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Thesis Statement

I aim to build natural language interface with machine learning techniques to empower

humans to access the massive amount of knowledge on the Web, which exists in various

forms like text, graphs, tables, images, videos. My ultimate goal is design algorithms to

enable machines to think and reason like human while generalizing to large scale in a

highly effective manner.

vi



Abstract

Accessing Diverse Web Knowledge with Natural Language Interface

by

Wenhu Chen

The Web is the primary source for humans to access information in our daily life. In the

Information Age, Web knowledge has exploded and distributed in diverse forms like text,

tables, charts, graphs, images. To help humans cope with such massive amount of Web

information, building an intelligent Natural Language Interface has become a primary

interest in artificial intelligence. The natural language interface needs to understand the

human input and ground on Web knowledge to provide useful information. Technically,

the interface needs two components: 1) natural language understanding: understanding

the semantics of the natural language to navigate to supportive evidence. 2) natural

language generation: grounding on the supportive evidence to generate natural language

response.

In the first part, we will focus on the understanding component and use question

answering as our evaluation task. Specifically, I will cover three different grounding

scenarios: 1) how to ground on the given hybrid data (structured + unstructured) to

answer multi-hop questions, 2) how to search over the Web and then ground on retrieved

hybrid data to answer multi-hop questions 3) how to ground on visual data to answer

compositional questions.

In the second part, we will focus on the generation component and use data-to-text

generation as our evaluation task. Specifically, I will discuss two different scenarios: 1)

how to ground on structured tabular data to generate logically entailed claims, 2) how

to leverage unlabeled Web data for pre-training to improve existing data-to-text models.
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In these scenarios, we designed novel algorithms to dramatically improve the existing

models’ capability to generate more consistent and coherent text.

Finally, we summarize the strengths, weaknesses, and implications of our work, and

discuss the future research plan of pushing the direction forward.
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Chapter 1

Introduction

1.1 Natural Language Interface

Web is the primary source for humans to search and gain information in daily life.

With the recent trend of digitization, the Web plays a more important role than ever.

However, the information stored on the Web has also exploded and increases in an ex-

ponential manner. With such a vast amount of information on the Web, it’s almost

unavoidable to build a smart and intelligent interface to help humans access these infor-

mation. Such interfaces can take human queries as the input to search over the Web and

ground on the supportive evidence to communicate with humans. These interfaces can

smartly understand the humans’ intention to perform an automated information-seeking

process to cater knowledge in a human-understandable manner. The primary goal of

this thesis is to build such an intelligent natural language interface to meet humans their

daily needs.

Specifically, the interface model should have two capabilities: (1) NLU: understanding

human language (i.e. taking human language as input) and ground on web knowledge

to make a find supporting evidence, (2) NLG: generating human language by grounding

1



Introduction Chapter 1

Figure 1.1: Natural language interface to access web knowledge.

on the supportive evidence to communicate with humans.

A standard example for such a natural language interface is Google Siri or Amazon

Alexa, which can take voice input to help customers accomplish specific tasks in an

interactive manner. As depicted in Figure 1.1, the human wants to know the specific

information about sports, the interface needs to traverse the web and find the supportive

evidence to generate natural language response.

In Figure 1.2, the agent will understand the user query’s purpose, for example, who

is “Lebron”. There are tens of thousands of “Lebron” in the world. However, by com-

bining with the linguistic context in the query. We can accurately navigate to “Lebron

James”, the professional basketball player in L.A. Lakers in NBA. After understand-

ing the semantics, are we able to truly understand the query’s semantic form as “SE-

LECT PPG FROM TABLE Lebron-Career-Statistics WHERE Year=2019-2020”. From

this example, we show that human language is highly ambiguous, containing diverse,

metaphoric expressions, which poses great challenges to the machine learning models.

Furthermore, natural language is highly contextualized, which means that understand-

ing human queries normally requires very rich external/background world knowledge,

2



Introduction Chapter 1

Figure 1.2: Natural language understanding.

which goes beyond their lexical forms. Therefore, how can we leverage the external or

contextualized knowledge to understand the semantics of the natural language inputs in

the interface is of great interest to us, which is also the primary focus of this thesis.

After reasoning and understanding the semantics, we will derive the supportive evi-

dence “PPG=25.3, Team=L.A. Lakers”. We need to ground on this supportive evidence

to generate a natural language response. As described in Figure 1.3, the model needs to

understand and then convert the structured knowledge into coherent a natural language

sentence. This generation step is also a challenging task in the sense that the generation

should not only remain faithful to the world knowledge but also adhere to the linguistic

rules and patterns. However, in order to measure or quantify these aspects, we need

perfect understanding models, which we apparently don’t have. Thus, understanding

and generation can be seen as chicken-egg problems, which we need to solve jointly.

In this thesis, I will break the natural language interface into NLU and NLG aspects

3



Introduction Chapter 1

Figure 1.3: Natural language generation.

and talk about them separately.

1.2 Diverse Web Knowledge

Instead of operating on knowledge sources with a strict schema such as a database,

we propose to operate over the raw Web, which contains a large amount of up-to-date

open-domain information (high BREADTH), as the knowledge source. An important

characteristic of the Web is that the information is represented in diverse forms, contain-

ing unstructured textual data, semi-structured tabular data, and visual data, etc. One of

the key challenges is how to handle these diverse forms of data, for example, how to lever-

age the evidence distributed in different forms and combine them together to perform

compositional reasoning. As depicted in Figure 1.2, the information for answering the

given query is distributed in both the “Lebron James” passage, and the “Lebron James

Career Statistics” table. To empower the natural language interface to handle broader

4



Introduction Chapter 1

Figure 1.4: Natural language generation.

situations in real-world applications, the capability to reason across various forms includ-

ing passages, graphs, tables, charts, images are essential. In this thesis, we are specifically

interested in answering the following two research questions:

1. How can we ground on diverse forms of knowledge to understand human language?

2. How can we ground on diverse forms of knowledge to generate human language?

In the Part I, we will discuss natural language understanding under different sce-

narios, with tables, text, and visual data. We will focus on developing algorithms to

integrate structured and unstructured data for information integration. In the Part II,

we will discuss natural language generation over three different knowledge sources includ-

ing tables, knowledge graphs, and dialog acts. The focus is to enhance the generation

model’s faithfulness, logical consistency, and controllability over generated sentences.

Finally, we summarize the strengths, weaknesses, and implications of our work, and

discuss the future research plan of pushing the direction forward.

1.3 Evaluation

1.3.1 NLU with Question Answering

Natural language understanding (NLU) can be formulated as learning the deep se-

mantics of the purpose of the given natural language. It consists of the capability of a

5



Introduction Chapter 1

program system to translate sentences into an internal representation, which could be

understood by humans and machines. However, the internal “meaning” representation

could be quite vague and not very well defined under many scenarios, which poses great

challenges for us to fairly and accurately evaluate the NLU model’s performance. There-

fore, the existing community mostly resorts to different tasks like question answering,

sentiment analysis, natural language inference, state tracking to evaluate the model’s

performance in understanding human language. In this thesis, we will mainly use ques-

tion answering [1] as the main task to evaluate the model’s capability to perform natural

language understanding. Here, we compare the model’s predicted answer against the

human-annotated answer to estimate whether the model truly understands the seman-

tics of the given natural language questions. Such an approach has been quite widely used

in different benchmarks like GLUE [2], SUPERGLUE [3], etc. Specifically, we use the

exact match and F1 scores as the indicator to calculate the overlap of model prediction

against the human reference.

1.3.2 NLG with Data-to-Text Generation

Natural language generation (NLG) can be formulated as generating a coherent sen-

tence given the meaning representation. It consists of the capability of translating the

internal representation into a human understandable sentence. However, the internal

representation could also be hard to define. Thus the existing community mostly resorts

to different downstream tasks (i.e. data-to-text generation, which grounds on the given

structured to generate natural language) to evaluate the model’s performance in gener-

ating human language. In this thesis, we will mainly use data-to-text generation [4] as

the main task to evaluate the model’s capability to perform natural language generation.

Here, we compare the model’s generated sentence against human-annotated sentence to

6
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QA over Hybrid Data
[EMNLP20, ICLR21] 

QA over Visual Data
[WACV21] 

Question Answering Fact Verification

Verification over Table
[ICLR20] 

Verification over Text
[ACL21] 

Natural Language Understanding

KB/Table-to-Text
[ACL20,EMNLP20

Dialog Generation
[ACL19] 

Data-to-Text Visual Captioning

Image Captioning
[ACL18] 

Video Captioning
[CVPR18] 

Natural Language Generation

Building Natural Language Interface to Access Web Knowledge

Figure 1.5: My contribution to Natural Language Interface.

estimate whether the model truly generates faithful natural language sentences. Specifi-

cally, we use different metrics like BLEU [5], METEROR [6], ROUGE [7], other proposed

faithfulness metrics and even human evaluation to estimate model’s generation capability.

1.4 Contributions

Here I summarize my contributions to building natural language interface in Fig-

ure 1.5. Throughout my Ph.D. career, I have been investigating the two aspects:

• Understanding human language with external Web knowledge, specifically, I worked

on question answering and fact verification. In [8, 9], I investigated how to leverage

hybrid structured and unstructured data to build a QA system. In [10], I studied

how to leverage meta-learning to enhance neural module networks to answer vi-

sual questions. In [11, 12], I investigated how to utilize tables and text to verify

misinformation.

• Generating human-like language from external Web knowledge, specifically, I worked

7
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on data-to-text generation and visual captioning. In [13, 14], I investigated how

to convert structured data into verbal form. In [15], I studied how to generate

response conditioned on conversation history. In [16, 17], I studied how to describe

visual content like images or videos with natural language descriptions.

With these efforts, I aim to build the next-generation natural language interface that can

cater Web information to humans to help them accomplish their everyday needs.

8
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Natural Language Understanding

over Diverse Web Knowledge
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Chapter 2

Question Answering over Hybrid

Web Knowledge

2.1 Introduction

Existing question answering frameworks focus mostly on dealing with homogeneous

information, consisting of either text [1, 18, 19] or knowledge graphs [20, 21, 22, 23], or

tables [24, 25, 26] alone. However, as the human knowledge is generally distributed across

different forms on the Web due to their different properties. It might be insufficient to

incorporate only a single data form for building question answering systems. Therefore,

it is our primary interest to build hybrid models to aggregate information from different

forms from the Web. There has been some pioneering work on building hybrid QA

systems [27, 28, 29]. These methods adopts KB-only datasets [20, 21, 23] to simulate

a hybrid setting by randomly masking KB triples and replace them with text corpus.

Experimental results have proved decent improvement, which shed lights on the potential

of hybrid question answering systems to integrate heterogeneous information.

Though there already exist numerous valuable questions answering datasets as listed

10
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Dataset Size #Documents KB/Table Multi-Hop

WebQuestions 5.8K no yes yes
WebQuestions-Simple 4.7K no yes yes
WebQuestions-Complex 34K no yes yes
MetaQA 400k no yes yes
WikiTableQA 22K no yes yes

SQuAD-v1 107K 1 no no
DROP 99K 1 no yes
TriviaQA 95K >1 no no
HotpotQA 112K >1 no yes
NaturalQuestion 300K >1 no yes

HybridQA 70K >>1 yes yes

Table 2.1: Comparison of existing datasets, where #docs means the number of doc-
uments provided for a specific question. 1) KB-only datasets: WebQuestions [20],
WebQSP [22], WebComplex [23], MetaQA [30], WikiTableQuestion [24]. 2) Text-only
datasets with single passage: like SQuAD [1], DROP [31]. 3) open-domain Text-Only
dataset: TriviaQA [19], HotpotQA [32], Natural Questions [33].

