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Graph Classification (I) 
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HIV-1 protease inhibitors [Wang et al., 1996] 

Wang S, Milne GW, Yan X, Posey IJ, Nicklaus MC, Graham L, Rice WG. J Med Chem. 1996 May 10;39(10):2047-54. 
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Protein Family Classification 

4 



Network Science 

Xifeng Yan | University of California at Santa Barbara 

Malware Detection 

Input Output 

Instrument 

System Call Graph 

Malicious Behavior 

… … 

Benign Programs Malicious Programs 

Change Program 

Benign Behavior 

Program 
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Classification in Vector Space 
 Binary Classification Problem 
 Examples: Decision Tree, Naïve Bayes, SVM, … 

x 

x x 

x 

x x 

x 

x 

x 

x o o 
o 

o 
o 

o 

o 

o 

o o 

o 
o 

o 

Input: {(x1, y1), (x2, y2), …} 

Output: classification function 

e.g.,    f(x): wtx + b = 0 

        or w1x1+w2x2+b = 0 

Given a new data point 

            f(x) > 0 for y = +1 

 f(x) < 0 for y = -1 

 

f(x) =0 

? 
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Support Vector Machine 

which one is better? 



Network Science 

Xifeng Yan | University of California at Santa Barbara 8 

Maximum Margin  

If we fix f(x) = 1 and -1,  then the margin is   w
2

minimize   
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Decision Tree 
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X1< α 
 

x1 x1= α 
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Decision Tree 
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X1< α 
 

x1 x1= α 

x 2
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X2< β1 
 

decision tree 
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Entropy 
 Let pi be the probability that an arbitrary tuple in D belongs 

to class Ci, estimated by P(Y)= |Ci|/|D| 
 Expected information (entropy, H(Y)) needed to classify a 

tuple in D: 
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12 

Information Gain 

 Select the attribute with the highest information gain 
 Find an attribute that could reduce the entropy -> 

better predicate the class label 
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Attribute Selection Measure: Information Gain (ID3/C4.5) 

X)H(YH(Y)Gain(A) |−=

0)|( 1 =DYH 0)|( 2 =DYH

X1< α 
 

Blue 
 

Red 
 

yes no 

)|()()|( i
i

DYHxpXYH ×= ∑

1D

D

2D

13 



Network Science 

Xifeng Yan | University of California at Santa Barbara 

Graph Classification 
Structure-based Approach 
Local structures in a graph, e.g., neighbors surrounding a 

vertex, paths with fixed length 
Pattern-based Approach 
Subgraph patterns from domain knowledge  
Graph pattern mining 
Decision Tree (Fan et al. KDD’08) 
Boosting (Kudo et al. NIPS’04) 
LAR-LASSO (Tsuda, ICML’07) 
 
Kernel-based Approach  
Random walk (Gärtner ’02, Kashima et al. ’02, ICML’03, Mahé et al. 

ICML’04) 
Optimal local assignment (Fröhlich et al. ICML’05) 
Many others 

14 
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Structure/Pattern-based Classification 
Basic Idea  
 Transform each graph in the dataset into a feature vector,  

 
 
    where         is the frequency of the i-th structure/pattern in       .  Each vector is 

associated with a class label.   Classify these vectors in a vector space 
 
Structure Features  
 Local structures in a graph, e.g., neighbors surrounding a vertex, paths with 

fixed length 
 
 
 
 Subgraph patterns from domain knowledge 
Molecular descriptors 

 Subgraph patterns from data mining  

Enumerate all of the subgraphs and select the best features? 
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Decision-Tree 
Basic Idea  
Partition the data in a top-down manner and construct the tree using 

the best feature at each step according to some criterion 
Partition the data set into two subsets, one containing this feature 

and the other does not 

Optimal graph pattern mining 

16 
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 Kernel 

Map two objects x and x′ via mapping Ф to feature 
space H. 
Measure their similarity in H as Ф(x), Ф(x′). 
Kernel Trick: Compute inner product in H as kernel in 

input space 
 

 
 

 
Goal: reuse linear classifier, e.g., support vector machine, by 

replacing the kernel 
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Feature Space ( )xφ
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The Mercer Condition 

Is there a mapping Φ(x) for any symmetric function K(x,x’)? 
No 

 
The SVM dual formulation requires calculation K(xi , xj) for 

each pair of training instances. The array Gij = K(xi , xj) is 
called the Gram matrix 

 
There is a feature space Φ(x) when G is always semi-

positive definite (Mercer condition) 
 
 A matrix M is semi-positive definite if and only if 
  xtMx >= 0, for all non-zero vector x.  

