) A new approach to
vulnerability signature generation problem that com-
bines symbolic forward and backward analyses.

2. An Overview

In this section we will give an overview of our anal-
yses using the simple PHP script shown in Figure 1.
This script is a simplified version of code from a real
web application that contains a vulnerability. The script
starts with assigning the user input provided in the
_GETarray to thewwwvariable in line 2. Then, in line
3, it assigns a string constant to thel_otherinfo vari-
able. Next, in line 4, the user input is sanitized using

the preg_replace command. This replace command
gets three arguments: the match pattern, the replace
pattern and the target. The goal is to find all the
substrings of the target that match the match pattern
and replace them with the replace pattern. In the
replace command shown in line 4, the match pattern
is the regular expression[ˆA-Za-z0-9 .-@://] , the
replace pattern is the empty string (which corresponds
to deleting all the substrings that match the match
pattern), and the target is the variablewww. After
the sanitization step, the PHP program outputs the
concatenation of the variablel_otherinfo , the string
constant": " , and the variablewww.

The echo statement in line 5 is a sink statement
since it can contain a Cross Site Scripting (XSS) vul-
nerability. For example, a malicious user may provide
an input that contains the string constant<script

and execute a command leading to a XSS attack. The
goal of the replace statement in line 4 is to remove
any special characters from the input to prevent such
attacks.

Using string replace operations to sanitize user input
is a common practice in web applications. However,
this type of sanitization is error prone due to complex
syntax and semantics of regular expressions. In fact,
the replace operation in line 4 in Figure 1 contains
an error that leads to a XSS vulnerability. The er-
ror is in the match pattern of the replace operation:
[ˆA-Za-z0-9 .-@://] . The goal of the programmer
was to eliminate all the characters that should not
appear in a URL. The programmer implements this by
deleting all the characters that do not match the charac-
ters in the regular expression[A-Za-z0-9 .-@://] ,
i.e., eliminate everything other than alpha-numeric
characters, and the ASCII symbols. , - , @, : , and / .
However, the regular expression is not correct. First,
there is a harmless error. The subexpression// can
be replaced with/ since repeating the symbol/ twice
is unnecessary. More serious error is the following:
The expression.-@ is the union of all the ASCII
symbols that are between the symbol. and the symbol
@ in the ASCII ordering. The programmer intended
to specify the union of the symbols. , - , and @but
forgot that symbol- has a special meaning in regular
expressions when it is enclosed with symbols[and] .
The correct expression should have been.\-@ . This
error leads to a vulnerability because the symbol<

(which can be used to start a script to launch a XSS
attack) falls between the symbol. and the symbol@
in the ASCII ordering. So, the sanitization operation
fails to delete the< symbol from the input, leading to
a XSS vulnerability.

Now, we will explain how our approach automati-

cally detects this vulnerability. First, the attack pattern
for the XSS attacks can be specified asΣ∗ <script

Σ∗, i.e., any string that contains the substring<script

matches the attack pattern. If, during the program
execution, a string that matches the attack pattern
reaches a sink statement, then we say that the program
is vulnerable. For our small example, we simplify the
attack pattern asΣ∗ < Σ∗. Our analysis first generates
the dependency graph for the input PHP program.
Figure 2 shows the dependency graph for the PHP
script in Figure 1. (the program segment that corre-
sponds to a node and the corresponding line number
are shown inside the node). Nodes 1 and 2 correspond
to the assignment statement in line 2, nodes 3 and
4, correspond to the assignment statement in line 3,
nodes 5, 6, 7 and 8 correspond to the replace statement
in line 4, and nodes 9, 10, 11, and 12 correspond to
the concatenation operations and the echo statement
in line 5. Under each node we show the result of the
forward and backward symbolic analyses as a regular
expression.

During forward analysis we characterize all the user
input asΣ∗, i.e., the user can provide any string as
input. Then, using our automata-based forward sym-
bolic reachability analysis, we compute all the possible
values that each string expression in the program can
take. For example, during forward analysis, node 2,
that corresponds to the value of the string variable
wwwafter the execution of the assignment statement in
line 2, is correctly identified asΣ∗. More interestingly,
node 8, the value of the the string variablewwwafter
the execution of the replace statement in line 4, is
correctly identified as[A-Za-z0-9 .-@:/] * since
any character that does not match the characters in the
regular expression[A-Za-z0-9 .-@://] has been
deleted.