Name Year Season Flag bearer

XXXI 2016 Summer Yan Naing Soe

XXX 2012 Summer Zaw Win Thet

XXIX 2008 Summer Phone Myint Tayzar

XXVIII 2004 Summer Hla Win U

XXVII 2000 Summer Maung Maung Nge

XX 1972 Summer Win Maung

The 2016 Summer Olympics officially known as the Games of the XXXI 
Olympiad (Portuguese : Jogos da XXXI Olimpíada) and commonly known 
as Rio 2016 , was an international multi-sport event ……

Yan Naing Soe ( born 31 January 1979 ) is a Burmese judoka . He 
competed at the 2016 Summer Olympics in the men 's 100 kg event , 
…… He was the flag bearer for Myanmar at the Parade of Nations .

Win Maung ( born 12 May 1949 ) is a Burmese footballer . He 
competed in the men 's tournament at the 1972 Summer Olympics …

Zaw Win Thet ( born 1 March 1991 in Kyonpyaw , Pathein District , 
Ayeyarwady Division , Myanmar ) is a Burmese runner who ……

Q: Where does the Burmesse jodoka participate in the Olympic opening ceremony as a flag bearer? A: Rio

Q: When does the oldest flag Burmese bearer participate in the Olympic ceremony? A: 1972

Q: For the Olympic event happening after 2014, what session does the Flag bearer participate? A: Parade of Nations

Q: For the XXXI and XXX Olympic event, which has an older flag bearer? A: XXXI

Q: Which event does the does the XXXI Olympic flag bearer participate in? A: men’s 100 kg event

H
ar

dn
es

s

……

Myint Tayzar Phone ( Burmese : ြမင့်ေတဇာဖ+န်း ) born July 2 , 1978 ) is 
a sprint canoer from Myanmar who competed in the late 2000s .

Q: In which year did the judoka bearer participate in the Olympic opening ceremony? A: 2016

Figure 2.1: Examples of annotated question answering pairs from Wikipedia page.
Underlined entities have hyperlinked passages, which are displayed in the boxes. The
lower part shows the human-annotated question-answer pairs roughly categorized
based on their hardness.

11



Question Answering over Hybrid Web Knowledge Chapter 2

in Table 2.1, these datasets were initially annotated to use either structured or unstruc-

tured information during annotation. There is no incentive for the models to aggregate

heterogeneous information to find the answer. Therefore, designing hybrid question an-

swering systems would probably yield very marginal benefits over the non-hybrid ones,

which greatly hinders the research development in building hybrid question answering

systems.

To fill in the gap, we propose to construct a novel heterogeneous QA dataset Hy-

bridQA, which is collected by crowdsourcing based on Wikipedia tables. During an-

notation, each crowd worker is presented with a Wikipedia table along with its hyper-

linked Wikipedia passages to annotate questions requiring aggregating information from

both forms. The dataset consists of roughly 70K question-answering pairs aligned with

roughly 13K Wikipedia tables, roughly 5 questions/table. As the tables presented on

Wikipedia [34] were curated from high-standard professionals to organize homogeneous

information, its coverage is mostly absent in the accompanying text. Such a comple-

mentary nature makes WikiTables an ideal environment for hybrid question answering.

To ensure that the answers cannot be hacked by single-hop or homogeneous models, we

carefully employ different strategies to calibrate the annotation process. An example is

demonstrated in Figure 2.1. This table is aimed to describe Burmese flag bearers over

different Olympic events, where the second column has hyperlinked passages about the

Olympic event, and the fourth column has hyperlinked passages about biography indi-

vidual bearers. The dataset is both multi-hop and hybrid in the following senses: 1) the

question requires multiple hops to achieve the answer, each reasoning hop may utilize

either tabular or textual information. 2) the answer may come from either the table or

a passage.

In our experiments, we implement three models, namely Table-only model, Passage-

only, and a heterogeneous model hybrider, which combines both information forms

12
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#Table #Row × #Column #Total Cell #Links/Table
13,000 15.7× 4.4 70 44
#Passage #Words/Passage #Question #Words/Question
293,269 103 69,611 18.9

Table 2.2: Statistics of Table and Passage in our dataset.

to perform multi-hop reasoning. Our Experiments show that two homogeneous models

only achieve EM lower than 20%, while hybrider can achieve an EM over 40%, which

concludes the necessity to do multi-hop reasoning over heterogeneous information on

HybridQA. As the hybrider is still far behind human performance, we believe that it

would be a challenging next-problem for the community.

2.2 Dataset

In this section, we describe how we crawl the high-quality tables with their associated

passages automatically, and then describe how we collect hybrid questions. The statistics

of HybridQA is shown in Table 2.2.

Table/Passage Collection To ease the annotation burden, we apply the following

rules during table crawling. 1) we need tables with rows between 5-20, columns between

3-6, which is appropriate for the crowd-workers to visualize. 2) we ensure all the tables to

have hyperlinked cells over 35% of its total cells, which can provide an abundant amount

of textual information. For each hyperlink in the table, we retrieve its Wikipedia page

and truncate at most the first 12 sentences from its introduction session as the associated

passage. 3) we apply some additional rules to avoid improper tables and finally collect

13,000 high-quality tables.

13
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Question/Answer Collection We release 13K HITs (human intelligence task) on the

Amazon Mechanical Turk platform, where each HIT presents the crowd-worker with one

crawled Wikipedia table along with its hyperlinked passages. We require the worker to

write six questions as well as their answers. The question annotation phase is not trivial,

as we specifically need questions that rely on both tabular and textual information. In

order to achieve that, we exemplify abundant examples in our Amazon Turker inter-

face with detailed explanations to help crowd-workers to understand the essence of the

“hybrid” question. The guidelines are described as follows:

• The question requires at least 2 steps of reasoning over the two information forms

of to derive the answer.

• Table reasoning step specifically includes (i) filter our table rows based on equal

or greater or less, e.g. “For the XXXI Olympic event”, (ii)) superlative operation

over a column, e.g. “the earliest Olympic event”, (iii) hop between two cells, e.g.

“Which event ... participate in ...”, (iv) extract information from table, e.g. “In

which year did the player ... ”.

• Text reasoning step specifically includes (i) select passages based on the certain

mentions, e.g. “the judoka bearer”, (ii) extract a span from the passage as the

answer. (iii) compare numeric values in the passages.

• The answer should be a minimum text span from either a table cell or a specific

passage, which can be used to answer the question.

Based on the above criteria, we hire five CS-majored graduate students as our “human

expert” to decide the acceptance of a HIT. The average completion time for one HIT is

12 minutes, and payment is $2.3 U.S. dollars/HIT.

14
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Annotation De-biasing As has been suggested in previous papers [35, 36, 37], the

existing benchmarks on multi-hop reasoning question answering have annotation biases,

which makes designing multi-hop models unnecessary. We discuss different biases and

our prevention as follows:

• Table Bias : our preliminary study observes that the annotators prefer to ask ques-

tions regarding the top part of the table. In order to deal with this issue, we

explicitly highlight certain regions in the table to encourage crowd-workers to raise

questions regarding the given uniformly-distributed regions.

• Passage Bias : the preliminary study shows that the annotators like to ask questions

regarding the first few sentences in the passage. In order to deal with such a bias,

we use an algorithm to match the answer with linked passages to find their span and

reject the HITs, which have all the answers centered around the first few sentences.

• Question Bias : the most difficult bias to deal with is the “fake” hybrid question

like “when is 2012 Olympic Burmese runner flag bearer born?” for the table listed

in Figure 2.1. Though it seems that “2012 Olympic” is needed to perform hop

operation on the table, the “runner flag bearer” already reviews the bearer as

“Zaw Win Thet” because there is no other runner bearer in the table. With that

said, reading the passage of “Zaw Win Thet” alone can simply lead to the answer.

In order to cope with such a bias, we ask “human experts” to spot such questions

and reject them.

Statistics After we harvest the human annotations from 13K HITs (78K questions),

we trace back the answers to its source (table or passage). Then we apply several rules

to further filter out low-quality annotations: 1) the answer cannot be found from either

table or passage, 2) the answer is longer than 20 words, 3) using a TF-IDF retriever

15
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can directly find the answer passage with high similarity without relying on tabular

information.

We filter the question-answer pairs based on the previous criteria and release the

filtered version. As our goal is to solve multi-hop hybrid questions requiring a deeper

understanding of heterogeneous information. We follow HotpotQA [32] to construct a

more challenging dev/test split in our benchmark. Specifically, we use some statistical

features like the “size of the table”, “similarity between answer passage and question”,

“whether question directly mentions the field”, etc. to roughly classify the question into

two difficulty levels: simple (65%) and hard (35%). We construct our dev and test set

by sampling half-half from the two categories. We match the answer span against all

the cells and passages in the table and divide the answer source into three categories: 1)

the answer comes from a text span in a table cell, 2) the answer comes from a certain

linked passage, 3) the answer is computed by using numerical operation like ‘count’,

‘add’, ‘average’, etc. The matching process is approximated, not guaranteed to be 100%

correct. We summarize our findings in Table 2.3. In the following experiments, we will

report the EM/F1 score for these fine-grained question types to better understand our

results.

Split Train Dev Test Total

In-Passage 35,215 2,025 20,45 39,285 (56.4%)
In-Table 26,803 1,349 1,346 29,498 (42.3%)
Computed 664 92 72 828 (1.1%)
Total 62,682 3,466 3,463 69,611 (100%)

Table 2.3: Data Split: In-Table means the answer comes from plain text in the table,
and In-Passage means the answer comes from certain passage.
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2.3 Data Analysis

In this section, we specifically analyze the different aspects of the dataset to provide

the overall characteristics of the new dataset.

2.3.1 Question Types

We heuristically identified question types for each collected question. To identify

the question type, we locate the central question word (CQW) in the question and take

the neighboring three tokens [32] to determine the question types. We visualize the

distribution in Figure 2.2, which demonstrates the syntactic diversity of the questions in

HybridQA.
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Figure 2.2: The type of questions in HybridQA, question types are extracted using
rules starting at the question words or preposition before them.
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2.3.2 Answer Types

We further sample 100 examples from the dataset and present the types of answers

in Table 2.4. As can be seen, it covers a wide range of answer types. Compared to [32], our

dataset covers more number-related or date-related questions, which reflects the nature

of tabular data.

Answer Type % Example(s)

Location 22 Balestier Road, Atlanta
Number 22 762 metres ( 2,500 ft ), 15,000
Date 20 April 25 , 1994, 1913
Person 15 Bärbel Wöckel, Jerry
Group 3 Hallmark Entertainment
Event 3 Battle of Hlobane
Artwork 1 Songmaster
Adjective 4 second-busiest
Other proper noun 8 Space Opera, CR 131
Common noun 1 other musicians

Table 2.4: Types of answers in HyrbidQA.

2.3.3 Inference Types

We analyze multi-hop reasoning types in Figure 2.3. According to our statistics, most

of the questions require two or three hops to find the answer.

1. Type I question (23.4%) uses Table → Passage chain, it first uses table-wise oper-

ations (equal/greater/less/first/last/argmax/argmin) to locate certain cells in the

table, and then hop to their neighboring hyperlinked cells within the same row,

finally extracts a text span from the passage of the hyperlinked cell as the answer.

2. Type II question (20.3%) uses Passage → Table chain, it first uses cues present in

the question to retrieve related passage, which traces back to certain hyperlinked
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Name Event year

XXXI 2016
… commonly known as Rio 2016 , was an 
international multi-sport event ……

… commonly known as Rio 2016 , was an 
international multi-sport event ……

Name Event year

XXXI 2016

… commonly known 
as Rio 2016 , was an 
international  ……

Flag Bearer Event year

Yan Naing Soe 2016
Yan Naing Soe (born 
31 January 1979) ….

Flag Bearer Event year

Yan Naing Soe 2016

Zaw Win Thet 2012

Yan Naing Soe (born 31 
January 1979) ….

