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Announcement 

 No Homework 
 Slides available at www.cs.ucsb.edu/~xyan/classes/NS201 
 Two Quizzes (Dec 3, 10), mainly about concepts and 

ideas.  
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 (Graph Comparison) Given two graphs G and G′ from the 
space of graphs G. The problem of graph comparison is to 
find a mapping 

    s : G × G → R 
 such that s(G,G′) quantifies the similarity (or dissimilarity) of 

G and G′. 

Graph Comparison 
 

3 



Network Science 

Xifeng Yan | University of California at Santa Barbara 

(Graph Isomorphism) Find a mapping φ of the vertices of G 
to the vertices of G’ such that G and G’ are identical; i.e. (x,y) 
is an edge of G iff (φ(x), φ(y)) is an edge of G’. Then φ is an 
isomorphism, and G and G’ are called isomorphic. 
 
• No polynomial-time algorithm is known for graph 

isomorphism 
• Neither is it known to be NP-complete 
 
(Subgraph Isomorphism) Subgraph isomorphism asks if 
there is a subset of edges and vertices of G’ that is 
isomorphic to a smaller graph G 

 
• Subgraph isomorphism is NP-complete 

Graph Isomorphism 
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(Induced Subgraph Isomorphism) G=(V,E) is isomorphic to 
an induced subgraph of  G’=(V’,E’)  if there is an injective 
function φ which maps the vertices of G to vertices 
of G’ such that for all pairs of vertices x, y in V, edge (x, y) is 
in E if and only if the edge (φ(x),  φ(y)) is in E’.  

 
• An injective function never maps distinct elements of 

its domain to the same element of its co-domain. 
• Induced Subgraph isomorphism is NP-complete 

Induced Subgraph Isomorphism 
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Subgraph isomorphic,  
Not induced subgraph isomorphic 
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Graph Edit Distance 
• Edit Distance: Count the minimum operations needed to 

transform G into G’: edge/node insertion/deletion, 
modification of labels 

• Variant: Assign costs to different types of operations 
• Pros  

• Captures topological similarities between graphs  
• Cons 

• Very expensive (NP-hard) 

• Choosing cost function for different operations is difficult  
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Maximum Common Subgraph 
•  Given two graphs G and G’, the maximum common 

subgraph is the largest subgraph of  G isomorphic to a 
subgraph of G’. 
 

•  The distance of G and G’ and be defined as 
 
 

      
where is M the maximum common subgraph of G and G’  
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• Node/Edge has labels 
• Labels could be 

• Type of nodes/edges 

•  Profiles, attribute/value lists 

•  Messages between nodes 

•  Time sequences 

•  Any …,  

Attributed Graphs 
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Graph Pattern Mining Scenarios 
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Multiple Graphs 

• Multiple Graphs Scenario 

• Single Graph Scenario 

Single Graphs 
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Graph Pattern Mining 

multiple graphs setting 
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Graph Pattern Mining 

• Frequent graph patterns 
• Optimal graph patterns 
• Graph patterns with constraints 
• Approximate graph patterns 
• Pattern summarization 
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Applications of Graph Patterns  

• Mining biochemical structures 
• Finding biological conserved subnetworks 
• Finding functional modules 
• Program control flow analysis 
• Intrusion network analysis 
• Mining communication networks 
• Anomaly detection 
• Mining XML structures 
• Building blocks for graph classification, clustering, 

compression, comparison, correlation analysis, and 
indexing 

… 
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Graph Patterns 

Interestingness measures / Objective functions 
• Frequency: frequent graph pattern 

• Discriminative: information gain,  Fisher score 

• Significance: G-test 

• … 
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Frequent Graph Pattern 
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Example: Frequent Subgraphs 

(a) caffeine (b) diurobromine (c) viagra 

CHEMICAL COMPOUNDS 

FREQUENT SUBGRAPH 

… 
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Example (cont.) 

