Network Science : Lecture IX

Graph Query

Computer Science Department Data Mining Research

Dec 2, 2014

Graph Queries

- Containment Query Retrieves all graphs from a graph database, such that they contain a given query graph (exact and approximate).
- Similarity Query Retrieves all graphs from a graph database, that are similar to the query graph (exact and approximate).
- Matching Query Find all occurrences of a query graph in a large target network (exact and approximate).

Containment Query

Find all of the graphs in a database that contain the query graph

query graph

graph database

Indexing Graphs

Indexing is crucial

Filtering and Verification

Subgraph Isomorphism Problem is **NP-hard**.

Filtering and Verification

Filtering Phase:

Feature-based index is used to filter out the negative results and generate a candidate sets.

Verification Phase:

Precise Subgraph Isomorphism Testing to generate final results from the candidate set.

Indexing Strategy

Index substructures of a query graph to prune graphs that do not contain all of these substructures

Indexing Framework

• Two steps in processing graph queries

Step 1. Index Construction

 Enumerate structures in the graph database, build an inverted index between structures and graphs

Step 2. Query Processing

- Enumerate structures in the query graph
- Calculate the candidate graphs containing these structures
- Prune the false positive answers by performing subgraph isomorphism test

Feature-based Index

Question: What kind of substructures to index? Options:

- 1. Node/edge labels
- 2. All of the substructures
- 3. Paths (Shasha et al. PODS'02)
- 4. Frequent graphs
- 5. Discriminative frequent graphs (Yan et al. SIGMOD'04)
- 6. Trees

Cost Analysis

QUERY RESPONSE TIME

$$T_{index} + C_q \times (T_{io} + T_{isomorphism_testing})$$
fetch index number of candidates

REMARK: make $|C_q|$ as small as possible

Path-based Approach GRAPH DATABASE

PATHS

0-length: C, O, N, S 1-length: C-C, C-O, C-N, C-S, N-N, S-O 2-length: C-C-C, C-O-C, C-N-C, ... 3-length: ...

Built an inverted index between paths and graphs

Network Science

Path-based Approach (cont.)

QUERY GRAPH

. . .

0-edge: $S_C = \{a, b, c\}, S_N = \{a, b, c\}$ 1-edge: $S_{C-C} = \{a, b, c\}, S_{C-N} = \{a, b, c\}$ 2-edge: $S_{C-N-C} = \{a, b\}, \dots$

Intersect these sets, we obtain the candidate answers - graph (a) and graph (b) - which may contain this query graph.

Problems: Path-based Approach

GRAPH DATABASE

QUERY GRAPH

Only graph (c) contains this query graph. However, if we only index paths: C, C-C, C-C-C, C-C-C, we cannot prune graphs (a) and (b). **Network Science**

Using Frequent Patterns!!!

Discriminative Graphs

Remark: It is a kind of pattern post processing

patterns

Discriminative Graphs

- Pinpoint the most useful frequent structures
 - Given a set of structures $f_1, f_2, \dots f_n$ and a new structure x, we measure the extra indexing power provided by x,

 $P(g \text{ contains } x | g \text{ contains } f_1, f_2, \dots, f_n), f_i \subset x.$

When P is small enough, x is a discriminative structure and should be included in the index

 Index discriminative frequent structures only -Reduce the index size by an order of magnitude

Why Frequent Structures?

- We cannot index (or even search) all of substructures
- Large structures will likely be indexed well by their substructures
- Size-increasing support threshold

Index Graphs by Data Mining

- Identify frequent structures in the database
- Create a pattern lattice, Prune redundant frequent structures to obtain a small set of discriminative structures
- Create an inverted index between discriminative frequent structures and graphs in the database

Experiments: Index Size

Experiments: Answer Set Size

Structure Similarity Search

(a) caffeine

(b) diurobromine

(c) viagra

• QUERY GRAPH

Similarity Measure

- Feature-based similarity measure
 - Each graph is represented as a feature vector

$$X = \{x_1, x_2, \dots, x_n\}$$

- The similarity is defined by the distance of their corresponding vectors
- Advantages
 - Easy to index
 - Fast
 - Rough measure

Similarity Measure

- Structure-based similarity measure
 - The maximum common subgraph (P) between query graph (Q) and target graph (G)

$$similarity = \frac{|P|}{|Q|}$$

 Similarity search: form P by deleting edges/nodes from Q; find graphs that contain P

Structure-based Similarity Measure

Some "Straightforward" Methods

□Method1: Directly compute the similarity between the graphs in the DB and the query graph

- Sequential scan
- Subgraph similarity computation

original query graph and use the exact subgraph search

Costly: If we allow 3 edges to be missed in a 20-edge query graph, it may generate 1,140 subgraphs

From Edge Misses To Feature Misses

Feature-based Pruning

Feature-Graph Matrix

		G ₁	G ₂	G ₃	G ₄	G ₅
features	f ₁	0	1	0	1	1
	f ₂	0	1	0	0	1
	f ₃	1	0	1	1	1
	f ₄	1	0	0	0	1
-	f ₅	0	0	1	1	0

Assume a query graph has 5 features; At least 3 features should be retained

 $\times \times \times$

Feature Miss Estimation

- Connection to maximum coverage
 - If we allow k edges to be relaxed (relabel or deletion),
 J is the maximum number of features to be hit by k
 edges maximum coverage problem
- maximum coverage problem: Given several sets and a number, the sets may have some elements in common. You must select at most k of these sets such that the maximum number of elements are covered, i.e. the union of the selected sets has maximal size.
- NP-complete

Feature-Edge Matrix

features

• A greedy algorithm exists $J_{greedy} \ge (1 - (1 - \frac{1}{k})^k) \cdot J$

Feature Selection

Should we use all the features in a query graph?