Zaw Win Thet (born 1 
March 1991)

Type I (T->P)
Q: Where was the XXXI Olympic held? A: Rio 

Type II (P->T)
Q: What was the name of the Olympic event held 
in Rio? A: XXXI 

Type III (P->T->P)
Q: When was the flag bearer of Rio Olympic born?
A: 31 January 1979

Type V (T-Compare | P-Compare)
Q: For the 2012 and 2016 Olympic Event, when 
was the younger flag bearer born? 
A: 1 March 1991

Flag Bearer Gender

Yan Naing Soe Male

Zaw Win Thet Male

Yan Naing Soe … Men’s 
100kg event

Type IV (T&S)
Q: Which male bearer participated in Men’s 
100kg event in the Olympic game? 
A: Yan Naing Soe

Flag Bearer Event year

Yan Naing Soe 2016

Zaw Win Thet 2012

Phone Myint Tayzar 2008

Yan ... 31 January 1979) …

Zaw … 1 March 1991) …

Type VI (T-Superlative | P-Superlative)
Q: When did the youngest Burmese flag bearer 
participate in the Olympic opening ceremony? 
A: 2012

Myint … July 2 , 1978) …

Zaw Win Thet …
Men’s 400m running

Figure 2.3: Illustration of different types of multi-hop questions.

cells in the table, and then hop to a neighboring cell within the same row, finally

extracts text span from that cell.

3. Type III question (35.1%) uses Passage→Table→Passage chain, it follows the same

pattern as Type II, but in the last step, it hops to a hyperlinked cell and extracts

answer from its linked passage. This is the most common pattern.

4. Type IV question (17.3%) uses Passage and Table jointly to identify a hyperlinked

cell based on table operations and passage similarity and then extract the plain

text from that cell as the answer.

5. Type V question (3.1%) involves two parallel reasoning chain, while the comparison

is involved in the intermediate step to find the answer.

6. Type VI questions (0.8%) involve multiple reasoning chains, while superlative in
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involved in the intermediate step to obtain the correct answer.

2.4 Model

In this section, we propose three models we use to perform question answering on

HybridQA.

2.4.1 Table-Only Model

In this setting, we design a model that can only rely on the tabular information to

find the answer. Our model is based on the SQL semantic parser [25, 38], which uses a

neural network to parse the given questions into a symbolic form and execute against the

table. We follow the SQLNet [38] to flatten the prediction of the whole SQL query into a

slot filling procedure. More specifically, our parser model first encode the input question

q using BERT [39] and then decode the aggregation, target, condition separately as

described in Figure 2.4. The aggregation slot can have the following values of “argmax,

argmin, argmax-date, argmin-date”, the target and condition slots have their potential

values based on the table field and its corresponding entries. Though we do not have

the ground-truth annotation for these simple SQL queries, we can use heuristics to infer

them from the denotation. We use the synthesized question-SQL pairs to train the parser

model.

2.4.2 Passage-Only Model

In this setting, we design a model that only uses the hyperlinked passages from the

given table to find the answer. Our model is based on DrQA [40], which first uses

an ensemble of several retrievers to retrieve related documents and then concatenate
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Q: Where was the XXI Olympic held?
BERT Classifier

… commonly known as Rio
2016 , was an international 
multi-sport event …Retriever

BERT MRC
Q: Where was the XXI Olympic held?Passage-Only

Table-Only

SELECT AGGREGATOR (TARGET) where (CONDITION1, CONDITION2)

… Beijing 
Olympic 
… event

Figure 2.4: Illustration of the table-only and passage-only baselines, both are based
on BERT Encoder.

several documents together to do reading comprehension with the state-of-the-art BERT

model [39]. The basic architecture is depicted in Figure 2.4, where we use the retriever

to retrieve the top-5 passages from the pool and then concatenate them as a document

for the MRC model, and the maximum length of the concatenated document is set to

512.

2.4.3 hybrider

In order to cope with heterogeneous information, we propose a novel architecture

called hybrider. We divide the model into two phases as depicted in Figure 2.6 and

describe them separately below:

Linking This phase is aimed to link questions to their related cells from two sources:

• Cell Matching: it aims to link cells explicitly mentioned by the question. The

linking consists of three criteria, 1) the cell’s value is explicitly mentioned, 2) the

cell’s value is greater/less than the mentioned value in question, 3) the cell’s value

is maximum/minimum over the whole column if the question involves superlative

words.
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• Passage Retriever: it aims to link cells implicitly mentioned by the question through

its hyperlinked passage. The linking model consists of a TD-IDF retriever with 2-3

gram lexicon and a longest-substring retriever, this ensemble retriever calculates

the distances with all the passages in the pool and highlight the ones with cosine

distance lower than a threshold τ . The retrieved passages are mapped back to the

linked cell in the table.

Country Name School Date

US Yan … Jul 24

CA … Jun 27

Content
Location
Descrip
Source
Score

Yan
(1, 2)
Born in … Yan is
Longest-String
0.6

Encoder

Content
Location
Descrip

Jun 27
(2, 4)
“”

Header Ques

𝐻!

Retrieved Cell
Plain Cell

Cell Encoder

Figure 2.5: Illustration of cell encoder of retrieved (green) and plain cells (orange).

We call the set of cells from these two sources as “retrieved cells” denotes by C.

Each retrieved cell c is encoded by 5-element tuple (content, location, description,

source, score). Content represents the string representation in the table, Content

refers to the absolute row and column index in the table, description refers to the

evidence sentence in the hyperlinked passage, which gives highest similarity score to

question, source denotes where the entry comes from (e.g. equal/argmax/passage/etc),

score denotes the score of linked score normalized to [0, 1].

Reasoning This phase is aimed at modeling the multi-hop reasoning between the table

and passages, we specifically break down the whole process into three stages, namely the

ranking stage pf (c|q, C), hoping stage ph(c
′|q, c), and the reading comprehension stage
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Question: When … male … in Men’s 100kg … ?

Yan

male

male Win

…Men…Retriever
…100…

Cell Match

Min/Max
Greater/Less

Equal

Yan

male
male Win

Yan

male

Rank

Yan

male XXX
Hop

… 2012 …

RC

Ans

2006

Li
nk
in
g

Copy

TF-IDF
Longest-Substring

R
ea
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ng

Figure 2.6: Illustration of the proposed model to perform multi-hop reasoning over
table and passage.

pr(a|P, q). These three stages are modeled with three different neural networks. We first

design a cell encoding scheme to encode each cell in the table as depicted in Figure 2.5:

1) for “retrieved cells”, it contains information for retrieval source and score, 2) for

“plain cells” (not retrieved), we set the information in source and score to empty. We

concatenate them with their table field and question, and then fed into a encoder module

(BERT) to obtain its vector representation Hc.

Ranking model As the “retriever cells“ contain many noises, we leverage a ranker

model to predict the “correct” linked cells for the next stage. Specifically, this model

takes each cell c along with its neighboring Nc (cells in the same row) and feed them

all into the cell encoder to obtain their representations {Hc}. The representations are

aggregated and further fed to a feed-forward neural network to obtain a score sc, which
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is normalized over the whole set of linked cell C as follows:

pf (c|q, C) =
exp(sc)∑
c′∈C exp(sc′)

(2.1)

Hop model this model takes the predicted cell from the previous stage and then decide

which neighboring cell or itself to hop to. Specifically, we represent each hop pair (c→ c′)

using their concatenated representation Hc,c′ = [Hc, Hc′ ]. The representation is fed to a

feed-forward neural network to obtain a hop score sc,c′ , which is normalized over all the

possible end cells as follows:

pf (c′|q, c) =
exp(sc,c′)∑

c′′∈Nc∪c exp(sc,c′′)
(2.2)

RC model this model finally takes the hopped cell c from last stage and find answer

from it. If the cell is not hyperlinked, the RC model will simply output its plain text

as the answer, otherwise, the plain text of the cell is prepended to the linked passage

P (c) for reading comprehension. The prepended passage P and the question are given as

the input to the question answering model to predict the score of answer’s start and end

index as gs(P, q, index) and ge(P, q, index), which are normalized over the whole passage

|P | to calculate the likelihood pr(a|P, q) as follows:

pr(a|P, q) =
exp(gs(P, q, as))∑
i∈|P | exp(gs(P, q, i))

gs(P, q, ae)∑
i∈|P | ge(P, q, i)

where as is the start index of answer a and ae is the end index of answer a.

By breaking the reasoning process into three stages, we manage to cover the Type-

I/II/III/VI questions well. For example, the Type-III question first uses the ranking

model to select the most likely cell from retrievers, and then use the hop model to jump

to neighboring hyperlinked cell, finally use the RC model to extract the answer.
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Training & Inference The three-stage decomposition breaks the question answering

likelihood p(a|q, T ) into the following marginal probability:

∑
c∈C

pf (c|q, C)
∑

c′∈Nc;a∈P (c′)

pf (c′|c, q)pr(a|P (c′), q)

where the marginalization is over all the linked cells c, and all the neighboring cell with

answer a in its plain text or linked passages. However, directly maximizing the marginal

likelihood is unnecessarily complicated as the marginalization leads to huge computation

cost. Therefore, we propose to train the three models independently and then combine

them to do inference.

By using the source location of answers, we are able to 1) infer which cells c in the

retrieved set C are valid, which can be applied to train the ranking model, 2) infer which

cell it hops to get the answer, which we can be applied to train the hop model. Though

the synthesized reasoning paths are somewhat noisy, it is still enough to be used for

training the separate models in a weakly supervised manner. For the RC model, we use

the passages containing the ground-truth answer to train it. The independent training

avoids the marginalization computation to greatly decrease the computation and time

cost. During inference, we apply these three models sequentially to get the answer.

Specifically, we use greedy search at first two steps to remain only the highest probably

cell and finally extract the answer using the RC model.

2.5 Experiments

2.5.1 Experimental Setting

In the linking phase, we set the retrieval threshold τ to a specific value. All the

passages having distance lower than τ will be retrieved and fed as input to the reasoning
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Model
Dev Test

Table Passage Total Table Passage Total
EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1

Table-Only 14.7/19.1 2.4/4.5 8.4/12.1 14.2/18.8 2.6/4.7 8.3/11.7
Passage-Only 9.2/13.5 26.1/32.4 19.5/25.1 8.9/13.8 25.5/32.0 19.1/25.0
Ours-b τ=0.7 51.2/58.6 39.6/46.4 42.9/50.0 50.9/58.6 37.4/45.7 41.8/49.5
Ours-b, τ=0.8 51.3/58.4 40.1/47.6 43.5/50.6 51.7/59.1 37.8/46.0 42.2/49.9
Ours-b, τ=0.9 51.5/58.6 40.5/47.9 43.7/50.9 52.1/59.3 38.1/46.3 42.5/50.2
Ours-l, τ=0.8 54.3/61.4 39.1/45.7 44.0/50.7 56.2/63.3 37.5/44.4 43.8/50.6

Table 2.5: Experimental results of different models, In-Table refers to the subset of
questions which have their answers in the table, In-Passage refers to the subset of
questions which have their answer in a certain passage. Ours means hybrider and
-b means using BERT-based and -l means using BERT-large.

phase. If there is no passage that has been found with a distance lower than τ , we will

simply use the document with the lowest distance as the retrieval result. Increasing τ

can increase the recall of correct passages, but also increase the difficulty of the filter

model in the reasoning step.

In the reasoning phase, we mainly utilize BERT [39] as our encoder for the cells and

passages due to its strong semantic understanding. Specifically, we use four BERT vari-

ants provided by Huggingface library1, namely base-uncased, based-cased, large-uncased,

and large-cased. We train the modules all for 3.0 epochs and save their checkpoint file

at the end of each epoch. The filtering, hop, and RC models use AdamW [41] optimizer

with learning rates of 2e-6, 5e-6, and 3e-5. We held out a small development set for

model selection on the saved checkpoints and use the most performant ones in inference.