PROGRAM CALL GRAPHS 

FREQUENT SUBGRAPHS 
(MIN SUPPORT IS 2) 
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Graph Mining Algorithms 
Inductive Logic Programming (WARMR, King et al. 2001) 

Graphs are represented by Datalog facts 

Graph Based Approaches 
 Apriori-based approach 

 AGM/AcGM: Inokuchi, et al. (PKDD’00) 

 FSG: Kuramochi and Karypis (ICDM’01) 

 PATH#: Vanetik and Gudes (ICDM’02, ICDM’04) 

 FFSM: Huan, et al. (ICDM’03) and SPIN: Huan et al. (KDD’04) 

 FTOSM: Horvath et al. (KDD’06) 

 Pattern growth approach 
 Subdue: Holder et al. (KDD’94) 

MoFa: Borgelt and Berthold (ICDM’02) 

 gSpan: Yan and Han (ICDM’02) 

Gaston: Nijssen and Kok (KDD’04) 

CMTreeMiner: Chi et al. (TKDE’05) 

 LEAP: Yan et al. (SIGMOD’08) 
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If a graph is frequent, all of its subgraphs are frequent. 

… heuristics 

Apriori Property  
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Cost Analysis 

isomorphism  
checking candidates 

•frequent 
•infrequent (X) 
•duplicate (X) data  
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Apriori-Based Approach 

… 

G 

G1 

G2 

Gn 

k-edge 
(k+1)-edge 

G’ 

G’’ 

join 
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Apriori-Based, Breadth-First Search 

AGM (Inokuchi, et al. PKDD’00)  
generates new graphs with one more node 

 Methodology: breadth-search, joining two 
graphs  

 FSG (Kuramochi and Karypis ICDM’01) 
 generates new graphs with one more edge 
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Pattern Growth Method 

… 

G 

G1 

G2 

G’1 k-edge 
(k+1)-edge 

grow 

(k+2)-edge 

G’2 

… 
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• detect duplicates 

• avoid duplicates 

Pattern Growth Method 
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22 new graphs 

6 edges 

… 

7 edges 

Discovery Order: Free Extension 
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depth-first search 

4 new graphs 

7 edges 

right-most path start end 

Discovery Order: Right-Most Extension  
(Yan and Han ICDM’02) 
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Depth First Search (DFS) 

Forward Edge Set:  Edges that are visited by a DFS  
Backward Edge Set:  Edges that are not visited by a DFS 

26 

A depth-first search starting at one node in a graph, 
assuming the search remembers previously visited nodes 
and will not repeat them.  
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DFS code and Minimum DFS code 

• We use a 5-tuple (vi, vj, l(vi), l(vj), l(vi,vj)) to represent an 
edge. 
 

• Turn a graph into a sequence whose basic element is 5-
tuple. Form the sequence in such an order: 
• To extend one new node, add the forward edge that 

connect one node in the old graph with this new node. 
• Add all backward edge that connect this new node to other 

nodes in the old graph 
• repeat this procedure.  
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DFS code 

X 

Y 

X 

Z 

Z 

a a 

b 

b 
c 

d 

v0 

v1 

v2 

v3 
v4 

X 

Y 

a 

e0: (0,1,x,y,a) 

X 

b 

e1: (1,2,y,x,b) a 

e2: (2,0,x,x,a) 

Z 

c e3: (2,3,x,z,c) 
b 

e4: (3,1,x,y,b) 

Z 

d 

e5: (1,4,x,z,d) 
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Edge no. (B) (C) (D)

0 (0,1,x,y,a) (0,1,y,x,a) (0,1,x,x,a)

1 (1,2,y,x,b) (1,2,x,x,a) (1,2,x,y,b)

2 (2,0,x,x,a) (2,0,x,y,b) (0,1,y,x,a)

3 (2,3,x,z,c) (2,3,x,z,c) (2,3,y,z,a)

4 (3,1,z,y,b) (3,0,z,y,b) (3,1,z,x,c)

5 (1,4,x,z,d) (0,4,y,z,d) (2,4,y,z,d)
November 
25, 2014 

Minimum DFS code 
Each Graph may have lots of DFS code: 
the smallest lexicographic one is its Minimum DFS Code 
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Parent and its Children 

X 

Y 

X 

Z 
Z 

a 

b 

c 

a 

Given a minimum DFS code  
c0=(e0,e1,…,en) 
c1=(e0,e1,…,en,ex) 
 
c0 is c1’s parent. 
c1 might not a minimum 
DFS code 
 

? 

? 

? 

? 

? 

? 

? 

? 
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DFS Code Tree 

... 

... ... 

1-edge 

2-edge 

... 3-edge 
... 