19 
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Graph Kernel 

 Kernels on pairs of graphs 
 
 A graph kernel makes the whole family of kernel methods 

applicable to graphs, e.g., support vector machine! 
 
 
More details: Graph Kernel Tutorial: 

http://www.cs.ucsb.edu/~xyan/tutorial/kdd08_graph.htm, 
Part II 
Video lecture is available: 

http://videolectures.net/kdd08_borgwardt_gmgk/ (Part II) 
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Random Walk-based Graph Kernel 

 Random walks are sequences of nodes that allow 
repetitions of nodes  
 Count the number of matching walks in two graphs 
 Discount contribution of longer walks 
 Two graphs are similar if many walks are matching 

21 
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Given two graphs, G and H, the vertex set of G × H is the 
Cartesian product V(G) ×V(H) 

 
Two vertices (u,u') and(v,v') are adjacent in G × H if and 

only if  u is adjacent with v and u' is adjacent with v'. 
 

Direct Product Graph 

22 
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Random Walk-based Graph Kernel 

 Construct direct product graph, AX of G and H 
 Count walks in this product graph AX=(VX,EX) 
 Each walk in the product graph corresponds to one walk in 

G and H 
Walks of length k can be computed by looking at the k-th 

power of the adjacency matrix 
 
 
 
 

 
λ is a decay factor for the sum to converge 
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Modular Product of graphs 
 
 Given two graphs, G and H, the vertex set of G × H is the 

Cartesian product V(G) ×V(H) 
 
 Two vertices (u,u') and(v,v') are adjacent in G × H if and 

only if  u is adjacent with v and u' is adjacent with v' , or u is 
not adjacent with v  and u'  is not adjacent with v' . 
 
 Cliques in the modular product graph correspond 

to isomorphism of induced subgraphs of G and H. 
 
 Specifically, the largest graph that is an induced 

subgraph of both G and H corresponds to the maximum 
clique in their modular product.  
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Graph Classification (II) 
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Task: Classify the Nodes 

slides adapted from M. Bilgic 
26 
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Content-only Classification 
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Relational Classification 
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Relational Classification 

Use the attributes (content). 
29 
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Relational Classification 

Use the attributes of the related objects. 
30 
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Relational Classification 

Use the known labels of the related objects. 
31 
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Collective Classification 
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Collective Classification 

Use the unknown labels of the related objects (during testing). 
33 
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Collective Classification 
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Summary – Information Used 

Content-only classification 
Each object’s own attributes only 

Relational classification 
Each object’s own attributes 

Attributes of the neighbors 

Known labels of the neighbors 
Collective classification 
Each object’s own attributes 

Attributes of the neighbors 

Known labels of the neighbors 

Unknown labels of the neighbors (during testing) 

35 
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Content-only Classification 

a1 a2 a3 L 

0 1 0 R 

a1 a2 a3 L 

1 1 0 G 

a1 a2 a3 L 

1 1 0 ? 

a1 a2 a3 L 

1 0 0 ? 

a1 a2 a3 L 

1 0 1 ? 

a1 a2 a3 L 

1 1 1 B 
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Content-only Classification 
a1 a2 a3 L 
1 0 0 R 
1 1 0 R 
0 1 1 B 
0 0 1 B 
0 0 1 G 
0 0 0 G 
0 1 1 ? 
1 0 1 ? 
0 0 0 ? 
0 0 1 ? 

Learn a classifier, such as 
Naïve Bayes, k-NN, 
Logistic Regression, etc 

Use the classifier to 
predict these 

37 
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Problems 

a1 a2 a3 N1 N2 N3 L 
0 1 0 R R B R 

38 
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Problems 

a1 a2 a3 N1 N2 N3 L 
0 1 0 R R B R 

a1 a2 a3 N1 N2 N3 L 
0 1 0 R B R R 

How do we order the neighbors? 