2.5.2 Evaluation

Following previous work [1], we use exact match (EM) and F1 as two evaluation met-

rics. F1 metric measures the average overlap between the prediction and ground-truth

answers. We assess human performance on a held-out set from the test set contain-

1https://github.com/huggingface/transformers
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ing 500 instances. To evaluate human performance, we distribute each question along

with its table to crowd-workers and compare their answer with the ground-truth answer.

We obtain an estimated accuracy of EM=88.2 and F1=93.5, which is higher than both

SQuAD [1] and HotpotQA [32]. The higher accuracy is due to the In-Table questions

(over 40%), which have much lesser ambiguity than the text-span questions.

2.5.3 Experimental Results

We demonstrate the experimental results for different models in Table 2.5, where we

list fine-grained accuracy over the questions with answers in the cell and passage sepa-

rately. The In-Table questions are remarkably simpler than In-Passage question because

they do not the RC reasoning step; the overall accuracy is roughly 8-10% higher than its

counterpart. With the experimented model variants, the best accuracy is achieved with

BERT-large-uncased as backend, which can beat the BERT-base-uncased by roughly 2%.

However, its performance is still far lagged behind human performance, leaving ample

room for future research.

Heterogeneous Reasoning From Table 2.5, we can clearly observe that using either

Table-Only or Passage-Only model achieves a poor accuracy below 20%. In contrast,

the proposed hybrider can achieve up to 50% EM increase by leveraging both struc-

tured and unstructured data during reasoning. It strongly supports the necessity to do

heterogeneous reasoning in HybridQA.

Retriever Threshold We also experiment with a different τ threshold. Having an

aggressive retriever increases the recall of the mentioned cells, but it increases the burden

for the ranking model. Having a passive retriever can guarantee the precision of predicted

cells, but it also potentially miss evidence for the following reasoning phase. There exist
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trade-offs between these different modes. In Table 2.5, we experiment with different τ

during the retrieval stage and find that the model is rather stable, which means the model

is quite insensitive regarding different threshold values.

2.5.4 Error Analysis

To analyze the cause of the errors in hybrider, we propose to break down into four

types as Figure 2.7. Concretely, linking error is caused by the retriever/linker, which

fails to retrieve the most relevant cell in the linking phase. In the reasoning phase: 1)

ranking error is caused by the ranking model, which fails to assign a high score to the

correct retrieved cell. 2) hop error occurs when the correctly ranked cell couldn’t hop to

the answer cell. 3) RC error refers to the hoped cell is correct, but the RC model fails to

extract the correct text span from it. We perform our analysis on the full dev set based

Linking Acc (87.4%) Ranking Accuracy (87.9%)

Hop Accuracy (89.2%) RC Acc (62%)

Figure 2.7: The error of hybrider is based on its stages. Pink cell means the answer
cell; green means the model’s prediction; circle means the current cell.

on the bert-large-uncased model (τ=0.8), as indicated in Figure 2.7, the errors are quite

uniformly distributed into the four categories except the reading comprehension step is

slightly more erroneous. Based on the step-wise error, we can compute its product as

87.4%×87.9%×89.2%×61.9% ≈ 42% and find that the result consistent well the overall

accuracy, which demonstrates the necessity to perform each reasoning step correctly. Such
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error cascading makes the problem extremely difficult than the previous homogeneous

question answering problems.

By breaking down the reasoning into steps, hybrider layouts strong explainability

about its rationale, but it also causes error propagation, i.e., the mistakes made in the

earlier stage are non-reversible in the following stage. We believe future research on

building an end-to-end reasoning model could alleviate such an error propagation problem

between different stages in hybrider.

2.6 Related Work

Text-Based QA Since the surge of SQuAD [1] dataset, there have been numerous

efforts to tackle the machine reading comprehension problem. Different datasets like

DrQA [40], TriviaQA [19], SearchQA [42] and DROP [31] have been proposed. As the

SQuAD [1] questions that are relatively simple because they usually require no more

than one sentence in the paragraph to answer. The following datasets further challenge

the QA model’s capability to handle different scenarios like open-domain, long context,

multi-hop, discrete operations, etc. There has been a huge success in proving that the

deep learning model can show strong competence in terms of understanding text-only

evidence. Unlike these datasets, HybridQA leverages structured information in the

evidence form, where the existing models are not able to handle, which distinguishes it

from the other datasets.

KB/Table-Based QA Structured knowledge is known as unambiguous and composi-

tional, which absorbs lots of attention to the QA system built on KB/Tables. There have

been multiple datasets like WebQuestion [20], ComplexWebQuestions [23], WebQues-

tionSP [21] on using FreeBase to answer natural questions. Besides KB, structured or
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semi-structured tables are also an interesting form. Different datasets like WikiTable-

Questions [24], WikiSQL [25], SPIDER [26], TabFact [11] have been proposed to build

models which can interact with such structured information. However, both KB and

tables are known to suffer from low coverage issues. Therefore, HybridQA combine

tables with text as complementary information to answer natural questions.

Hybrid QA There are some pioneering studies on designing hybrid question answer-

ing systems to aggregate heterogeneous information. GRAFT [28] proposes to use the

early fusion system and use heuristics to build a question-specific subgraph that contains

sentences from corpus and entities, facts from KB. PullNet [27] improves over GRAFT

to use an integrated framework that dynamically learns to retrieve and reason over het-

erogeneous information to find the best answers. More recently, KAReader [29] proposes

to reformulate the questions in latent space by reading retrieved text snippets under KB-

incomplete cases. These models simulate a ‘fake’ KB-incomplete scenario by masking out

triples from KB. In contrast, the questions in HybridQA are inherently hybrid in the

sense that it requires both information forms to reason, which makes our testbed more

realistic than the other settings.
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Chapter 3

Open Question Answering over

Hybrid Web Knowledge

3.1 Introduction

In the previous chapter, we have discussed how to perform reasoning over the given

heterogeneous evidence data. Our proposed method can already achieve decent perfor-

mance to integrate structured and unstructured forms, which indicates the potential of

hybrid reasoning method in real-world applications. However, the previous chapter as-

sumes that the heterogeneous evidence for question answering is already known a priori.

Such an assumption is not realistic in building real-world interfaces like Apple Siri, Ama-

zon Alexa, etc, where we do not have access to the ground-truth evidence and have to

search over the Web for find such supportive evidence in various forms.

In order to deal with such a more realistic setting, the standard approach Figure 3.1

for question answering is to first scan the Web to retrieve the most relevant heterogeneous

evidence and then perform reasoning on top of it. More recently, such a pipeline approach

is known as open-domain question answering [40, 19]. Practically, we use the Wikipedia
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as the main Web resource due to its well-defined structure, but the approaches can easily

generalize to broader domains like Forms, News, etc. In this chapter, we consider such

open-domain answering question over heterogeneous knowledge from the Web.

Figure 3.1: Open-Domain Question Answering Paradigm.

For this purpose, we construct a new dataset as our benchmark. Open Table-and-

Text Question Answering (OTT-QA). OTT-QA is built on top of the HybridQA dataset

[8], and like HybridQA, OTT-QA questions are multi-hop questions which require ag-

gregating information from both tables and text to answer. However, unlike HybridQA,

OTT-QA requires the system to retrieve relevant tables and text — in contrast, in Hy-

bridQA, the ground truth tables and textual passages required for each question are given.

To produce OTT-QA’s questions, we begin by re-annotating the questions from Hy-

bridQA to ‘decontextualize’ them—i.e., we make questions suitable for the open-domain

setting so that unique answers can be determined from the question alone, without need-

ing context from the provided text and tables. We then add new questions to remove

potential biases. After these steps, OTT-QA contains 45K human-annotated questions

that require retrieving and aggregating information over tables and text from the whole
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Wikipedia. Examples from OTT-QA are depicted in Figure 3.2. Note the table and

passages contain non-overlapping information, and both of them must be properly un-

derstood to answer the question. For example, the question has a low lexical overlap

with the passage about the ‘Lakers’, and it needs the table as the bridge to retrieve this

passage. Such cross-modality multi-hop retrieval features OTT-QA.

OTT-QA is distinguished from the existing QA datasets in two aspects. Existing

table-based QA datasets [24, 26, 8] operates in the closed setting without requiring any

retrieval, whereas most existing open QA datasets [19, 32] require only text retrieval,

not table retrieval. One dataset, Natural Questions (NQ) [33] includes some tabular

information in its corpus, but the tables are nearly always of a restricted type (infobox

tables with only a single row). In contrast, OTT-QA models require retrieving both

tabular data and text, and unlike the NQ dataset, requires information fusion from text

and tables in non-trivial ways. OTT-QA poses novel and realistic challenges to both

the retriever and reader in open QA though the questions are less natural than the real

queries from NQ [33]. Retrievers for OTT-QA need to consider two information formats,

making the search space larger. Even worse, as questions in OTT-QA often require

multi-hop inference, one round of retrieval is often not enough. Readers for OTT-QA

also need to aggregate a significant amount of knowledge-intensive information, compared

to other reader models: a single table in OTT-QA has an average length of over 300

words. Moreover, readers are often expected to process multiple retrieved units due to

the uncertainty in retrieval, which makes it difficult to design strong reader models [39, 43]

with a length limit of 512 tokens.

The baseline system uses an iterative retriever [44, 45, 46, 47, 48] and a BERT

reader [39]. The iterative retriever explores multiple evidence documents iteratively,

interacting with the candidate pool to gradually reformulate the query. Beam search is

used to find multiple subsets of documents that may contain all the required evidence,
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The 2019–20 NBA season is the 74th 
season of the National Basketball 

Association (NBA). The season was 
suspended by COVID-19.

2010
COVID-19 Pandemics 

Career Statistics
Lebron James Career 2010

19-20 NBA Best Players

2019-2020
Statistics of 19-20 NBA

Lebron James

NBA

19-20 NBA

COVID-19

COVID-19 vaccine

List of NBA teams

The 2018–19 Los Angeles Lakers 
season was the franchise's 71st 

season, its 70th season in the National 
Basketball Association (NBA)

The 2017–18 NBA season was the 72nd season of the National 
Basketball Association (NBA). The regular season began on October 17, 

2017. ended on June 8 with the Golden State Warriors defeating 
the Cleveland Cavaliers in the 2018 Final.

Year Team Blocks Per Game Points Per Game Assists Per Game 3 Point % Rebound Per Game

17-18 Cleveland 0.9 27.5 9.1 .367 8.6

19-20 L.A. Lakers 0.5 25.3 10.2 .348 7.8

Lebron James Career Statistics (Regular Season)

Q: How many points per game did Lebron James get in the NBA Season suspended by COVID?               A: 25.3

Heterogeneous Retriever + Reader

Figure 3.2: The problem setting: A OTT-QA model needs to retrieve from two can-
didate pools and then perform multi-hop reasoning to find answers.

and each subset is then fed to the BERT reader to predict the answer span. The highest-

scored prediction is chosen as the answer. The iterative retriever needs to re-encode the

query with a big transformer and re-search over the candidate pool, such a procedure

(especially dense) can be computationally expensive. Furthermore, the BERT reader

fails to capture a global overview of the retrieved documents, which leads to bad local

optimum in the model prediction.

We propose a more sophisticated system that addresses these challenges with two

novel strategies: namely fusion retrieval and cross-block reading. The fusion retriever

first pre-aligns the table segments to their highly related passages, using pre-trained

entity linking system. Then, the aligned table segments and passages are grouped as a

fused block, which contains aggregated information from two modalities; hence, compared

to the previous documents, it contains richer context to benefit the following retrieval.