- Features differentiate with selectivity and size
- How to select a good feature set?
 - features with similar properties: clustering
 - enough number of features

Remark: another kind of pattern post processing

Feature Selection Works

Network Science

Superimposed Distance

Same Topological Structure But different Labels

$MD = \sum_{v'=f(v)} D(l(v), l'(v')) + \sum_{e'=f(e)} D(l(e), l'(e'))$

Minimum Superimposed Distance

Given two graphs, Q and G, let M be the set of subgraphs in G that are isomorphic to Q. The minimum superimposed distance between Q and G is the minimum distance between Q and Q' in M.

$$d(Q,G) = \min_{Q' \in M} d(Q,Q'),$$

where d(Q, Q') is a distance function of two isomorphic graphs Q and Q'.

Substructure Search With Superimposed Distance

Given a set of graphs D={G₁, G₂, ..., G_n} and a query graph Q, SSSD is to find all G_i in D such that

$d(Q,G_i) \le \sigma$

Feature Partitions

Target graph G

Query graph Q

Partition I

Hexagon + Path

Partition II

Pentagon + Path

Partition-Based Search

□We partition a query graph Q into non-overlapping indexed features f₁, f₂, ..., f_m, and use them to do pruning. If the distance function satisfies the following inequality,

$$\sum_{i=1}^{m} d(f_i, G) \le d(Q, G)$$

We can get the lower bound of the superimposed distance between Q and G by adding up the superimposed distance between f_i and G.

Overlapping Relation Graph

Query graph Q

node: feature edge: overlapping node weight: minimum distance between f_i and G_i , $d(f_i, G)$

Across Multiple Graphs

node weight is redefined

Using average minimum distance between a feature f and the graphs G_i in the database, written as

$$w(f) = \frac{\sum_{i=1}^{n} d(f, G_i)}{n}$$

Network Science

Structured Query Language

"find all patients diagnosed with eye tumor"

WITH Traversed (cls,syn) AS ((SELECT R.cls, R.syn FROM XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/properties [property/name/text()="Synonym" and property/value/text()="Eve Tumor"] /property[name/text()="Synonym"]/value' COLUMNS cls CHAR(64) **PATH** './parent::*/parent::* /parent::*/name', tgt CHAR(64) PATH'.') AS R) UNION ALL (SELECT CH.cls, CH.syn FROM Traversed PR. XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/definingConcepts/ concept[./text()=\$parent]/parent::*/parent::*/ properties/property[name/text()="Synonym"]/value' PASSING PR.cls AS "parent" COLUMNS cls CHAR(64) PATH './parent::*/ parent::*/parent::*/name', syn CHAR(64) PATH'.') AS CH)) SELECT DISTINCT V.* FROM Visit V WHERE V. diagnosis IN (SELECT DISTINCT syn FROM Traversed)

"Semantic queries by example", Lipyeow Lim et al., EDBT 2014

Graph Search 2.0

Large Scale Graph

	# of Entities	# of Links
Facebook	>1.2B	X 300
Twitter	270 M	500M tweets /day
Wikipedia	38 M	3B

Lack of fixed representation

Challenges

- Novel graph queries are emerging, that integrate both structure and content information.
- Traditional graph algorithms do not scale well for large scale graphs.
- Standard SQL or SPARQL queries cannot be applied to graph data that are lack of fixed schema, label and type information.

Keyword Search

graph data

Query Keywords = {a, b}

Semantics:

- Directed graph: A node whose descendants containing the keywords (XRANK, BANKS, ...)
- Undirected graph: A structure that contains the keywords

XRank (SIGMOD'03)

• Given a query

$$Q = \left(k_1, k_2, \dots k_n\right)$$

Raking respect to one keyword

$$r(v_1,k_i) = ElemRank(v_t) \times decay^{t-1}$$

- v_{t+1} is the node that directly contains the keyword k_i
- *t* is the level distance between v_1 and v_t
- Decay is the a parameter penalizing the distance
- *ElemRank* is the importance of a node in the graph
- $ElemRank(v_t)$ is in fact related to $ElemRank(v_1)$ due to certain properties of containment edges.

XRank (cont.)