39 
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Problems 

a1 a2 a3 N1 N2 N3 L 
0 1 0 R R B R 

a1 a2 a3 N1 N2 N3 L 
0 1 0 R B R R 

a1 a2 a3 N1 N2 N3 N4 L 
0 1 0 R R B R R 

What if different nodes have different number of neighbors? 

40 
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Aggregation 

Main idea:  
Aggregate a set of attributes into a fixed length representation 

Examples 
Count 

Proportion 

Mod 

Exist 

Mean 

41 
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Count 

a1 a2 a3 CR CB CG L 
0 1 0 2 1 0 R 

a1 a2 a3 CR CB CG L 
0 1 0 2 1 0 R 

a1 a2 a3 CR CB CG L 
0 1 0 3 1 0 R 
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Proportion 

a1 a2 a3 PR PB PG L 
0 1 0 0.67 0.33 0 R 

a1 a2 a3 PR PB PG L 
0 1 0 0.67 0.33 0 R 

a1 a2 a3 PR PB PG L 
0 1 0 0.75 0.25 0 R 
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Exist 

a1 a2 a3 ER EB EG L 
0 1 0 1 1 0 R 

a1 a2 a3 ER EB EG L 
0 1 0 1 1 0 R 

a1 a2 a3 ER EB EG L 
0 1 0 1 1 0 R 
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Feature Construction 

Aggregation is just the tip of the iceberg 
Which relationships to use? 
In-links 

Out-links 

Both 

Co-citation 
Which attributes to borrow from the neighbors? 
All 

Specific ones 
–Words from only the title 
–Age of my friends 
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Additional Reading  

Lise Getoor’s tutorial is available at the lecture repository 
 
http://www.cs.umd.edu/projects/linqs/Tutorials/SDM11/Home

.html 

46 
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Graph Clustering 

47 
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Clustering 

48 

Grouping a collection of objects into clusters, such that 
those within each cluster are more closely related 
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K-Means 

Squared Euclidean Distance 
 
 
 
Sum of Squared Error Distance 
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K-Means Iterative Optimization 

Initialize: Randomly partition the data into k initial clusters 
Step 1: Compute the mean of each cluster 
Step 2: Assign each point to the closest partition  
Step 3: If any point changed its cluster membership 
               Then repeat Step 1 
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Variants: K-medians and K-medoids   

Both minimize the sum of the distances from the centroids 
to the points 
 
K-medians: Instead of calculating the mean for each cluster 

to determine its centroid, K-median instead calculates 
the median.  
K-medoids: It requires that the center of each cluster be a 

sample point.  
 
Both problems can be solved using an iterative method like 

K-means. 
 

51 
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Graph Clustering: Four Strategies 

 Similar Behavior:  u, v are in the same group if and only if 
u and v have similar connections w.r.t other nodes 

 
Graph Cuts 
 Remove some edges => disconnected graph 

 The groups are the connected components 
 
Embedding: Map nodes to vectors in a Euclidean space, 

then use standard clustering methods 
 
 Close Distance:  u, v are in the same group if and only if u 

and v are close to each other 
 

52 
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Greedy Method: k-medians clustering 

Randomly choose 
initial exemplars, 
(data centers) 

Assign data points to 
nearest centers 

For each cluster, 
pick best new 
center 

For each cluster, 
pick best new 
center 

Assign data points to 
nearest centers 

Convergence: 
Final set of 
exemplars 
(centers) 

Slides from Delbert Dueck 
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Olivetti face database 
contains 400 
greyscale 64×64 
images from 40 
people 
Similarity is based on 

sum-of-squared 
distance using a central 
50×50 pixel window 

Small enough 
problem to find exact 
solution 

Example: Olivetti face images 
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Olivetti faces: squared error achieved by 
ONE MILLION runs of k-medians clustering 

Exact solution 
(using LP relaxation + 

days of computation) 

   k-medians clustering, 
one million random 
restarts for each k 

Number of clusters, k 

     Squared 
error 
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AFFINITY PROPAGATION 

Science, 16 Feb. 2007 
joint work with Brendan Frey 

 
 

One-sentence summary: 
All data points are simultaneously 

considered as exemplars, but exchange 
deterministic messages while a good set 

of exemplars gradually emerges. 
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Affinity Propagation: visualization 
All data points are simultaneously considered as exemplars, but 
exchange deterministic messages while a good set of exemplars 
gradually emerges. 