We view the fused block as the basic unit to be retrieved, and instead of performing

multiple runs of retrieval iteratively, the fusion retriever is used once to retrieve the top

K fused blocks; however, due to errors in fusion and retrieval, the retrieved top-1 fused

block might not contain the necessary information to answer the given question. We

thus also propose a cross-block reader based on a sparse-attention based transformer
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architecture [49, 50], which can process extremely long sequences efficiently. We use the

cross-block reader to read all the top-K retrieved fused blocks jointly. Both strategies

have proven effective compared to the baseline system: the best model combining the

two strategies improves the accuracy of the baseline system by a large margin.

3.2 Background

The aim of an open QA system is to extract an answer to a question q from a given

large corpus. Most open QA models are retriever-reader models, which extract answers

in two steps: retrieval and reading. In the retrieval step, a retrieval model f is used to

retrieve a set of passages from the text corpus. In the reading step, the reader is then

used to extract the answer from them.

Retrieval Function There are two commonly-used types of retrieval function f : sparse

retrievers and dense retrievers. Our sparse retriever uses a unigram-based BM-25 score

to retrieve an evidence unit b from the candidate pool B. Our dense retrieval function is a

dual-encoder model [51], and we follow [52, 53] for the dual encoder design. The query and

the passage are encoded with separate Transformers. As in [39], the vector corresponding

to the first token, [CLS], is used as a “pooled” representation of the sequence. The dense

retrieval function is the dot product between hq = BERTQ(q)[CLS] and hb = BERTB(b)[CLS]

for each evidence block b in the candidate corpus—i.e., the scoring function is f(q, b) =

hTq hb, which can viewed as finding the nearest neighbor in vector space. In the multi-

hop open QA setting [32], an iterative retrieval function [44, 46, 47] is proposed, which

defines the retrieval process as an auto-regressive formula. Our iterative retriever function

is denoted as f([q, b1, · · · , bj−1], bj), which appends the previous j − 1 rounds of retrieval

to the original q in in the j-th round of retrieval. Beam search is used in test time.
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Single-Block Reader Due to the uncertainty in retrieval, the top-1 document might

not always contain the answer. Existing models normally retrieve the top-k docu-

ments and feed them to the reader for span selection. The standard reader [40, 19]

aims to extract a span from each of the retrieved blocks bi and assign a confidence

f(q, bi)fread(a|q, bi) to it, with f(q, bi) indicating the retrieval probability and fread(a|q, bi)

denoting the span selection probability by reader. Multiple answers {a1, · · · , ak} are

ranked with this confidence score and the highest scored answer span â is the final an-

swer. Note that the reader needs to run k times, once for each of the top-k retrievals.

We refer to this model as the single-block reader and use it as our baseline.

HybridQA HybridQA [8], a closed-domain QA dataset, is the most related to ours.

During the annotation of HybridQA, a table T and its relevant passages {P1, · · · , PN}

(surrounding text and hyperlinked passage) are given to a crowd worker to write questions

which necessarily require both the passage and table information to answer. The original

dataset contains 72K multi-hop questions paired with 13K tables with their paired pas-

sages. During training/testing time, the ground-truth tables and passages are given to a

model, HYBRIDER, to find the final answer. HYBRIDER also serves as an important

baseline for the following sections.

3.3 Task and Dataset

In OTT-QA, the retrieval corpus consists of a set of table candidates BT and a set

of passage candidates BP . The task is to answer question q by extracting answer strings

from blocks b ∈ BT ∪ BP , where b can be either textual and tabular data. We adopt the

standard exact match (EM) and F1 scores [32] for evaluation. Different from HybridQA,

OTT-QA’s table candidates are web tables without hyperlinks provided. This decision
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was made to make the problem setting more general, as otherwise systems that solve

OTT-QA could only be applied to high-quality data in Wikipedia. However, in OTT-QA,

we provide hyperlinks in the training subset, but not dev/test set. Removing hyperlinks

in tables makes the overall task much more challenging, but makes the final systems

applicable to more general domains. Thus, an OTT-QA model needs to jointly retrieve

both tables and text, without abusing gold hyperlinks, and then aggregate them to find

the answer.

Candidate Pool For our table collection BT , we extracted all Wikipedia regular ta-

bles with their metadata including page title, page section title, and section text. The

metadata, denoted TM , is essential for de-contextualization. We obtain a table corpus

containing over 400k high-quality tables with an average length of 320 words including

metadata. For the text passage collection BP , we crawl English Wikipedia dump pages

and filter out noisy pages. We follow HybridQA [8] and only keep a maximum of 12

sentences in the introduction section as the passage. We obtain a corpus containing over

5 million passages, with an average of 94 words.

Notation We define each table as a matrix T , which consists of cells Ti,j with i spec-

ifying the row, and j specifying the column. Each cell Ti,j could be a number, date,

phrase or even sentence due to its semi-structured nature. However, a single complete

table with structured representation [54] can easily exceed the 512-token limit, which

poses great challenges to the downstream reader to process top-K retrieval. Hence we

propose to decompose each table T into multiple rows Ri, which are combined with the

headers, metadata, and global max/min information from the original table as a table

segment. The table segment is used as the basic retrieval block. This decomposition

procedure increases candidate BT from 400k to 5 million, making the retrieval problems
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even more fine-grained and more challenging. In summary, we build a candidate pool

of 5 million table segments BT and a pool of 5 million passages BP . We denote as B as

our full candidate pool, which our model needs to find the block b (a table segment or a

passage) containing the answer span.

3.3.1 Question and Answer Annotations

Our question and answer pairs are built upon the existing HybridQA [8] dataset,

with several significant changes. First, crowd workers ‘decontextualize’ the questions so

that they are not under-specified or context-dependent, and thus suitable for the open

setting. Second, we add more questions to the development/test set to remove possible

annotation bias. During annotation, we adopt strict quality control1.

Decontextualization Most questions in HybridQA are contextualized with a given ta-

ble and several passages, with corresponding questions written by crowd workers. Often,

the crowd-sourced questions assume the context. For example, the questions might con-

tain the words "the players" because the given table is about "Netherlands players".

We thus needed ‘de-contextualize’ [55] the original context-dependent questions, so they

could serve as standalone questions, specific enough to imply a unique answer relative

to the corpus. To discourage excessive unwanted modification, we enforce a two-step

annotation procedure, as depicted in Figure 3.3. In the first phase, the worker is only

allowed to insert minimum words or phrases (or replace pronouns) into the questions

based on the information presented by Wikipedia Title, Section Title, and Section Text

to make the question have a unique answer. After this step, we often potentially obtain

1The collection is conducted on an established crowdsourcing platform with annotators from countries
with English as the native language. The annotators were required to meet the requirements: 1) a native
speaker in an English-speaking country 2) having an approval rate of over 95% and 3) having at least
500 approved jobs.
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overly-complicated questions that are artificial and unnatural. Therefore, we manually

selected the worst 25% questions and sent them back to make them more concise and

natural.

Medal Championship Name Event Ranking

Silver 2010 Pruszków Tim Veldt Men's omnium 2nd

Bronze 2011 Apeldoorn Kirsten Wild Women's omnium 3rd

Page Title: Netherlands at the European Track Championships
Section Title: European Track Championships (elite) 2010-current

schema

content

0. Original Which city does the player winning the silver medal in Men’s Omnium come from?

1. Insertion Which city does the Netherlands player winning the Men’s Omnium silver medal in ETC after 2010 come from?

2. Naturalize Which city does the Netherlands Men’s Omnium silver medalist after 2010 in ETC come from?

OTT-QA Annotation

Figure 3.3: The ‘de-contextualization’ annotation phase of OTT-QA. In the first step,
the annotator is restricted to add phrases from the context. In the second step, the
annotator is specifically requested to make the sentence more concise and natural.

Additional Evaluation Examples As all the questions from HybridQA are based on

the 13k tables from the HybridQA set, no questions are asked about the newly crawled

400k tables. This potentially generates unwanted statistical biases or artifacts for the

model to exploit, and potentially biases the final evaluation results. Therefore, we ran-

domly sampled another 1100 tables from the newly crawled tables, and follow the original

annotation process used by HybridQA to re-collect 2200 new questions. These new ques-

tions were mainly used in the dev/test set. Below we refer to the subset of tables used

by original HybridQA as the in-domain tables.

Distant Supervision Signals For the in-domain tables (≈ 8k), the cell-wise hyper-

links are provided in OTT-QA as a potential signal for supervision. We use Hi,j =

{b1, b2, . . . ∈ BP} to denote the hyperlinks in cell Ti,j. Since in HybridQA the oracle fine-

grained answer span is not explicitly annotated, we approximate this by traversing the

table and hyperlinked pasasages to find all exact matches. This process contains some
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noise—a manual study reveals that it roughly contains 15% error. We use this ‘weakly-

supervised’ fine-grained information to train our models. We denote the ‘approximate’

block of the answer span for answer a as ba, and use it to train our model.

3.3.2 Dataset Statistics

After annotation, we sampled roughly 2K questions from the in-domain HybridQA

dataset, and then mix them with the newly collected out-domain questions to construct

our dev and test sets. Finally, we have 41,469 questions in the training set, 2,214 questions

in the dev set, and 2,158 questions in the test set. We conduct more in-detailed analysis

over the reasoning types and show that a remarkable difference from original HybridQA

is that a proportion of questions actually have multiple plausible inference chains in the

open-domain setting.

3.4 Model

Our model for OTT-QA is a retriever-reader model with new designs for both retriever

and reader. As discussed briefly above, we propose to use a fusion retriever instead of

using a standard iterative retrieve, and we also propose to use cross-block readers to

replace a standard single-block reader.

3.4.1 Fusion Retriever

Iterative retrieval (Figure 3.4, Left) has the following issues. First, iterative retrieval

training often requires having supervision signals for every retrieval step to reach good

performance, which is not available in OTT-QA. The iterative retrieval also suffers from

the problem of error propagation, as early mistakes can propagate to later retrieval stages.
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Figure 3.4: Left: Iterative 3-step retrieval over individual blocks (baseline). Right:
Fusion 1-step retrieval over fused groups, which greatly lowers the cost of iterative
encoding and retrieving.

Finally, the computation cost for applying a dual-encoder for iterative retrieval is very

high, as for every stage, the query embedding has to be re-encoded to include the entire

retrieval history.

We propose an alternative strategy to replace multi-step retrieval, namely fusion re-

trieval (Figure 3.4, Right). In the fusion retriever, we first use an ‘early fusion’ strategy to

group relevant heterogeneous data before retrieval. The fusion procedure groups several

highly-relevant blocks from different modalities as a self-contained group (fused block),

which provides more clues for the retriever to utilize. Early fusion is very important for

retrieving table segments, which often have incomplete context by themselves. The early

fusion process aims to fuse a table segment and relevant passages into a group. Here

we propose to fuse entities mentioned in a table segment to the appropriate passages for

those entities; this is similar to document expansion based on a traditional entity linking

step. The problem is challenging due to the mismatch between the lexical forms from

the table (which for brevity are often abbreviated) and the relevant passage titles. For

example, a cell in the table of "NCAA Division I Men’s Football Tournament" contains

the term "Penn State". Directly matching "Penn State" against the passage corpus will

lead to "Penn State University" rather than the ground-truth hyperlinked entity, named

"Penn State Nittany Lions football". Therefore, we propose an additional augmenta-
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tion step, which takes in a table segment block bT and generates a sequence of augmented

queries q1, q2, · · · , qn token by token to make the queries more similar to the passage ti-

tle. The augmented queries are then used to search for nearest neighbors in the passage

corpus BP using BM25 as the final entity linking step. The query augmentation is imple-

mented with a GPT-2 model [56], fine-tuned on the supervised pairs of (table segment,

hyperlink) from the in-domain tables. Each bT is fed to find its companions b1P , · · · , bnP ,

they are collectively called bF .