• Raking respect to all the keywords:

$$R(v_1, Q) = (\sum_{1 \le i \le n} \hat{r}(v_1, k_i)) \times p(v_1, k_1, k_2, \dots, k_n)$$

 $p(v_1, k_1, k_2, ..., k_n)$ is the keyword proximity function, which can be any function that ranges from 0 (keywords are very far apart in v1) to 1 (keywords occur right next to each other in v1

Tree Based Approach

- Result is a connected tree containing all query keywords
- Score function:
 - (i) sum of all edge weights in the tree, or
 - (ii) sum of all path weights from root to each keyword in the tree
- Algorithm: Find top-k result trees with minimum score
 - Bidirectional Search [Kacholia et. al., VLDB '05]
 - BLINKS [He et. al., SIGMOD '07]
 - Dynamic Programming [Ding et. al., ICDE '07]
 - External Memory [Dalvi et. al, VLDB '08]

Graph Based Approach

- Result is a connected graph containing all query keywords
- Score function:
 - (i) sum of all edge weights in the graph, or
 - (ii) maximum pairwise distance, or
 - (iii) min-max pairwise distance.
- Algorithm: Find top-k result graphs with minimum score
 - EASE [Li et. al., SIGMOD '08]
 - r-Clique [Kargar et. al., KDD '11]
 - Team Formation [Lappas et. al., KDD '09]

Network Science

Ontology-based Graph Query

"find information about the <u>patients</u> with <u>eye tumor,</u> and <u>doctors</u> who cured them."

Xifen Using ontologies to capture semantically related matches of California at Santa Barbara

Ontology-based Graph Querying

 Given a data graph, a query graph and an ontology graph, identify K best matches with minimum semantic closeness.

What If

Data Graph Query

Transformation	Category	Exan	nple	
First/Last token	String	"Barack Obama"	>	"Obama"
Abbreviation	String	"Jeffrey Jacob Abrams	s" >	"J. J. Abrams"
Prefix	String	"Doctor"	>	"Dr"
Acronym	String	"International Busines	s Ma	chines" > "IBM"
Synonym	Semantic	"tumor"	>	"neoplasm"
Ontology	Semantic	"teacher"	>	"educator"
Range	Numeric	"1980"	>	"~30"
Unit Conversion	Numeric	"3 mi"	 	4.8 km"
Distance	Topology	"Pine" - "M:I" > "Pine" "M:I"	- "J.、	J. Abrams" -
			.	

User Scenario

- Users want to freely post queries, without possessing any knowledge of the underlying data.
- The querying system should automatically find the matches through a set of **transformations** including ontology.

Acronym transformation matches 'UCB' to 'University of California, Berkeley'
 Abbreviation transformation matches 'M : I' to 'Mission: Impossible'

- ✓ **Numeric transformation** matches '~30' to '1980'.
- ✓ Structural transformation matches 'an edge' to 'a path'.

Transformation-based Graph Matching

of Transformation applied

- Transformation-based graph matching produces more results
- Suggest only the "best" results to the users

Ranking Function (I)

Different kinds of transformations, equal weight?

Example: Given a single node query, "Chris Pine"

Nodes with "C. Pine" (Abbreviation) shall be ranked higher than Nodes with "Pine" (Last token)

- Different weights! How to determine them?
- Weights shall be learned

Ranking Function

With a set of transformations {*f_i*}, given a query Q and its match result R, our ranking model considers
 The node matching: from a query node v to its match

$$F_V(v,\phi(v)) = \sum_i \alpha_i f_i(v,\phi(v)) \qquad \phi(v)$$

■the edge matching: from query edge e to its match

$$F_E(e,\phi(e)) = \sum_i \beta_i f_i(e,\phi(e)) \qquad \phi(e)$$

□Overall ranking model:

$$P(\phi(Q) \mid Q) \propto \exp(\sum_{v \in V_Q} F_v(v, \phi(v)) + \sum_{e \in E_Q} F_E(e, \phi(e)))$$

Automatically Generate Training Data

Sampling: a set of subgraphs are randomly extracted from the data graph.

Query generation: the queries are generated by randomly adding transformation on the extracted subgraphs.

- Searching: search the generated queries on the data graph
- Labeling: the results are labeled based on the original subgraph.
- □ **Training**: the queries, with the labeled results, are then used to estimate the parameters of the ranking model.

Network Science

Write a Graph Query?

User Scenario:

I have no idea about schema/data specification; yet I still want to query.

References

- Schemaless and Structureless Graph Querying, by S. Yang, Y. Wu, H. Sun, X. Yan, VLDB 2014
- Ontology-based Subgraph Querying, by Y. Wu, S. Yang, X. Yan, ICDE 2013
- Towards Graph Containment Search and Indexing, by C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang and X. Gu. VLDB 2007.
- □ Graph Indexing: A Frequent Structure-based Approach, by X. Yan, P. S. Yu, and J. Han, SIGMOD 2004.
- Substructure Similarity Search in Graph Databases, by X. Yan, P. S. Yu, and J. Han, SIGMOD 2005.
- D. Shasha, J.T-L Wang, and R. Giugno. Algorithmics and applications of tree and graph searching. PODS 2002.
- XRANK: Ranked Keyword Search over XML Documents, by L. Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram, SIGMOD 2003