... 

... 

... 

same graph 
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Theorems 

• 1. Given two graphs G0 and G1, G0 is isomorphic to G1 iff 
min_dfs_code(G0)=min_dfs_code(G1). 
 

• 2. DFS Code Tree covers all graphs although some tree 
nodes may represent the same graph. (Covering) 
 

• 3. Given a node in DFS Code Tree, if its DFS code is not 
its minimum DFS code, prune this node and its all 
descendants won’t change “Covering”. 
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Duplicates Elimination 

Option 1 
• Check graph isomorphism of       with each graph (slow) 

 
• Option 2 
 Transform each graph to a canonical label, create a hash value 

for this canonical label, and check if there is a match with       
(faster) 
 

• Option 3 
 Build a canonical order and generate graph patterns in that order 

(fastest) 
 

 

Existing patterns 
Newly discovered pattern 
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Properties of Graph Mining Algorithms 

Search order 
breadth vs. depth 

Generation of candidate subgraphs 
apriori vs. pattern growth 

Elimination of duplicate subgraphs 
passive vs. active 

Support calculation 
embedding store or not 

Discovery order of patterns 
path  tree  graph 

K-edge (K+1)-edge 
G G1 

G2 

Gn 

… 
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Performance: Run Time (Wörlein et al. PKDD’05) 

Minimum support (in %) 
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The AIDS antiviral screen compound dataset from NCI/NIH 



Network Science 

Xifeng Yan | University of California at Santa Barbara 36 

Performance: Memory Usage (Wörlein et al. PKDD’05) 

Minimum support (in %) 
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Graph Pattern Explosion Problem 

• If a graph is frequent, all of its subgraphs are frequent ─ the Apriori 

property  
• An n-edge frequent graph may have 2n subgraphs! 

• In the AIDS antiviral screen dataset with 400+ compounds, at the 

support level 5%, there are > 1M frequent graph patterns 
 
Conclusions: Many enumeration algorithms are available 
 AGM, FSG, gSpan, Path-Join, MoFa, FFSM, SPIN, Gaston, and so 

on, but three significant problems exist. 
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Closed and Maximal Graph Pattern 

Closed Frequent Graph 
• A frequent graph G is closed if there exists no supergraph of G that 

carries the same frequency as G 

• If some of G’s subgraphs have the same frequency, it is unnecessary 

to output these subgraphs (nonclosed graphs) 

• Lossless compression: still ensures that the mining result is complete 

 

Maximal Frequent Graph 
• A frequent graph G is maximal if there exists no supergraph of G that is 

frequent 
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Number of Patterns: Frequent vs. Closed 

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0.05 0.06 0.07 0.08 0.1

frequent graphs
closed frequent graphs

Minimum support 
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CLOSEGRAPH (Yan and Han, KDD’03) 

… 

A Pattern-Growth Approach 

G 

G1 

G2 

Gn 

k-edge 

(k+1)-edge  
At what condition, can we 

stop searching their supergraph 
i.e., early termination? 

 
If G and G’ are frequent, G is a 
subgraph of G’.  If in any part 
of graphs in the dataset 
where G occurs, G’ also 
occurs, then we need not grow 
G, since none of G’s supergraphs 
will be closed except those of G’. 
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Handling Tricky Cases 

(graph 1) 

a 

c 

b 

d 

(pattern 2) 

(pattern 1) 

(graph 2) 

a 

c 

b 

d 

a b 

a 

c d 

Edges a and b are always together,  
shall we grow them together?  
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Graph Pattern with Other Measures 
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Challenge: Non Anti-Monotonic 

Anti-Monotonic 

Non Monotonic 

Non-Monotonic: Enumerate all subgraphs, then check their score? 

Enumerate subgraphs  
: small-size to large-size 
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Frequent Pattern Based Mining Framework 

Exploratory task 

Graph clustering 

Graph classification 

Graph index 

Graph Database Frequent Patterns Graph Patterns  

1. Bottleneck : millions, even billions of patterns 

2. No guarantee of quality 
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Optimal Graph Pattern 
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Direct Pattern Mining Framework 

Exploratory task 

Graph clustering 

Graph classification 

Graph index 

Graph Database Optimal Patterns 

Direct 
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Upper-Bound 
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Upper-Bound: Anti-Monotonic (cont.) 