We follow the standard dual-encoder setting (section 3.2) and the only difference

is that we replace the input of the block encoder with hb = BERTB([bT , b
1
P , · · · , bnP ]).,

which captures the cross-attention between the table and the text within a block. The

fused embedding contains richer context from both modalities to complement each other.

The retriever only needs to retrieve once from the candidate pool, which dramatically

decreases the complexity compared to the existing iterative retrievers.

To enhance the neural retrieval system to retrieve fused blocks, we apply the Inverse

Cloze Task (ICT) [52] pretraining task on the corpus of fused blocks. ICT is a way to

generate pseudo-training data for dense retrieval. Unlike standard document-wise ICT,

our fused block contains both table segments and multiple passages. Given a fused block

bF , we generate the pseudo-query in the following way: 1) we first corrupt the table

segment by randomly dropping half of the words from the table metadata and cells to

obtain a partial table segment b̂T . 2) We then randomly sample a sentence b̂P from the

fused passage. We combine b̂T and b̂P as a pseudo query q̂ and pair it with the original

fused block bF as pre-training data. The pre-training data is applied to enhance the dual

encoder’s ability to select lexically matched documents. After pre-training, the retriever

is fine-tuned on OTT-QA. Finally, at inference time, the retriever is used to retrieve the

top K fused blocks for a question, which are then passed to the reading comprehension

model for extractive answer prediction.
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Figure 3.5: Left: Single-block reader with input shorter than 512 tokens (baseline).
Right: Cross-block reader with length over 4K tokens, and Ā denotes the global state
assigned to local block A. The single-block reader is stuck at local optimum, while
cross-block reader outputs global optimum.

3.4.2 Cross-Block Reader

The reader typically needs to process the top-k retrieved blocks returned by the

retriever to extract the best answer, as the top-1 block might not contain enough evidence

to answer the question. As demonstrated in Figure 3.5, the cross-block reader aims

to address this issue by using cross attention between different blocks to model their

dependencies. To obtain the cross-block reader, we take the pre-trained long-range sparse

attention transformer (ETC) [49], which can accept up to 4096 tokens as input, and then

fine-tune the model on the distant supervision data. During training, the ground truth

(fused) blocks are mixed with hard negative blocks from the retriever. We take the top-k

retrieval results to fill the 4096 token space (roughly 15 fused blocks).

Cross-attention between blocks allows a much more powerful way to aggregate in-

formation across the k retrieved blocks compared to the single-block reader, especially

when the blocks are fused. This is feasible because of the design of the sparse attention

structure in ETC, which can constrain the attention of each token to its neighboring

tokens within a local radius in its local block. Such sparse attention can decrease the

attention computation complexity from quadratic O(N2) to linear O(N |R|), where |R| is
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the local radius (where N = 4096 and |R| = 84 in our experiments). To allow cross-block

interaction, ETC assigns a global state for each local block in the long sequence, and

blocks can attention to each other through multiple layers of such global-local structures.

3.5 Experiments

All of our code is based on Tensorflow [57]. For the retriever part, the sparse retriever

is built on top of DrQA [40] with unigram features, and the dense retriever is built with

BERT. The single-block retriever is based on BERT-uncased, and the cross-block reader is

based on ETC [49]. Both of them consist of 12 layers with a hidden size of 768, the minor

differences in the relative positional embedding used in ETC. All the models are trained

with a learning rate of 1e-5 optimized by AdamW [41]. We use in-batch negatives [52]

to train our dense retrievers. In fusion retriever, we use the ‘fused’ block containing

the ‘approximate’ answer block ba as the positive instance. In iterative retriever, since

the auto-regressive model f(bj|q, b1, · · · , bj−1) requires fine-grained inference chain for

step-wise supervision, which is not given in OTT-QA. We apply lexical match based

heuristics to synthesize inference chains as weakly supervised training data. For all the

dense retrievers, we pre-train with 10K steps using the generated pseudo query and then

fine-tune them another 10K step using a batch size of 2048. For the cross-block reader,

we fine-tune with a batch size of 64. Both are using 16 cloud TPUs.

Main Results In our experiments, we experiment with different types of retriever and

reader models under both sparse and dense setting, the details are described as follows:

• HYBRIDER: this model, designed for closed domain HybridQA questions, is one

baseline. Since this model requires a ground truth table with its hyperlinks to

do modularized reasoning, we use BM25 to retrieve the most relevant table and

44



Open Question Answering over Hybrid Web Knowledge Chapter 3

Retriever Dev-Sparse Dev-Dense Test-Best

Model EM F1 EM F1 EM F1

HYBRIDER (Top-1) [8] 8.7 10.9 8.9 11.3 8.4 10.6
HYBRIDER (best Top-K) [8] 9.9 12.2 10.3 13.0 9.7 12.8
Iter-Retrieval + Single-Block Reader 9.8 13.3 7.9 11.1 9.6 13.1
Fusion-Retrieval + Single-Block Reader 14.3 17.8 13.8 17.2 13.4 16.9
Iter-Retrieval + Cross-Block Reader 17.1 20.7 14.4 18.5 16.9 20.9
Fusion-Retrieval + Cross-Block Reader 27.7 31.8 28.1 32.5 27.2 31.5

Ablations EM F1 EM F1 EM F1

Table-only Retrieval + Cross-Block Reader 4.6 6.9 4.9 7.2 4.4 7.0
Text-only Retrieval + Cross-Block Reader 8.2 12.4 8.9 12.8 8.8 12.1
Groundtruth Table/Text + HYBRIDER 44.1 50.8 44.1 50.8 43.0 49.8

Table 3.1: Main Results. We conduct experiments with both sparse and dense
retrievers using the dev set, and then select the best setting to report the test set
results (as indicated by the word ”Best”). Fusion-Retriever and Cross-Block Reader
are combined to obtain the highest score.

passages to reconstruct an ‘approximated’ input for this model. We experiment

with top-1,2,3,4 cases where we use the answer with the highest confidence as

the final result. We also directly feed the ground-truth table and hyperlinks to

HYBRIDER, which roughly estimates an upper limit of this task.

• Iterative-Retriever (Sparse): We use a 2-step iterative retriever: in the first step,

we apply the question to retrieve the top-10 table segments and top-10 passages.

In the second step, we use each retrieved table segment to retrieve its related top-5

passages and concatenate each retrieved passage title with the original question to

retrieve the top-5 table segments. We merge and calculate the retrieval score of

each unique block and rank them by their score. For the single-block reader, we

split the retrieved blocks into 512-token chunks and feed them to the BERT reader.

For the cross-block reader, we truncate the top 4096 subword tokens and only feed

these tokens to reader.
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• Iterative-Retriever (Dense): We use a 3-step iterative retriever. In the first step, we

encode the question and retrieve the top-8 blocks (either table segment or passage);

in the second step, we concatenate the previous retrieved block and the question to

re-encode the query vector to further retrieve top-4 blocks; similarly, the last step

retrieves top-2 blocks.

• Fusion Retriever (Iterative): We use a sparse retriever to directly retrieve the top-

15 fused blocks based on bag-of-words BM25 score, and then split it into individual

table segments and passage blocks. Since passage could be associated with multiple

fused blocks, we merge duplicate blocks and use their summed score. Finally, we

rank each block based on its merged retrieval score and truncate the first 4096

subword tokens for the next step.

• Fusion Retriever (Iterative): We use a dual-encoder dense retriever to directly

retrieve the top-15 fused blocks, and then follow the same procedure as above.

Without specifying the dense retriever uses ICT for pre-training by default.

• Fusion Retriever w/o ICT and w/o GPT-2: these two ablation studies are aimed to

show the effectiveness of our proposed ICT pre-training and query augmentation.

The main results are presented in Table 3.1. First, we can observe that best HY-

BRIDER top-2 can only achieve a comprised exact match of 9.9% while the oracle HY-

BRIDER can obtain a score of 44%, which reflects the difficulties of the hybrid retrieval in

our dataset. We restrain the retriever to only retrieve table and text to answer the ques-

tions and report their results in Table 3.1, even with the strong cross-block reader, the

model only obtains 10% EM. These experiments demonstrate the necessity to integrate

information from both forms in OTT-QA.

By combining the standard iterative retriever and single-block reader, we can slightly
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improve the score can to roughly 10%. By replacing the iterative retriever with the

proposed sparse fusion retriever, the EM score can reach 14%, a 4.5% absolute improve-

ment. By replacing the single-block with the proposed cross-block reader, the EM score

can reach 17% , a 7% absolute improvement. However, by combining the two strategies,

the final EM score can reach 28%, with an 18% absolute improvement, which is greater

than the sum of individual improvements. The observation suggests the two components

can affect each other in a positive way. We conjecture that the fusion retriever is more

likely to retrieve mutually-supportive blocks in a group, which makes the multi-hop rea-

soning across different blocks easier for the following cross-block reader. In comparison,

the iterative retriever retrieves isolated table segments and passages separately, which

can easily miss out on the bridging evidence for building the complete reasoning chain.

Thus, the cross-block reader cannot maximize its advantage in reasoning across blocks.

By removing the ICT pre-training and query augmentation, we observe that the Dev-

EM score drops to 24.6%. By removing the GPT-2 query augmentation, the Dev-EM

performance drops to 22.1%. These two results indicate the effectiveness of the proposed

two strategies. By replacing the predicted hyperlinks with the oracle links, the fusion

model performance can increase by 7% EM. This indicates that there is still plenty of

room to improve for the table-passage fusion model.

Linker/Retriever Results To understand the results more, we evaluate the stan-

dalone table-passage entity linking accuracy and retriever recall.

We consider the following linking models: a) BM25 model, which directly uses the cell

value to retrieve passages based on their titles without query augmentation, b) a Dual-

Encoder model, which encodes the cell value and meta information into a query vector

to compute dot-product over all the passage candidate to retrieve, c) a GPT-2 model,

which first augments the cell value by the context and then uses BM25. We demonstrate
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Figure 3.7: Retriever performance (HITS).

our findings in Figure 3.6, and evaluate with table-segment-wise F1 score. We observe

that directly using BM25 leads to compromised precision of 30.3%, which is mainly due

to the lack of context information. By using a dual-encoder retriever, the precision can

be improved to 42%. However, many table segments have either zero or multiple linked

passages and can be better modeled by an auto-regressive retrieval process.

We use HITS@4K is used to measure the retriever performance, which indicates the

chance of ground truth block existing in the retrieved 4096 subword tokens. The results

are reported in Figure 3.7. We vary the steps of iterative retrievers to show the necessity

of multi-hop retrieval in OTT-QA. We observe that the 1-step retrieval has the lowest

recall because the answer block in OTT-QA normally has a lower lexical overlap with the

query. Adding the second retrieval step can greatly improve the recall, but adding the

third retrieval hop has very little impact. In contrast to the iterative retriever, the fusion

retriever can consistently improve the performance over the iterative setting for both

sparse and dense setting. The sparse setting can rise from 35.8% to 48.1% indicating

the advantage of ‘early’ fusion. The dense retriever’s improvement is more dramatic

(from 27.2% to 52.4%). We believe this is because the iterative retriever heavily relies

on noisy synthetic inference chain data, while the fusion retriever does not require such

a fine-grained supervision signal, thus less prone to noise.
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Model Dev-EM Dev-F1

Semantic Retriever [59] 46.5 58.8
Cognitive Graph [47] 37.6 49.4
DocKIT [60] 42.1 51.7
Transformer-XH [58] 50.2 62.4
RNN-Retrieval [48] (BERT base) 52.7 65.8

Ours (Fusion Retriever + Cross-Block Reader) 50.4 61.7

Table 3.2: HotpotQA Results. We conduct experiments on dev-set of HotpotQA,
and then compare with the state-of-the art models with similar model size.

