Symbolic String Verification: Combining String Analysis and Size Analysis

Symbolic String Verification: Combining String
Analysis and Size Analysis

Fang Yu Tevfik Bultan Oscar H. Ibarra

Deptartment of Computer Science
University of California Santa Barbara, USA
{yuf, bultan, ibarra}@cs.ucsb.edu

TACAS 2009, York, UK

Symbolic String Verification: Combining String Analysis and Size Analysis
I—Outline

Motivation
m String Analysis + Size Analysis
m What is Missing?

Length Automata
m Preliminary
m Examples
m From Unary to Binary
m From Binary to Unary

Composite Verification
Implementation and Experiments

Conclusion

Symbolic String Verification: Combining String Analysis and Size Analysis
L Motivation
I—String Analysis + Size Analysis

Motivation

We aim to develop a verification tool for analyzing infinite state
systems that have unbounded string and integer variables.

We propose a composite static analysis approach that combines
string analysis and size analysis.

Symbolic String Verification: Combining String Analysis and Size Analysis
L Motivation
I—String Analysis + Size Analysis

String Analysis

Static String Analysis: At each program point, statically compute
the possible values of each string variable.

The values of each string variable are over approximated as a
regular language accepted by a string automaton [Yu et al.
SPINO8].

String analysis can be used to detect web vulnerabilities like SQL
Command Injection [Wassermann et al, PLDIO7] and Cross Site
Scripting (XSS) attacks [Wassermann et al., ICSE08].

Symbolic String Verification: Combining String Analysis and Size Analysis
L Motivation
I—String Analysis + Size Analysis

Size Analysis

Integer Analysis: At each program point, statically compute the
possible states of the values of all integer variables.

These infinite states are symbolically over-approximated as a
Presburger arithmetic and represented as an arithmetic
automaton [Bartzis and Bultan, CAV03].

Integer analysis can be used to perform Size Analysis by
representing lengths of string variables as integer variables.

Symbolic String Verification: Combining String Analysis and Size Analysis
L Motivation
L What is Missing?

What is Missing?

A motivating example from trans.php, distributed with
MyEasyMarket-4.1.

1:<?php

2: Swww = $_GET["www"[;

3: $l_otherinfo = "URL";

4: $www = ereg_replace("["A-Za-z0-9 ./-@://]",)"" ,$www);
5: if(strlen($www) < $limit)

6: echo "<td>" . $lotherinfo . ": " . $www . "< /td>";
77>

Symbolic String Verification: Combining String Analysis and Size Analysis
L Motivation
L What is Missing?

What is Missing?

If we perform size analysis solely, after line 4, we do not know the
length of $www.

m 1:<7php

m 2 Swww = $_GET[www"];

m 3: $l_otherinfo = "URL";

m 4: $www = ereg_replace(’ ["A-Za-z0-9 ./-@://]","" , $www);
m 5 if(strlen($www) < $limit)

m 6: echo "<td>" . $lotherinfo. ": " . $www . "< /td>";
77>

Symbolic String Verification: Combining String Analysis and Size Analysis
L Motivation
L What is Missing?

What is Missing?

If we perform string analysis solely, at line 5, we cannot check the
branch condition.

m 1:<7php

m 2 Swww = $_GET[www"];

m 3: $l_otherinfo = "URL";

m 4: $www = ereg_replace(’ ["A-Za-z0-9 ./-@://]","" ,$www);
m 5 if(strlen($www) < $limit)

m 6: echo "<td>" . $lotherinfo. ": " . $www . "< /td>";
77>

Symbolic String Verification: Combining String Analysis and Size Analysis
L Motivation
L What is Missing?

What is Missing?

We need a composite analysis that combines string analysis with
size analysis.

Challenge: How to transfer information between string automata
and arithmetic automata?

To do so, we introduce Length Automata.

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—Preliminary

Some Facts about String Automata

m A string automaton is a single-track DFA that accepts a
regular language, whose length forms a semi-linear set, .e.g.,
{4,6} U{2+3k | k > 0}.

m The unary encoding of a semi-linear set is uniquely identified
by a unary automaton

m The unary automaton can be constructed by replacing the
alphabet of a string automaton with a unary alphabet

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—Preliminary

Some Facts about Arithmetic Automata

m An arithmetic automaton is a multi-track DFA, where each
track represents the value of one variable over a binary
alphabet

m If the language of an arithmetic automaton satisfies a
Presburger formula, the value of each variable forms a
semi-linear set

m The semi-linear set is accepted by the binary automaton that
projects away all other tracks from the arithmetic automaton

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—Preliminary

An Overview

To connect the dots, we need to convert unary automata to binary
automata and vice versa.