Network Science 

Xifeng Yan | University of California at Santa Barbara 

Affinity Propagation: visualization 
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Affinity Propagation 

TASK: 
 
 

INPUTS: 
A set of pairwise similarities, {s(i,k)}, where s(i,k) is a real number 

indicating how well-suited data point k is as an exemplar for data 
point i 

e.g. s(i,k) = −‖xi − xk‖2, i≠k 
 

For each data point k, a real number, s(k,k), indicating the a priori 
preference that it be chosen as an exemplar 

e.g. s(k,k) = p ∀k 

Identify a subset of data points as exemplars and assign 
every other data point to one of those exemplars 

Need not 
be metric! 
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Affinity Propagation: message-passing 

Affinity propagation can be viewed as data points 
exchanging messages amongst themselves 
It can be derived as belief propagation (max-product) on a 

completely-connected factor graph 

Sending responsibilities, r 
Candidate 
exemplar k 

r(i,k) 

Data point i 

Competing 
candidate 

exemplar k’ 

a(i,k’) 

Sending availabilities, a 

Candidate 
exemplar k 

a(i,k) 

Data point i 

Supporting 
data point i’ 

r(i’,k) 

Responsibilities are how much you think you’re in someone else’s cluster. 
Availabilities are how much I think someone is in my cluster. 
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Affinity Propagation: update equations 

 
Sending responsibilities 

Candidate 
exemplar k 

r(i,k) 

Data point i 

Competing 
candidate 

exemplar k’ 

a(i,k’) 

Sending availabilities 

Candidate 
exemplar k 

a(i,k) 

Data point i 

Supporting 
data point i’ 

r(i’,k) 

Making decisions: 
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Olivetti faces: squared error achieved by 
Affinity Propagation 

Exact solution 
(using LP relaxation + 

days of computation) 

   k-medians clustering, 
one million random 
restarts for each K 

Number of clusters, K 

     Squared 
error 

    Affinity propagation, 
one run, 1000 times faster 
than 106 k-medians runs 
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Clustering Objectives 
 Traditional definition of a “good” clustering: 

1. Points assigned to the same cluster should be highly similar. 

2. Points assigned to different clusters should be highly dissimilar. 

63 

2. Minimize weight of between-group connections 

0.1 

0.2 

1. Maximize weight of within-group connections 

0.8 

0.7 

0.6 

0.8 

0.8 

0.8 

1 

2 

3 

4 

5 

6 

Apply these objectives to our graph representation 

Slides Adapted from Royi Itzhak 
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Graph Cuts 

Express partitioning objectives as a function of the “edge 
cut” of the partition. 
Cut: Set of edges with only one vertex in a group. 

64 
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Graph Cut Criteria 

Criterion: Minimum-cut 
Minimize weight of connections between groups 

65 

min cut(A,B) 
Optimal cut 

Minimum cut 

 Problem: 
 Only considers external cluster connections 
 Does not consider internal cluster density 

 Degenerate case: 



Network Science 

Xifeng Yan | University of California at Santa Barbara 

Graph Cut Criteria (continued) 

 Criterion: Normalized-cut (Shi & Malik,’97) 
Consider the connectivity between groups relative to the density 

of each group. 

66 

 Normalize the association between groups by volume. 
 Vol(A): The total weight of the edges originating from 

group A.  

 Why use this criterion? 
 Produces more balanced partitions. 

 Computing an optimal cut is NP-hard 
 

)(
),(
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Bvol
BAcut
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Spectral Graph Theory 
Possible approach 
Represent a similarity graph as a matrix 
Apply knowledge from Linear Algebra… 

67 

 Spectral Graph Theory 
 Analyze the “spectrum” of matrix representing a graph. 
 Spectrum : The eigenvectors of a graph, ordered by the 

magnitude of their corresponding eigenvalues. 