Generalization Results To further demonstrate our model’s effectiveness on more

general open-domain question answering, we also test on purely text-based multi-hop

question answering dataset HotpotQA [32]. In this dataset, we follow the same procedure

to group passage individual blocks as grouped blocks offline. The retrieved blocks are fed

to the cross-block readers to allow interaction between retrieved blocks. We demonstrate

our results on the dev-set in Table 3.2, where we compare against the other models using

similar model size (BERT-base). As can be seen, our model is able to achieve competitive

performance with these state-of-the-art models. However, our model is more efficient in

a sense that our model does not require any additional re-ranking step over the retrieved

blocks. Both Transformer-XH [58] and RNN-Retrieval [48] require expensive re-ranking

over a large amount of retrieved reasoning graphs to select the most salient documents

for the next stage (reader). In contrast, our model directly feeds the retrieved blocks to

reader, which greatly simplifies and accelerates the system.

3.6 Related Work

Table Retrieval Tables are pervasive on the Web, there have been some studies on

mining web tables to answer open-domain questions [61, 62]. In [61], the authors have

proposed a pipeline framework to first detect the topic entity and then generate a can-
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didate chain, finally ranking chains to predict the answer cell. In [62], the authors

investigate different similarity matching features to retrieve tables from the web. Our

work is significantly different from these two studies in two aspects: 1) the previous works

use private small-scale datasets while we collect a large-scale dataset and release it for

public use, 2) the previous studies are restricted to only using tables as evidence, while

our work considers a more realistic and challenging setting with both table and text

corpus. Tables have been a ubiquitous information representation form to express semi-

structured information. There has been a long-standing effort to utilize tables in natural

language processing applications [24, 25, 26, 55, 63]. However, these existing tasks are

restricted to in-domain cases without requiring any retrieval, and our work is the first

to investigate retrieving web tables for downstream tasks. Another pair of related works

are TAPAS [54] and TABERT [64], which investigate joint pre-training over textual and

tabular data. Our method draws inspiration from these models, and also uses special

tokens and embeddings to encode spatial and logical operations inside tables.

Long Range Transformer Recently, many transformer variants to resolve the O(n2)

attention cost have been proposed including Sparse Attention [65], Reformer [66], Rout-

ing Transformer [67], Longformer [68] and ETC [49]. These different transformer models

apply hierarchical architecture, local-sensitive hashing, global-local state to decrease the

attention complexity to nearly linear. Our cross-block reader is based on ETC [49],

but unlike prior works that process one long document for QA, our task requires read-

ing multiple blocks containing both structured and unstructured data. To handle the

long sequence of retrieved documents in open-domain question answering, Fusion-in-

Decoder [69] has been proposed to replace the extractive model with an encoder-decoder

generative model. The long sequence of passages are split and encoded independently to

decrease the computation complexity, but the decoder still uses full attention over the
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tens of thousands of encoded vectors to generate the answer token by token. Such full-

attention can decrease the decoding speed by an order of magnitude, while our sparse-

attention-based cross-block reader can still maintain the same speed as the standard

BERT model.
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Chapter 4

Question Answering over

Multimodal Web Knowledge

4.1 Introduction

In the previous two chapters, we have discussed how to perform reasoning over struc-

tured and unstructured heterogeneous data on the Web. We demonstrate that by utiliz-

ing more knowledge forms on the Web, the performance of the existing QA systems can

be dramatically improved. To further increase the coverage, can we utilize the massive

amount of visual data from the Web? Since visual data is also a pervasive representation

on the Web to distribute information, it’s beneficial to design models to leverage these

visual data to answer questions. Therefore, in this chapter, we are interested in designing

better models to leverage such multi-modal knowledge from the Web.

To address such a multimodal question answering problem, various datasets have been

proposed including VQA [70], VQA2.0 [71], CLEVR [72], etc. These different datasets

leverage the web images in MSCOCO [73] and Flickr [74], etc. These problems are

summarized as visual question answering depicted in Figure 4.1, where the given data is
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Figure 4.1: Examples of Visual Question Answering.

an image I and a question Q. The model is tasked with predicting the answer a for the

given question Q conditioning on the given image I.

The key challenge of visual question answering, especially in the multi-hop case is

how to reason over the visual scenes in the image. Such compositional visual reasoning is

a hallmark for human intelligence that endows people with strong problem-solving skills

given limited prior knowledge. Neural module networks (NMNs) [75, 76, 77, 78, 79, 80]

have been proposed to perform such complex reasoning tasks. NMN requires a set of pre-

defined functions and explicitly encodes each function into unique shallow neural networks

called modules, which are composed dynamically to build an instance-specific network

for each input question. This approach has high compositionality and interpretability, as

each module is designed to accomplish a specific sub-task, and multiple modules can be

combined to perform an unseen combination of functions during inference.

However, NMN suffers from two major limitations. 1) Scalability: When the com-

plexity of the task increases, the set of functional semantics scales up, so does the number
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of neural modules. For example, in the recent GQA dataset [81], a larger set of functions

(48 vs 25, see Appendix for details) with varied arity is involved, compared to previous

CLEVR dataset [72]. To solve this task with standard NMN framework [75, 77, 80], an

increased amount of modules are required to implement for these functions, leading to

higher model complexity. 2) Generalizability: Since the model is tied to a pre-defined

set of functionalities when a new question with unseen functional semantics appears, no

existing module can be readily applied to the new semantics, limiting the model’s ability

to generalize.

In order to enhance NMN for more practical use, we propose Meta Module Network

(MMN). As depicted in Figure 4.2, MMN is based on a meta module (a general-purpose

neural network), which can take a function recipe (key-value pairs) as input to embed it

into continuous vector space and feed it as a side input to instantiate different instance

modules. Depending on the specification provided in function recipe, different instance

modules are created to accomplish different sub-tasks. As different instance modules

inherit the same parameters from the meta module, model complexity remains the same

as the function set enlarges. For example, if the recipe has K slots, and each slot takes

N values, a compact vector of the recipe can represent up to NK different functions.

This effectively solves the scalability issue of NMN. When creating instance modules

for specified sub-tasks, the input recipes are encoded into the embedding space for func-

tion instantiation. Thus, when an unseen recipe appears, it can be encoded into the

embedding space to instantiate a novel instance module based on embedding similar-

ity with previously observed recipes. This metamorphous design effectively overcomes

NMN’s limitation on generalizability.

MMN draws inspiration from Meta Learning [82, 83, 84] as a learning-to-learn ap-

proach - instead of learning independent functions to solve different sub-tasks, MMN
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Meta Module

Recipe 1 Recipe 2 Recipe 3

Image/Question Image/Program

Monolithic NMN
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MMN Q: What is the person in pink holding?

Select
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Filter
Pink

Relate
Holding𝑓" 𝑓# 𝑓$

Figure 4.2: Comparison between NMN and MMN for visual reasoning. Neural Module
Network (NMN) builds an instance-specific network based on the given question from
a pre-defined inventory of neural modules, each module has its independent param-
eterization. Meta Module Network (MMN) also builds an instance-specific network
by instantiating instance modules from the meta module based on the input function
recipes (specifications), every instance module has shared parameterization.

learns a meta-function that can generate a function to solve specific sub-task.1 The

learning algorithm of MMN is based on a teacher-student framework to provide module

supervision: an accurate “symbolic teacher” first traverses a given scene graph to gener-

ate the intermediate outputs for the given functions from specific recipe; the intermediate

outputs are then used as guidelines to teach each “student” instance module to accom-

plish its designated sub-task in the function recipe. The module supervision together

1borrowing the concept of Meta as in: a book in which a character is writing a book, or a movie in
which a character is making a movie, can be described as Meta.
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Figure 4.3: The model architecture of MMN: the lower part describes how the question
is translated into programs and instantiated into operation-specific modules; the upper
part describes the module execution. Circle i denotes the i-th step.

with the original question answering supervision are used jointly to train the model.

The model architecture of MMN is illustrated in Figure 4.3: (1) the coarse-to-fine se-

mantic parser converts an input question into its corresponding program (i.e., a sequence

of functions); (2) the meta module is instantiated into different instance modules based

on the function recipes of the predicted program, which is composed into an execution

graph; (3) the visual encoder encodes the image features that are fed to the instance

modules; (4) during training, we provide intermediate module supervision and end-step

answer supervision to jointly train all the components.

Our main contributions are summarized as follows. (i) We propose Meta Module

Network that effectively extends the scalability and generalizability of NMN for more

practical use, allowing it to handle tasks with unseen compositional function from new

domain. With a metamorphous meta module learned through teacher-student supervi-
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sion, MMN provides great flexibility on model design and model training that cleverly

overcomes the rigid hand-crafting of NMN. (ii) Experiments conducted on CLEVR and

GQA benchmarks demonstrate the scalability of MMN to accommodate larger set of

functions. (iii) Qualitative visualization on the inferential chain of MMN also demon-

strates its superb interpretability and strong transferability.

4.2 Proposed Approach

The visual reasoning task [85] is formulated as follows: given a question Q grounded

in an image I, where Q = {q1, · · · , qM} with qi representing the i-th word, the goal is to

select an answer a ∈ A from a set of possible answers. During training, we are provided

with an additional scene graph G for each image I, and a functional program P for each

question Q. During inference, scene graphs and programs are not provided.

Figure 4.3 provides an overview of Meta Module Network (MMN), which consists

of three components: (i) Program Generator (Sec. 4.2.1), which generates a functional

program from the input question; (ii) Visual Encoder (Sec. 4.2.2), which consists of self-

attention and cross-attention layers on top of an object detection model, transforming an

input image into object-level feature vectors; (iii) Meta Module (Sec. 4.2.3), which can be

instantiated to different instance modules to execute the program for answer prediction.

4.2.1 Program Generator

Similar to other programming languages, we define a set of syntax rules for building

valid programs and a set of semantics to determine the functionality of each program.

Specifically, we define a set of functions F with their fixed arity nf ∈ {1, 2, 3, 4} based on

the “semantic string” provided in GQA dataset [85]. The definitions for all the functions

are provided in the Appendix. The defined functions can be divided into 10 different
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Figure 4.4: Architecture of the coarse-to-fine Program Generator: the left part depicts
the coarse-to-fine two-stage generation; the right part depicts the resulting execution
graph based on the dependency relationship.

function types (e.g., “relate”, “verify”, “filter”, “choose”), and each abstract function

type is further implemented with different realizations based on fine-grained functionality

(e.g., “verify”: “verify attribute”, “verify geometric”, “verify relation”, “verify color”),

which take different arguments as inputs.

In total, there are 48 different functions defined in GQA environment, which poses

great challenges to the scalability in visual reasoning. The returned values of these

functions are List of Objects, Boolean, or String (Object refers to the detected bounding

box, and String refers to object name, attributes, relations, etc.) A program P is viewed

as a sequence of function calls f1, · · · , fL. For example, in Figure 4.4, f2 is Relate([1],

beside, boy), the functionality of which is to find a boy who is beside the objects

returned by f1 : Select(ball). Formally, we call Relate the “function name”, [1]

the “dependency” (previous execution results), and beside, boy the “arguments”. By

exploiting the dependency relationship between functions, we build an execution graph,

where each node represents a function and each edge denotes an input-output dependency

relationship between connected nodes.

In order to generate syntactically plausible programs, we follow [86] and adopt a

coarse-to-fine two-stage generation paradigm, as illustrated in Figure 4.4. We first encode
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the question as a context vector, and then decode a sketch step by step (the sketch

only contains the function name without arguments). Once the sketch is decoded, the

arity and types of the decoded functions are determined. For example, after generating

“Relate”, there are three arguments following this function with the first argument as

the dependency. The sketch is thus expanded as “Relate (#1, #2, #3)”, where “#i”

denotes the i-th unfilled slot. We then apply a fine-grained generator to fill in the slots

of dependencies and arguments for the sketch as a concrete program P . During the

slot-filling phase, we mask the infeasible tokens at each time step to greatly reduce the

search space.