String (=) Unary Length Automata

Automata I i Arithmetic
Binary Length Automata (=) Automata

Symbolic String Verification: Combining String Analysis and Size Analysis

L Length Automata

L Examples

An Example of Length Automata

Consider a string automaton that accepts (great)+.
The length set is {5 + 5k|k > 0}.

m 5 in unary 11111, in binary 101, from Isb 101.
m 1000: in binary 1111101000, from Isb 0001011111.

Symbolic String Verification: Combining String Analysis and Size Analysis

L Length Automata

L Examples

Another Example of Length Automata

Consider a string automaton that accepts (great)+cs.
The length set is {7 + 5k|k > 0}.
m 7: in unary 1111111, in binary 1100, from Isb 0011.
m 107: in binary 1101011, from Isb 1101011.
m 1077: in binary 10000110101, from Isb 10101100001.

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata

I—From Unary to Binary

From Unary to Binary

Given a unary automaton, construct the binary automaton that

accepts the same set of values in binary encodings (starting from
the least significant bit)

m Identify the semi-linear sets

m Add binary states incrementally

m Construct the binary automaton according to those binary
states

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Unary to Binary

|dentify the semi-linear set

e

m A unary automaton M is in the form of a lasso

m Let C be the length of the tail, R be the length of the cycle

m {C+r+ Rk|k>0} C L(M) if there exists an accepting
state in the cycle and r is its length in the cycle

m For the above example

mC=1,R=2r=1
w {1+1+2k]|k>0}

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Unary to Binary

Binary states

A binary state is a pair (v, b):
m v is the integer value of all the bits that have been read so far
m b is the integer value of the last bit that has been read

m Initially, v is 0 and b is undefined.

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Unary to Binary

The Binary Automaton Construction

We construct the binary automaton by adding binary states
accordingly

m Once v+ 2b > C, v and b are the remainder of the values
divided by R (case (b))
m (v,b) is an accepting state if Ir.r = (C' + v)%R

v,2b%R

(a)v+26<C by v+2b>C

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Unary to Binary

The Binary Automaton Construction

Consider the previous example, where C =1, R=2, r = 1.
B0=(C+r)%R=(1+1)%2

m The number of binary states is O(N?2). N is the size of the
unary automaton

i -6

©9)

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Unary to Binary

The Binary Automaton Construction

After the construction, we apply minimization and get the final
result.

1 1/0
0 1 1/0
\ Qj’p
G 0

Unary Binary

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Binary to Unary

From Binary to Unary

Given a binary automaton, construct the unary automaton that
accepts the same set of values in unary encodings

An Over Approximation:

m Compute the minimal and maximal accepted values of the
binary automaton

m Construct the unary automaton that accepts the values in
between

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Binary to Unary

Compute the Minimal/Maximal Values

m Observations:
m The minimal value forms the shortest accepted path
m Them
aximal value forms the longest loop-free accepted path

(If there exists any accepted path containing a cycle, the
maximal value is inf)

m Perform BFS from the accepting states up to the length of
the shortest/longest path. (Both are bounded by the number
of states)

m Initially, both values of the accepting states are set to 0
m Update the minimal/maximal values for each state accordingly _

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Binary to Unary

The Unary Automaton Construction

Consider our previous example,
®E min = 2, max = inf
m An over approximation: {2+2k | k >0} C{2+k | k >0}

1 1/0
0 5? ‘)1/0
0 B

The Minimal Value The Unary Automaton

Symbolic String Verification: Combining String Analysis and Size Analysis
L Length Automata
I—From Binary to Unary

Some Remarks: From Binary to Unary

m In general, we cannot convert binary to unary automata
precisely. (e.g., {2¥ | k > 0})

m A unary automaton can only specify a semi-linear set

m Leroux [LICSO04] presented an algorithm to identify the

presburger formula from an arithmetic automaton, which can
be used to improve the precision of our approach

Symbolic String Verification: Combining String Analysis and Size Analysis

L Composite Verification

A Simple Imperative Language

We support:
m branch and goto statements
m branch conditions can be membership of regexp on string
variables or a presburger formula on integers and the length of
string variables.
m string operations including concatenation, prefix, suffix, and
language-based replacement.

m linear arithmetic computations on integers

Symbolic String Verification: Combining String Analysis and Size Analysis

L Composite Verification

Composite State

At each program point, we compute the reachable composite
states that consist of the states of :
= Multiple single-track string automata (Each string automaton
accepts the values of a string variable)

m A multi-track arithmetic automaton (Each track accepts the
length of a string variable or the value of an integer variable)