Rule of Thumb :  
If the frequency difference of a graph pattern in 
the positive dataset and the negative dataset 
increases, the pattern becomes more interesting 

We can recycle the existing graph mining algorithms to 
accommodate non-monotonic functions.  
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Vertical Pruning 
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Horizontal Pruning: Structural Proximity  
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Graph Pattern with Topological Constraints 

51 
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Constraint-Based Graph Pattern Mining 

• Highly connected subgraphs in a large graph usually 
are not artifacts (group, functionality) 

• Recurrent patterns discovered in multiple graphs are 
more robust than the patterns mined from a single graph 

52 
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No Downward Closure Property 

Given two graphs G and G’, if G is a  
subgraph of  G’, it does not imply that the  
connectivity of G’ is less than that of G, and  
vice versa. 

G G’ 
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Pattern Summarization (Xin et al., KDD’06, Chen et al. CIKM’08) 

• Too many patterns may not lead to more explicit 
knowledge 

• It can confuse users as well as further discovery (e.g., 
clustering, classification, indexing, etc.) 

• A small set of “representative” patterns that preserve 
most of the information 



Network Science 

Xifeng Yan | University of California at Santa Barbara 55 

Pattern Summarization (Xin et al., KDD’06, Chen et al. CIKM’08) 
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Pattern Distance 

… … 

patterns graphs 

distance 

measure 1: pattern based 
• pattern containment 
• pattern similarity 

measure 2: data based 
• data similarity 

patterns 
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Graph Patterns in Social Network 

57 

What is the appropriate definition of graph patterns  
in social networks? 
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Homophily in Social Network 

Beyonce,  
Madonna Lady Gaga 

Britney  
Spears,  
Lady Gaga 

Katy Perry, 
Madonna 

Britney  
Spears  

Metallica, 
Megadeth 

Megadeth, 
Slayer 

Metallica 

Megadeth, 
Slayer 

Last.FM 
 

Nodes -> Users 
 

Edges -> Links 
 

List of Musical  
Bands/ Singers 

What are the 
related Musical 
Bands/ Singers  
that co-occur 
frequently in 
neighborhood? 
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Homophily in Social Network 

Beyonce,  
Madonna Lady Gaga 

Britney  
Spears,  
Lady Gaga 

Katy Perry, 
Madonna 

Britney  
Spears  

Metallica, 
Megadeth 

Megadeth, 
Slayer 

Metallica 

Megadeth, 
Slayer 

Last.FM 
 

Nodes -> Users 
 

Edges -> Links 
 

List of Musical  
Bands/ Singers 

What are the 
related Musical 
Bands/ Singers  
that co-occur 
frequently in 
neighborhood? 
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Homophily in Social Network 

Beyonce,  
Madonna Lady Gaga 

Britney  
Spears,  
Lady Gaga 

Katy Perry, 
Madonna 

Britney  
Spears  

Metallica, 
Megadeth 

Megadeth, 
Slayer 

Metallica 

Megadeth, 
Slayer 

Last.FM 
 

Nodes -> Users 
 

Edges -> Links 
 

List of Musical  
Bands/ Singers 

What are the 
related Musical 
Bands/ Singers  
that co-occur 
frequently in 
neighborhood? 
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Information Propagation Model  

61 

a b c d … 
0.5 0.3 0.3 1.5 … 

node u 
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Probabilistic Itemset Mining 

1 
a 

b 

c d 

a b d 

d a 

c 

c 

b 

b 

a 1 

2 2 3 3 

4 4 

Information 
Propagation 

a b c d 
1 1.00 0.12 0.00 0.12 
2 0.19 0.00 0.00 1.00 
3 0.12 1.00 0.12 0.00 
4 0.00 0.19 1.00 0.00 

NmPA 

 Frequent-Pattern (FP) Tree cannot handle 
fractional association values because of the new 
definition of Support.  
 

 Modify FP Tree Structure and Algorithm. 
 

