
Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Symbolic String Verification:
An Automata-based Approach

Fang Yu Tevfik Bultan Marco Cova Oscar H. Ibarra

Dept. of Computer Science
University of California Santa Barbara, USA
{yuf, bultan, marco, ibarra}@cs.ucsb.edu

August 11, 2008

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

1 Motivation
Goal
Is it vulnerable?

2 Symbolic String Verification
Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

3 Experiments
Benchmarks
Results

4 Conclusion

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Goal
Is it vulnerable?

Motivation

We aim to develop an efficient but rather precise string verification
tool based on static string analysis.

Static String Analysis: At each program point, statically compute
all possible values that string variables can take.

String analysis plays an important role in the security area. For
instance, one can detect various web vulnerabilities like SQL
Command Injection and Cross Site Scripting (XSS) attacks.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Goal
Is it vulnerable?

Is it vulnerable?

A program is vulnerable if a sensitive function can take an attack
string (specified by an attack pattern) as its input.

A PHP Example: (A XSS attack pattern for echo: Σ∗ < scriptΣ∗)
1:<?php

2: $www = $ GET[”www”];

3: $l otherinfo = ”URL”;

4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

5:?>

A simple taint analysis [Huang et al. WWW04] can report this
segment vulnerable.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Goal
Is it vulnerable?

Is it vulnerable?

Add a sanitization routine at line s.

1:<?php

2: $www = $ GET[”www”];

3: $l otherinfo = ”URL”;

s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www);

4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

5:?>

This segment is identified to be vulnerable by dynamic testing
(Balzarotti et al.)[SSP08]. (A vulnerable point at line 218 in
trans.php, distributed with MyEasyMarket-4.1.)

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Goal
Is it vulnerable?

Is it vulnerable?

Fix the sanitization routine by inserting the escape character ’/’.

1:<?php

2: $www = $ GET[”www”];

3: $l otherinfo = ”URL”;

s’: $www = ereg replace(”[∧A-Za-z0-9 ./-@://]”,””,$www);

4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

5:?>

By our approach, this segment is proven not vulnerable against the
XSS attack pattern: Σ∗ < scriptΣ∗.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Verification Framework

Associate each string variable at each program point with an
automaton that accepts an over approximation of its possible
values.

Use these automata to perform a forward symbolic
reachability analysis.

Iteratively

Compute the next state of current automata against string
operations and
Update automata by joining the result to the automata at the
next statement

Terminate the execution upon reaching a fixed point.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Challenges

Precision: Need to deal with sanitization routines having PHP
string functions, e.g., ereg replacement.

Complexity: The problem in general is undecidable. The fixed
point may not exist and even if it exists the fixpoint
computation may not converge.

Performance: Need to perform automata manipulations
efficiently in terms of both time and memory.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Features of Our Approach

We propose:

A Language-based Replacement: To model string operations
in PHP programs.

An Automata Widening Operator: To accelerate fixed point
computation.

A Symbolic Encoding: Using Multi-terminal Binary Decision
Diagrams (MBDDs) from MONA DFA packages.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Language-based Replacement

M=replace(M1, M2, M3)

M1, M2, and M3 are Deterministic Finite Automata (DFAs).

M1 accepts the set of original strings,
M2 accepts the set of match strings, and
M3 accepts the set of replacement strings

Let s ∈ L(M1), x ∈ L(M2), and c ∈ L(M3):

Replaces all parts of any s that match any x with any c .
Outputs a DFA that accepts the result.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

M=replace(M1, M2, M3)

Some examples:
L(M1) L(M2) L(M3) L(M)

{baaabaa} {aa} {c} {bacbc, bcabc}
{baaabaa} a+ ε {bb}
{baaabaa} a+b {c} {bcaa}
{baaabaa} a+ {c} {bcccbcc, bcccbc,

bccbcc, bccbc, bcbcc, bcbc}
ba+b a+ {c} bc+b

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

M=replace(M1, M2, M3)

An over approximation with respect to the
leftmost/longest(first) constraints

Many string functions in PHP can be converted to this form:

htmlspecialchars, tolower, toupper, str replace, trim, and
preg replace and ereg replace that have regular expressions as
their arguments.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Language-based Replacement

Implementation of replace(M1, M2, M3):

Mark matching sub-strings

Insert marks to M1

Insert marks to M2

Replace matching sub-strings

Identify marked paths
Insert replacement automata

In the following, we use two marks: < and > (not in Σ), and a
duplicate alphabet: Σ′ = {α′|α ∈ Σ}.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

An Example

Construct M = replace(M1,M2,M3).