Symbolic String Verification: Combining String Analysis and Size Analysis

L Composite Verification

Forward Fixpoint Computation

The computation is based on a standard work queue algorithm.

m We iteratively compute and add the post images for each
program label until reaching a fixpoint
m The post image is defined on the composite state
m String — (Unary — Binary) — Arithmetic
m Arithmetic — (Binary — Unary) — String
m We incorporate a widening operator on automata to
accelerate the fixpoint computation

Symbolic String Verification: Combining String Analysis and Size Analysis
I—Implementation and Experiments

Implementation

We implemented a prototype tool on top of
= Symbolic String Analysis [Yu et al. SPINO08]
m Arithmetic Analysis [Bartzis et al. CAV03]
m Automata Widening [Bartzis et al. CAV04]

Both string and arithmetic automata are symbolically encoded by
using the MONA DFA Package. [Klarlund and Mgller, 2001]

m Compact representation and efficient MBDD manipulations

Symbolic String Verification: Combining String Analysis and Size Analysis

L Implementation and Experiments

Benchmarks

We manually generate several benchmarks from:
m C string library
m Buffer overflow benchmarks [Ku et al., ASE07]
m Web vulnerable applications [Balzarotti et al., SSP08]

These benchmarks are small (<100 statements and < 10 variables)
but demonstrate typical string manipulations.

Symbolic String Verification: Combining String Analysis and Size Analysis

L Implementation and Experiments

Experimental Results

The results show some promise in terms of both precision and

performance

| Test case (bad/ok) | Result | Time (s) [Memory (kb) |

int strlen(char *s) T 0.037 522

char *strrchr(char *s, int c) T 0.011 360

gxine (CVE-2007-0406) F/T | 0.014/0.018 | 216/252
samba (CVE-2007-0453) F/T | 0.015/0.021 218/252
MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210) F/T 0.021/0.022 496/662
BlogglT 1.0 (admin.php:27) F/T 0.719/0.721 5857,/7067

Table: T: buffer overflow free or SQL attack free

Symbolic String Verification: Combining String Analysis and Size Analysis

I—Conclusion

Related Work

m String Analysis:
m Java String Analyzer (Finite Automata) [Christensen et al.,
SAS03]
m PHP String Analyzer (Context Free Grammar) [Minamide,
WWWOS5]

Symbolic String Verification: Combining String Analysis and Size Analysis

I—Conclusion

Related Work

m String Analysis:
m Java String Analyzer (Finite Automata) [Christensen et al.,
SAS03]
m PHP String Analyzer (Context Free Grammar) [Minamide,
WWWOS5]
m Integer Analysis:
m Automaton Construction [Wolper et al., TACASO00]

Symbolic String Verification: Combining String Analysis and Size Analysis

I—Conclusion

Related Work

m String Analysis:
m Java String Analyzer (Finite Automata) [Christensen et al.,
SAS03]
m PHP String Analyzer (Context Free Grammar) [Minamide,
WWWOS5]
m Integer Analysis:
m Automaton Construction [Wolper et al., TACASO00]
m Size Analysis:

m Buffer Overflow Detection [Dor et al., 2003] [Ganapathy et al.,
CCS03] [Wagner et al., NDSS00]

Symbolic String Verification: Combining String Analysis and Size Analysis

I—Conclusion

Related Work

m String Analysis:
m Java String Analyzer (Finite Automata) [Christensen et al.,
SAS03]
m PHP String Analyzer (Context Free Grammar) [Minamide,
WWWOS5]
m Integer Analysis:
m Automaton Construction [Wolper et al., TACASO00]
m Size Analysis:
m Buffer Overflow Detection [Dor et al., 2003] [Ganapathy et al.,
CCS03] [Wagner et al., NDSS00]
m Composite Analysis:
m Test Input Generation (Splat) [Xu et al., ISSTA08]

Symbolic String Verification: Combining String Analysis and Size Analysis

I—Conclusion

Conclusion

m We presented an automata-based approach for symbolic
verification of infinite state systems with unbounded string
and integer variables

m We presented a composite verification framework that
combines string analysis and size analysis

m We improved the precision of both string and size analysis by
connecting the information between them

Symbolic String Verification: Combining String Analysis and Size Analysis

I—Conclusion

Thank you for your attention.
Questions?
More Information:

http://www.cs.ucsb.edu/~bultan/vlab
http://www.cs.ucsb.edu/~yuf

	Outline
	Motivation
	String Analysis + Size Analysis
	What is Missing?

	Length Automata
	Preliminary
	Examples
	From Unary to Binary
	From Binary to Unary

	Composite Verification
	Implementation and Experiments
	Conclusion