 C. C. Aggarwal et. al  (KDD ’09), Bernecker et. al 
(KDD ‘09). 

Frequent Itemset 
Mining (Probabilistic) 
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Correlation and Anomaly in Graphs 

63 
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Example of Correlations   

64 

: 

Correlation between the occurrence of an event and the network structure 
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Pattern Kaleidoscope 

•  Frequent Graph Pattern  
•  Proximity Pattern  
•  Attribute-Structure Correlations  
•  Cohesive Pattern 
•  Itemset-sharing Pattern 
•  Graph Topological pattern  
•  Graph Iceberg  
•  Graph Anomaly 
 

65 

Akoglu et al., Tutorial at WSDM’13 
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Which product’s sales is more correlated with the social 
network structure?  

 

Waterworld game HP printer 

Structural Correlational Pattern  [Guan et al.,SIGMOD’11] 
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A General Situation 

•  Events taking place on nodes 
of a social graph 
• Online shopping 

• Blogging 

• Virus infection 
 

•  Social influence vs. Random 
occurrence 
 

 
 

67 
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Problem Formulation 
  A graph G = (V, E) and an event set Q = {qi} 
Vq--the set of nodes having event q. Let |Vq| = m, |V| = n 

 

Is q1 
correlate
d in G? 

(1) 

(1) q1  
(2) q2 
(3) q3  

q1 q2 q3 

(2) 
(ranking) 

68 
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How to Characterize Correlation? 

• If correlated, blue nodes 
tend to stick together. 
 

•  A naïve approach: only 
look at neighborhood 
 

• General idea: compute the 
aggregated proximity 
among blue nodes 
 

69 
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Measure Definition 

•  The measure is defined as 
 

 
 

 

Vq: the set of nodes having event q; s(∙) can be any 
graph proximity measure, e.g. hitting time. 

( , \{
(

})
) qv qV

q
q

s v V v

V
Vρ ∈

=
∑
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Measure Definition 
•  Hitting time: expected number of steps to reach a target 

node via random walk: 
 
 

B: target node set; Pr(TB=t|x0=vi): the probability that we 
start from vi and reach B after t steps 

v 

Hitting time will 
not count this 
node 

0
1

( , ) Pr( | )
t

i B ih v B t T t x v
∞

=

= = =∑
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Hitting time & Decayed Hitting Time 

•  Hitting time: expected number of steps to reach a target 
node via random walk: 
 

 

• B: target node set; Pr(TB=t|x0=vi): the probability that we 
start from vi and reach B after t steps 

 
 
 
 

    
                   

 

0
1

( , ) Pr( | )
t

i B ih v B t T t x v
∞

=

= = =∑
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Hitting time & Decayed Hitting Time 
•  Hitting time: expected number of steps to reach a target node via 

random walk: 
 
 
B: target node set; Pr(TB=t|x0=vi): the probability that we 

start from vi and reach B after t steps 
 

•  Decayed Hitting Time (DHT): 
 
 
 
 

    
 
 
 
 
 

0
1

( , ) Pr( | )
t

i B ih v B t T t x v
∞

=

= = =∑

1)

1
0

(( , ) Pr( | )i B i
t

t
h v B e T t x v

∞
− −

=

= = =∑

o Mapping [1,∞) to [0,1], high value means high proximity 
o Emphasizing the importance of local neighborhood and  
 reducing  the impact of long paths 
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Two-event Structural Correlations  
How is the relationship between the sales of two products 
in a social network?  

 
Attraction 
(positive 
correlation) 

Repulsion 
(negative 
correlation) 

Video games Computers  
74 
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Anomaly Detection in Graphs 

 Various Interesting-ness/Anomaly Criteria  
       e.g.,  
Bgp-lens: anomalies in internet routing updates.  

   [Prakash et al., KDD’09] 

Oddball: anomalies in weighted graphs. 

   [Akoglu et al., PAKDD’10]  

Heavy subgraphs in time-evolving networks.  

   [Bogdanov et al., ICDM’11] 
 Anomaly, Event, and Fraud Detection in Large Graph Datasets, 

Akoglu et al., http://www.cs.stonybrook.edu/~leman/wsdm13/ 
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Anomaly Vertices/ Regions 

Action 

Comedy 

1. Target marketing 
2. Recommendation systems 
3. Social influence analysis  
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 Anomalous Regions (i.e., gAnomaly)  

 Why does a disease occur more intensively in some portions of 
a network? 

 
 Why do a subset of computers receive most of the attacks in 

the past day, and are they therefore targeted attacks? 

77 
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