 The eigenvalues and 
eigenvectors of a matrix 
provide global information 
about its structure. 
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Matrix Representations 

Adjacency matrix (A) 
 n x n matrix 

               : edge weight between vertex xi and xj 

x1 x2 x3 x4 x5 x6 

x1 0 0.8 0.6 0 0.1 0 

x2 0.8 0 0.8 0 0 0 

x3 0.6 0.8 0 0.2 0 0 

x4 0.8 0 0.2 0 0.8 0.7 

x5 0.1 0 0 0.8 0 0.8 

x6 0 0 0 0.7 0.8 0 

][ ijwA =

68 
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 Important properties:  
 Symmetric matrix 
⇒  Eigenvectors are real and orthogonal 
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Matrix Representations (continued) 

Degree matrix (D) 
    n x n  diagonal matrix 

                           : total weight of edges incident to vertex xi 

69 

 Important application: 
 Normalize adjacency matrix 

x1 x2 x3 x4 x5 x6 

x1 1.5 0 0 0 0 0 

x2 0 1.6 0 0 0 0 

x3 0 0 1.6 0 0 0 

x4 0 0 0 2.5 0 0 

x5 0 0 0 0 1.7 0 

x6 0 0 0 0 0 1.5 

0.1 

0.2 

0.8 
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0.6 

0.8 

0.8 
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Matrix Representations (continued) 

Laplacian matrix 
 n x n symmetric matrix 

x1 x2 x3 x4 x5 x6 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 
-

0.8 1.6 -0.8 0 0 0 

x3 
-

0.6 -0.8 1.6 -
0.2 0 0 

x4 
-

0.8 0 -0.2 2.5 -0.8 -
0.7 

x5 
-

0.1 0 0 0.8 1.7 -
0.8 

x6 0 0 0 -
0.7 -0.8 1.5 

70 

Important properties: 
 Eigenvalues are non-negative real numbers 
 Eigenvectors are real and orthogonal 
 Eigenvalues and eigenvectors provide an insight into the 

connectivity of the graph… 
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Find An Optimal Min-Cut (Hall’70, Fiedler’73) 

 Express a bi-partition (A,B) as a vector 

71 

 The Rayleigh Theorem shows: 
 The minimum value for f(p) is given by  

the 2nd smallest eigenvalue of the Laplacian L. 
 The optimal solution for p is given by the corresponding 

eigenvector x2, referred as the Fiedler Vector. 
 

 We can minimize the cut of the partition by finding a 
non-trivial vector p that minimizes the function 

Laplacian 
matrix 
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So far… 

 How can we define a “good” partition of a graph? 
 Minimize a given graph cut criterion. 

72 

⇒ Spectral Clustering (Simon et. al,’90) 

 How can we efficiently identify such a partition? 
 Approximate using information provided by the 

eigenvalues and eigenvectors of a graph. 
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Spectral Clustering Algorithms 

 Three basic stages: 
 

1. Pre-processing 
– Construct a matrix representation of the dataset. 
 

2. Decomposition 
– Compute eigenvalues and eigenvectors of the matrix. 
– Map each point to a lower-dimensional representation based on one 

or more eigenvectors. 
 

3. Grouping 
– Assign points to two or more clusters, based on the new 

representation. 

73 
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Spectral Bi-partitioning Algorithm (Simon,’90) 

1. Pre-processing 
 Build Laplacian  

matrix L of the  
graph 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 -0.8 1.6 -0.8 0 0 0 

x3 -0.6 -0.8 1.6 -0.2 0 0 

x4 -0.8 0 -0.2 2.5 -0.8 -0.7 

x5 -0.1 0 0 0.8 1.7 -0.8 

x6 0 0 0 -0.7 -0.8 1.5 

74 

0.9 0.8 0.5 -0.2 -0.7 0.4 

-0.2 -0.6 -0.8 -0.4 -0.7 0.4 

-0.6 -0.4 0.2 0.9 -0.4 0.4 

0.6 -0.2 0.0 -0.2 0.2 0.4 

0.3 0.4 -0. 0.1 0.2 0.4 

-0.9 -0.2 0.4 0.1 0.2 0.4 

3.0 

2.5 

2.3 

2.2 

0.4 

0.0 

Λ = X = 

2. Decomposition 
 Find eigenvalues Λ  

and eigenvectors X  
of the matrix L 
 

How do we find 
the clusters? 