Node 12 is the sink node. The result of the for-
ward analysis identifies the value of the sink node
as URL:[A-Za-z0-9 .-@:/] * . Next, we take the
intersection of the result of the forward analysis with
the attack pattern to identify if the program contains
a vulnerability. If the intersection is empty then the
program is not vulnerable with respect to the given
attack pattern. Since our analysis is sound, this means
that there is no user input that can generate a string that
matches the attack pattern at the sink node. However,
in our example, the intersection of the attack pattern
and the result of the forward analysis for the sink node
is not empty and is characterized by the following
regular expression:URL:[A-Za-z0-9 .-;=-@:/] * <

[A-Za-z0-9 .-@:/] * . The backward analysis starts
from this intersection and traverses the dependency
graph backwards to find out what input values can

lead to string values at the sink node that falls into
this intersection. Note that during backward analysis
we do not need to compute any value for the nodes
that are not on a path between an input node and a
sink node. This means that during backward analysis
we do not compute values for the nodes 3, 4, 5, 6, 9
and 10. The final result of the backward analysis is
the result for the input node 1, which is characterized
with the regular expression:[ˆ<] * <Σ∗, i.e., any input
string that contains the symbol< can lead to a string
value at a sink node that matches the attack pattern.
Using this information, the programmer can eliminate
the vulnerability either by fixing the erroneous replace
statement in line 4 or by adding another replace
statement that removes the< symbol from the input.

3. Vulnerability Analysis

Our automata-based vulnerability analysis consists
of two phases. In the first phase, we perform a for-
ward symbolic reachability analysis from root nodes
to compute all possible values that each node can take.
We use this information to collect vulnerable program
points, as well as the reachable attack strings of those
vulnerable program points. If the program is vulnera-
ble, i.e., there exists some vulnerable program points,
we proceed to the second phase. In the second phase,
we perform a backward symbolic reachability analysis
from the vulnerable program points to compute all
possible values of their predecessors that will result
in attack strings at these vulnerable program points.

As shown in Algorithm 1, our analysis takes the
following inputs: a dependency graph (denoted asG),
a set of sink nodes (denoted asSink), and an attack
pattern (denoted asAttk). G is a directed graph that
specifies how the values of user inputs flow to the
sensitive functions.Sink denotes the nodes that are
associated with sensitive functions that might lead to
vulnerabilities.Attk is a regular expression represented
as a DFA that accepts the set of attack strings. The set
of string values is approximated as a regular language
and represented symbolically as a DFA that accepts the
language. To associate each node with its automata,
we create two automata vectorsPOSTand PRE. The
size of both is bounded by the number of nodes in
G. POST[n] is the DFA accepting all possible values
that noden can take.PRE[n] is the DFA accepting
all possible values that noden can take to exploit
the vulnerability. Initially, all these automata accept
nothing, i.e., their language is empty.Vul ⊆ Sink is
the set of vulnerable program points and initially is
set to an empty set.

Figure 2. Results of Forward and Backward Analyses

At line 3, we first computePOST by calling the
forward analysis. At line 4, for each noden ∈ Sink, we
generate a DFAtmp by intersecting the attack pattern
and the possible values ofn. If the language oftmp,
i.e., L(tmp), is not empty, we identify thatn is a
vulnerable program point and add it toVul at line 7.
In fact, tmp accepts the set of reachable attack strings
at noden that can be used to exploit the vulnerability.
Hence, we assigntmp to PRE[n] at line 8. If Vul is
not empty, we computePREby calling our backward
analysis at line 12. Note that forn ∈ Vul, PRE[n] has
been assigned. We report vulnerability signatures for
eachinput node based onPRE at line 13-15. IfVul
is an empty set, we report that the program is secure
with respect to the attack pattern.

Algorithm 1 VUL ANALYSIS(G, Sink, Attk)
1: Init(POST, PRE);
2: setVul := {};
3: FWDANALYSIS(G, POST);
4: for eachn ∈ Sinkdo
5: tmp: = POST[n] ∩ Attk;
6: if L(tmp) 6= ∅ then
7: Vul := Vul∪ {n};
8: PRE[n] := tmp;
9: end if

10: end for
11: if Vul 6= ∅ then
12: BWDANALYSIS(G,POST, PRE, Vul);
13: for eachinput n do
14: Report the vulnerability signaturePRE[n];
15: end for
16: return ”Vulnerable”;
17: else
18: return ”Secure”;

19: end if

The forward symbolic reachability analysis is based
on a standard work queue algorithm. We iteratively
update the automata vectorPOSTuntil a fixpoint is
reached [2]. Backward analysis uses the results of
the forward analysis. Particularly, we are interested
in computing all possible values of each noden that
can exploit the identified vulnerability. The challenge
of the backward analysis comes from the pre-image
computation on string manipulating functions. To com-
pute the pre-image of concatenation, we introduce
concatenation transducers. A concatenation transducer
M is a multi-track DFA that identifies the prefix and
suffix relations precisely by binding the values of input
and output tracks character by character. Below we
show two examples of concatenation transducers that
are used to compute the pre-image of the concatenation
of a constant set with a variable. Letα indicate any
character inΣ. In Figure 3 (a), the third track of
M can be used to identify all suffixes ofX that
follow any string in (ab)+. In Figure 3 (b), the sec-
ond track ofM can be used to identify all prefixes
of X that are followed by any string in(ab)+. To
compute the pre-image of replace commands, e.g.,
preg_replace("a","b",v) , we replace the values
of the replace pattern ({b}) with the values of both
the match pattern and the replace pattern ({a, b}).
This operation is achieved by using the language-based
replacement proposed in [2]. If the replace opera-
tion performs deletion, e.g.,preg_replace("a","",

v) , the pre-image accepts that the values of the match
pattern ({a}) to be repeated many times between
any character. Details of our forward and backward

analyses can be found in [5].