L(M1) = {baab}
L(M2) = a+ = {a, aa, aaa, . . .}
L(M3) = {c}

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 1

Construct M ′
1 from M1:

Duplicate M1 using Σ′

Connect the original and duplicated states with < and >

For instance, M ′
1 accepts b < a′a′ > b, b < a′ > ab.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 2

Construct M ′
2 from M2:

(a) Construct M2̄ that accepts strings that do not contain any
substring in L(M2).

(b) Duplicate M2 using Σ′.
(c) Connect (a) and (b) with marks.

For instance, M ′
2 accepts b < a′a′ > b, b < a′ > bc < a′ >.

(a) (b) (c)

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 3

Intersect M ′
1 and M ′

2.

The matched substrings are marked in Σ′.
Identify (s, s ′), so that s →< . . . →> s ′.

In the example, we identify three pairs:(i,j), (i,k), (j,k).

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 4

Construct M:

(d) Insert M3 for each identified pair.

(e) Determinize and minimize the result.

L(M) = {bcb, bccb}.

(d) (e)

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Widening Automata: M∇M ′

This widening operator was originally proposed by Bartzis and
Bultan [CAV04]. Intuitively,

Identify equivalence classes, and

Merge states in an equivalence class

L(M∇M ′) ⊇ L(M) ∪ L(M ′)

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

State Equivalence

q, q′ are equivalent if one of the following conditions holds:

∀w ∈ Σ∗, w is accepted by M from q then w is accepted by
M ′ from q′, and vice versa.

∃w ∈ Σ∗, M reaches state q and M ′ reaches state q′ after
consuming w from its initial state respectively.

∃q”, q and q” are equivalent, and q′ and q”are equivalent.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

An Example for M∇M ′

L(M) = {ε, ab} and L(M ′) = {ε, ab, abab}.
The set of equivalence classes: C = {q′′0 , q′′1}, where
q′′0 = {q0, q

′
0, q2, q

′
2, q

′
4} and q′′1 = {q1, q

′
1, q

′
3}.

(a) M (b) M ′ (c) M∇M ′

Figure: Widening automata

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Fixed Point Computation

Recall that we want to compute the least fixpoint that corresponds
to the reachable values of string expressions.

The fixpoint computation will compute a sequence M0, M1,
..., Mi , ..., where M0 = I and Mi = Mi−1 ∪ post(Mi−1)

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Fixed Point Computation

Consider a simple example:

Start from an empty string and concatenate ab in a loop

The exact computation sequence M0, M1, ..., Mi , ... will
never converge, where L(M0) = {ε} and
L(Mi) = {(ab)k | 1 ≤ k ≤ i} ∪ {ε}.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Accelerate The Fixed Point Computation

Use the widening operator ∇.

Compute an over-approximation sequence instead: M ′
0, M ′

1,
..., M ′

i , ...

M ′
0 = M0, and for i > 0, M ′

i = M ′
i−1∇(M ′

i−1 ∪ post(M ′
i−1)).

An over-approximation sequence for the simple example:

(a) M ′
0 (b) M ′

1 (c) M ′
2 (d) M ′

3

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Automata Representation

A DFA Accepting [A-Za-z0-9]* (ASC II).

(a) Explicit Representation (b) Symbolic Representation

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Verification Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Implementation

We used the MONA DFA Package. [Klarlund and Møller, 2001]

Compact Representation:

Canonical form and
Shared BDD nodes

Efficient MBDD Manipulations:

Union, Intersection, and Emptiness Checking
Projection and Minimization

Cannot Handle Nondeterminism:

We used dummy bits to encode nondeterminism

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Benchmarks
Results

Benchmarks

We experimented on test cases extracted from real-world, open
source applications:

MyEasyMarket-4.1(a shopping cart program)

PBLguestbook-1.32(a guestbook application)

Aphpkb-0.71(a knowledge base management system)

BloggIT-1.0(a blog engine)

proManager-0.72(a project management system)

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Benchmarks
Results

Benchmarks

Generate benchmarks.