-0.7 x6 

-0.7 x5 

-0.4 x4 

0.2 x3 

0.2 x2 

0.2 x1  Map vertices to 
corresponding 
components of λ2 
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Spectral Bi-partitioning (continued) 
 Grouping 

 Sort components of reduced 1-dimensional vector. 

 Identify clusters by splitting the sorted vector in two. 
 

 How to choose a splitting point? 
 Naïve approaches:  

– Split at 0, mean or median value 
 More expensive approaches 

– Attempt to minimize normalised cut criterion in 1-dimension 
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-0.7 x6 

-0.7 x5 

-0.4 x4 

0.2 x3 

0.2 x2 

0.2 x1 Split at 0 
Cluster A: Positive points 

Cluster B: Negative 
points 

0.2 x3 

0.2 x2 

0.2 x1 

-0.7 x6 

-0.7 x5 

-0.4 x4 

A B 
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K-Eigenvector Clustering 

 K-eigenvector Algorithm (Ng et al.,’01) 
1. Pre-processing 

– Construct the scaled adjacency matrix 
2/12/1' −−= ADDA

76 

2. Decomposition 
 Find the eigenvalues and eigenvectors of A'. 
 Build embedded space from the eigenvectors 

corresponding to the k largest eigenvalues. 

3. Grouping 
 Apply k-means to reduced n x k space to produce k 

clusters. 
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Aside: How to select k? 
Eigengap: the difference between two consecutive eigenvalues. 
Most stable clustering is generally given by the value k that maximizes the 

expression 
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⇒ Choose k=2 

12max λλ −=∆ k

1−−=∆ kkk λλ
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Random Walk with Restart 

From Hanghang Tong 
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Random Walk with Restart 

Node 4 
Node 1 
Node 2 
Node 3 
Node 4 
Node 5 
Node 6 
Node 7 
Node 8 
Node 9 
Node 10 
Node 11 
Node 12 

0.13 
0.10 
0.13 
0.22 
0.13 
0.05 
0.05 
0.08 
0.04 
0.03 
0.04 
0.02 

1 

4 

3 

2 

5 
6 

7 

9 
10 

8 
11 

12 
0.13 

0.10 

0.13 

0.13 

0.05 

0.05 

0.08 

0.04 

0.02 

0.04 

0.03 

ranking vector  
More red, more relevant 
Nearby nodes, higher scores 
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Random Walk with Restart 

The walk distribution satisfies a simple equation: 
 
 
 
      : Transition matrix  
 
      : Restart probability 

 
      : Start node 

 
      : Ranking vector 

 
  Solution: 
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e

π

c

ePππ cc +−= )1(
P

ePπ 1))1(( −−−= cIc
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1 

4 
3 

2 

5 6 

7 

9 10 

8 
11 

12 

0.13  0    1/3   1/3  1/3   0    0   0    0   0   0   0     0
0.10 1/3    0    1/3    0    0    0    0   1/4 0   0   0  
0.13
0.22
0.13
0.05

0.9
0.05
0.08
0.04
0.03
0.04
0.02

 
 
 
 
 
 
 
 
  = × 
 
 
 
 
 
 
 
 
 

   0
1/3   1/3   0    1/3   0    0   0   0   0    0   0     0
1/3    0    1/3   0   1/4   0   0    0   0   0   0     0
0   0   0    1/3 0   1/2 1/2 1/4 0   0   0     0
0     0      0     0    1/4  0   1/2  0   0   0   0     0
 0     0      0     0    1/4 1/2  0    0   0   0   0     0
 0    1/3    0     0    1/4   0   0    0   1/2  0  1/3   0
0     0      0     0      0    0   0   1/4   0   1/3  0    0
0     0      0     0      0    0   0    0    1/2  0  1/3  1/2
 0     0      0     0      0    0   0   1/4   0   1/3  0   1/2
 0     0      0     0      0    0   0    0     0   1/3  1/3  0

 

















 

0.13 0
0.10 0
0.13 0
0.22
0.13 0
0.05 0

0.1
0.05 0
0.08 0
0.04 0
0.03 0
0.04 0

2 0

1

0.0

   
   
   
   
   
   
   
   
   + ×   
   
   
   
   
   
   
   
   
   

n x n n x 1 n x 1 

Example of RWR 
Iterative update until convergence 

ePππ cc tt +−= −1)1(
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