(a) X = (ab)+.Z (b) X = Y.(ab)+

Figure 3. Concatenation transducers

4. Experiments

We experimented on a number of benchmarks
extracted from known vulnerable web applica-
tions: (1) MyEasyMarket-4.1 (a shopping cart pro-
gram), (2) PBLguestbook-1.32 (a guestbook appli-
cation), (3) BloggIT-1.0 (a blog engine), and (4)
proManager-0.72 (a project management system).

In our experiments, we used an Intel machine with
3.0 GHz processor and 4 GB of memory running
Ubuntu Linux 8.04. We use 8 bits to encode each char-
acter in ASCII. The performance of our vulnerability
analysis is shown in Table 1 and Table 2.

total time(s) fwd time(s) bwd time(s) mem(kb)

1 0.569 0.093 0.474 2700
2 3.449 0.124 3.317 5728
3 1.087 0.248 0.836 18890
4 16.931 0.462 16.374 116097

Table 1. Total Performance

CONCAT REPLACE PRECONCAT PREREPLACE

#operations/time(s)

1 6/0.015 1/0.004 2/0.411 1/0.004
2 19/0.082 1/0.004 11/3.166 1/0.0
3 22/0.038 4/0.112 2/0.081 4/0.54
4 14/0.014 12/0.058 26/11.892 24/3.458

Table 2. String Function Performance

Table 3 shows the data about the DFAs that our
analyses generated. Reachable Attack is the DFA that
accepts all possible attack strings at the sink node.
Vulnerability Signature is the DFA that accepts all
possible malicious inputs that can exploit the vulnera-
bility. We closely look at the vulnerability signature of
(1) MyEasyMarket-4.1 . The signature actually accepts
α∗ <α∗ sα∗ cα∗ r α∗ i α∗ pα∗ t α∗ with respect to
the attack patternΣ∗ <script Σ∗. α is the set of
characters, e.g.,! , that are deleted in the program.
An input such as<!script can bypass the filter that
rejectsΣ∗ <script Σ∗ and exploit the vulnerability.
This shows that simply filtering out the attack pat-
tern can not prevent its exploits. On the other hand,

the exploit can be prevented using our vulnerability
signature instead. Both vulnerability signatures of (2)
PBLguestbook-1.32 accept arbitrary strings. By man-
ually tracing the program, we find that both inputs are
concatenated to an SQL query string without proper
sanitization. Since an input can be any string, the pre-
image of one input is the prefix ofΣ∗ OR ’1’=’1’ Σ∗

that is equal toΣ∗, while the pre-image of another
input is the suffix ofΣ∗ OR ’1’=’1’ Σ∗ that is also
equal to Σ∗. This case shows a limitation in our
approach. Since we do not model the relations among
inputs, we can not specify the condition that one of
the inputs must containOR ’1’=’1’ .

Reachable Attack (Sink) Vulnerability Signature (Input)
#states #bdd nodes #states #bdd nodes

1 24 225 10 222
2 66 593 2 9
3 29 267 92 983
4 131 1221 57 634

136 1234 174 1854
147 1333 174 1854

Table 3. Attack and Vulnerability Signatures

5. Conclusion

We presented symbolic string analysis techniques for
identifying vulnerabilities and vulnerability signatures.
Our approach is based on automata-based symbolic
forward and backward reachability computations. We
applied our approach to automated analysis of PHP
programs. Our analyses successfully find vulnerabili-
ties in existing web applications and generate vulner-
ability signatures identifying how these vulnerabilities
can be eliminated.

References

[1] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha,
“Theory and techniques for automatic generation of
vulnerability-based signatures,”IEEE Trans. Dependable
Sec. Comput., vol. 5, no. 4, pp. 224–241, 2008.

[2] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra, “Symbolic
string verification: An automata-based approach,” in
Proc. of SPIN, 2008, pp. 306–324.

[3] D. Brumley, H. Wang, S. Jha, and D. X. Song, “Creating
vulnerability signatures using weakest preconditions,” in
Proc. of CSF, 2007, pp. 311–325.

[4] A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst,
“Automatic creation of SQL injection and cross-site
scripting attacks,” inProc. of ICSE, 2009.

[5] F. Yu, M. Alkhalaf, and T. Bultan, “Generating vul-
nerability signatures for string manipulating programs
using automata-based forward and backward symbolic
analyses,” Technical Report 2009-11, UCSB CS, 2009.