Select vulnerable points based on the result of Saner[SPP08].

For each selection, we manually generate two test cases:

A sliced code segment from the original program, in which we
only consider statements that influence the selected vulnerable
point(s)
A modified segment with extra/fixed sanitization routines

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Benchmarks
Results

Benchmarks

Here are some statistics about the benchmarks:

Application Benchmark No. of Constr. No. of Concat. No. of Repl.
File(line) Index

MyEasyMarket-4.1 o1 11 4 1
trans.php(218) m1 11 4 1

PBLguestbook-1.32 o2 19 15 1
pblguestbook.php(1210) m2 19 16 1

PBLguestbook-1.32 o3 6 7 0
pblguestbook.php(182) m3 14 8 4

Aphpkb-0.71 o4 4 3 1
saa.php(87) m4 8 3 3
BloggIT 1.0 o5 21 12 8

admin.php(23, 25, 27) m5 23 12 10
proManager-0.72 o6 39 31 9
message.php(91) m6 45 31 12

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Benchmarks
Results

Experimental Results

We compare our results against Saner [SPP08].

Idx Res. Final DFA Peak DFA Time Mem Saner Saner
state(bdd) state(bdd) user+sys(sec) (kb) n(type) Time(sec)

o1 y 17(133) 17(148) 0.010+0.002 444 1(xss) 1.173
m1 n 17(132) 17(147) 0.009+0.001 451 0 1.139
o4 y 27(219) 289(2637) 0.045+0.003 2436 1(xss) 1.220
m4 n 18(157) 1324(15435) 0.177+0.009 11388 0 1.622
o6 y 387(3166) 2697(29907) 1.771+0.042 13900 1(xss) 6.980
m6 n 423(3470) 2697(29907) 2.091+0.051 19353 0 7.201

Res.

y: the intersection of attack strings is not empty (vulnerable)
n: the intersection of attack strings is empty (secure).

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Benchmarks
Results

Experimental Results

We compare our results against Saner [SPP08].

Idx Res. Final DFA Peak DFA Time Mem Saner Saner
state(bdd) state(bdd) user+sys(sec) (kb) n(type) Time(sec)

o2 y 42(329) 42(376) 0.019+0.001 490 1(sql) 1.264
m2 n 49(329) 42(376) 0.016+0.002 626 1(sql) 1.665
o3 y 842(6749) 842(7589) 2.57+0.061 13310 1(reg) 4.618
m3 n 774(6192) 740(6674) 1.221+0.007 8184 1(reg) 4.331
o5.1 y 79(633) 79(710) 0.499+0.002 3569 0 0.558
o5.2 y 126(999) 126(1123)
o5.3 y 138(1095) 138(1231)
m5.1 n 79(637) 93(1026) 0.391+0.006 5820 0 0.559
m5.2 n 115(919) 127(1140)
m5.3 n 127(1015) 220(2000)

type:(1) xss - cross site scripting vulnerablity, (2) sql - SQL
injection vulnerability, (3) reg - regular expression error.

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Conclusion

A symbolic approach for string verification on PHP programs

A general verification framework

A language-based replacement

An automaton-based widening operator

Experimental results are promising

Benchmarks can be downloaded from:
http://www.cs.ucsb.edu/∼ yuf/spin.benchmarks.tar.gz

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Questions?

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Related Works

Java String Analyzer [Chris and Moller, SAS03]

Valid Web Pages [Minamide, WWW05]

Injection Vulnerability [Wassermann and Su, PLDI07]

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

Outline
Motivation

Symbolic String Verification
Experiments
Conclusion

Future Works

Compact Automata Representation and Manipulation

Composite Analysis on Strings and Integers

Fang Yu, UCSB Symbolic String Verification: An Automata-based Approach