Such a two-stage generation process helps guarantee the plausibility and grammat-

icality of synthesized programs. For example, if function Filter is sketched, we know

there are two tokens required to complete the function. The first token should be se-

lected from the dependency set ([1], [2], ...), while the second token should be selected

from the attribute set (e.g., color, size). With these syntactic constraints to shrink

the search space, our program synthesizer can achieve a 98.8% execution accuracy (i.e.,

returning the same result as the ground truth after execution) compared to execution

accuracy of 93% of a standard sequence generation model.

4.2.2 Visual Encoder

The visual encoder is based on a pre-trained object detection model [87, 88] that

extracts from image I a set of regional features R = {ri}Ni=1, where ri ∈ RDv , N denotes

the number of regions of interest, and Dv denotes the feature dimension. Similar to a

Transformer block [89], we first use two self-attention networks, SAq and SAr, to encode

the question and the visual features as Q̂ = SAq(Q,Q;φq) and R̂ = SAr(R,R;φr),

respectively. Q̂ ∈ RM×D, R̂ ∈ RN×D, and D is the network’s hidden dimension. Based
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Figure 4.5: Illustration of the instantiation process for Relate and Filter functions.

on this, a cross-attention network CA is applied to use the question as guidance to refine

the visual features into V = CA(R̂, Q̂;φc) ∈ RN×D, where Q̂ is used as the query vector,

and φ = {φq, φr, φc} denotes all the parameters in the visual encoder. The attended

visual features V will then be fed as the visual input to the meta module, which is

detailed in Sec. 4.2.3.

4.2.3 Meta Module

As opposed to having a full inventory of task-specific parameterized modules for

different functions as in NMN [76], we design an abstract meta module that can be

instantiated into instance modules based on an input function recipe, which is a set

of pre-defined key-value pairs specifying the properties of the function. As exemplified

in Figure 4.5, when taking recipe Function:relate; Geometric:to the left as the

input, the Recipe Embedder produces a recipe vector to instantiate the abstract meta

module into a “geometric relation” module, which specifically searches for target ob-

jects that the current object is to the left of. When taking recipe Function:filter;

Type:color; Attribute:pink as input, the Embedder will instantiate the meta module

into a “filter pink” module, which specifically looks for the objects with pink color in the

input objects.
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Figure 4.6: Illustration of the Module Supervision process: the symbolic teacher ex-
ecutes the function on the scene graph to obtain the bounding box b, which is then
aligned with bounding boxes from the object detection model to compute the super-
vision guideline.

Two-layered Attention Figure 4.5 demonstrates the computation flow in meta mod-

ule, which is built upon two-leveled multi-head attention network [89]. A Recipe Em-

bedder encodes a function recipe into a real-valued vector rf ∈ RD. In the first attention

layer, rf is fed into an attention network gd as the query vector to incorporate the output

(ô1:K) of dependent modules. The intermediate output (od) from this attention layer is

further fed into a second attention network gv to incorporate the visual representation

V of the image. The final output is denoted as g(rf , ô1:K ,V) = gv(gd(rf , ô1:K),V).

Instantiation & Execution The instantiation is accomplished by feeding a function

f to the meta module g, which results in a wrapper function gf (ô1:K ,V;ψ) known as

instance module (ψ denotes the parameters of the module). Each module gf outputs

o(f) ∈ RD, which acts as the message passed to its neighbor modules. For brevity, we

use o(fi) to denote the MMN’s output at the i-th function fi. The final output o(fL)

of function fL will be fed into a softmax-based classifier for answer prediction. During

training, we optimize the parameters ψ (in meta module) and φ (in visual encoder) to

maximize the likelihood pφ,ψ(a|P,Q,R) on the training data, where a is the answer, and
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P,Q,R are programs, questions and visual features.

4.2.4 Learning

In order to train the meta module to learn the instantiation process from given func-

tion recipes (i.e., how to generate functions), we propose a Teacher-Student framework

depicted in Figure 4.6. First, we define a Symbolic Executor as the “Teacher”, which

can take the input function f and traverse the provided training scene graph to obtain

intermediate results (i.e., distribution over the objects on the ground-truth scene graph).

The “Teacher” exhibits it as a guideline γ for the “Student” instance module gf to follow.

Symbolic Teacher We first execute the program P = f1, · · · , fL on the ground-truth

scene graph G provided in the training data to obtain all the intermediate execution

results. According to the function definition (see Appendix for details), the intermediate

results are either of type List of Objects or Boolean. The strategy of representing the re-

sults follows: (i) Non-empty List of Objects : use the first element’s vertexes [x1, y1, x2, y2];

(ii) Empty List of Objects : use dummy vertexes [0, 0, 0, 0]; (iii) “True” from Boolean:

use the vertexes from last step; (iv) “False” from Boolean: use dummy vertexes as in

(ii). Therefore, the intermediate results can be unified in the form of quadruples denoted

as bi. To align these quadruple bi regions with the regions R proposed by the object

detector from the visual encoder, we compute its overlap against all the regions rj ∈ R

as ai,j =
Intersect(bi,rj)

Union(bi,rj)
. Based on whether there exist any overlaps, we handle the following

two cases differently:

• If
∑

j ai,j > 0, which means that there exists detected bounding boxes overlapping

with the bi, we normalize ai,j over R to obtain a distribution γi,j =
ai,j∑
j ai,j

and

append an extra 0 in the end to obtain γi ∈ RN+1.
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• If
∑

j ai,j = 0, which means no detected bounding box has overlap with bi (or

bi = [0, 0, 0, 0]), we use the one-hot distribution γi = [0, · · · , 0, 1] ∈ RN+1 as the

distribution. The last bit represents “No Match”.

We call distributions γi,j the guideline from symbolic teacher. Please refer to the right-

most part of Figure 4.6 to better understand the computation.

Student Module We propose to demonstrate the guideline distributions γi,j from

the symbolic teacher for student instance modules gf to imitate. Formally, we let each

instance module gf predict its guideline distribution based on its output representation

o(fi), denoted as γ̂i = softmax(MLP (o(fi))). During training, we enforce the instance

module’s prediction γ̂i to align the guideline distribution γi by minimizing their KL

divergenceKL(γi||γ̂i). This side task is aimed to help the meta module learn the mapping

from recipe embedding space rf ∈ RD to function space f ∈ F like a function factory

rather than directly learning independent functions f itself. Such a “learning to learn” or

meta-learning paradigm gives our model the capability to generalize to unseen sub-tasks

encoded in the recipe embedding space.

Joint Optimization Formally, given the quadruple of (P,Q,R, a) and the pre-computed

guideline distribution γ, we propose to add KL divergence to the standard loss function

with a balancing factor η:

L(φ, ψ) = − log pφ,ψ(a|P,Q,R) + η

L−1∑
i=1

KL(γi||γ̂i) . (4.1)

The objective jointly provides the module supervision and end-task supervision, the

parameters φ, ψ of visual encoder and the module network are optimized w.r.t to it.
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Model Cnt Exist
Cmp
Num

Cmp
Attr.

Query
Attr.

All

NMN [77] 68.5 85.7 84.9 88.7 90.0 83.7
IEP [78] 92.7 97.1 98.7 98.9 98.1 96.9
MAC [81] 97.1 99.5 99.1 99.5 99.5 98.9
NS [90] 99.7 99.9 99.9 99.8 99.8 99.8
NS-CL [80] 98.2 98.8 99.0 99.1 99.3 98.9

MMN 98.2 99.6 99.3 99.5 99.4 99.2

Table 4.1: Comparison of MMN against the state-of-the-art models on CLEVR test
set, as reported in their original papers.

4.3 Experiments

In this section, we conduct the following experiments. (i) We first evaluate the

proposed Meta Module Network on CLEVR datast [72] to preliminarily validate its

effectiveness on the synthetic environment. (ii) We then evaluate on the GQA v1.1

dataset [85] and compare it with state-of-the-art methods. As GQA is a more realistic

testbed to demonstrate the scalability and generalizability of our model, we will focus

on it throughout our experiments. (iii) We provide visualization of the inferential chains

and perform fine-grained error analysis based on that. (iv) We design synthesized ex-

periments to quantitatively measure our model’s generalization ability towards unseen

functional semantics.

To verify the contribution of each component in MMN, we perform several ablation

studies. (1) w/o Module Supervision vs. w/ Module Supervision. We investigate the

influence of module supervision by changing the hyper-parameter η from 0 to 2.0 to see

how much influence the module supervision has on the model performance. (2) w/o

Bootstrap vs. w/ Bootstrap. We investigate the effectiveness of bootstrapping in training

to validate whether we could use the large-scale unbalanced split to benefit on the model’s

performance.
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Ablation (1) Accuracy Ablation (2) Accuracy

MCAN 57.4 MMN w/o BS 58.4
MMN (η = 0) 58.1 MMN w/o FT 56.5
MMN (η = 0.1) 59.1 MMN + BS (2 ep) 59.2
MMN (η = 0.5) 60.4 MMN + BS (3 ep) 59.9
MMN (η = 1.0) 60.1 MMN + BS (4 ep) 60.4
MMN (η = 2.0) 59.5 MMN + BS (5 ep) 60.0

Table 4.2: Ablation study on GQA testdev. BS means bootstrapping, FT means fine–
tuning; w/o BS: Directly training on the balanced-split; (n ep) means bootstrapped
for n epochs.

select(woman) Relate_inv_name([1], atop, baby) Relate_inv_name([2], left, food)

2. Where is the girl who is wearing the cyan shirt?
select(shirt) filter([1],cyan) Relate_inv([2], wearing)

Cake

Query([3], name)

Beach

1. What type of food is to the left of the baby that is  sitting atop the woman ?

Query([4], name)

MLP

MLP

Relate_inv([3], on)

Figure 4.7: Visualization of the inferential chains learned by our model.

We further report the ablation results for the validation split in Table 4.2. From Abla-

tion (1), we observe that without module supervision, our MMN already achieves decent

improvement over 6-layered MCAN [91]. Since all the modules have shared parameters,

our model has similar parameter size as 1-layered MCAN. The result demonstrates the

efficiency of the parameterization in our MMN. By increasing η from 0.1 to 0.5, accu-

racy steadily improves, which reflects the effectiveness of module supervision. Further

increasing the value of η did not improve the performance empirically. From Ablation

(2), we observe that bootstrapping is a critical step for MMN, as it explores more data to

better regularize functionalities of reasoning modules. Bootstrap for 4 epochs can yield
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Function verify shape relate name
Methods NMN 0%(MMN) 100%(MMN) NMN 0%(MMN) 100%(MMN)
Accuracy 50% 61% 74% 5% 23% 49%
Function filter location choose name
Methods NMN 0%(MMN) 100%(MMN) NMN 0%(MMN) 100%(MMN)
Accuracy 50% 77% 86% 50% 62% 79%

Table 4.3: Analysis of MMN’s generalizability to unseen functions. In NMN, since
the unseen function does not have pre-defined module, the performance is close to
randomness. In MMN, 0% means without any training instances, 100% means fully–
supervision.

better performance in our experiments.

4.3.1 Generalization Experimental Results

Similar to Meta Learning [84], we also evaluate whether our meta module has learned

the ability to adapt to unseen sub-tasks. To evaluate such generalization ability, we

perform additional experiments, where we held out all the training instances containing

verify shape, relate name, filter location, choose name to quantitatively mea-

sure model’s performance on these unseen functions. Standard NMN [76] fails to handle

these unseen functions, as it requires training instances for the randomly initialized shal-

low module network for these unseen functions. In contrast, MMN can generalize the

unseen functions from recipe space and exploits the structural similarity with its related

functions to infer its semantic functionality. For example, if the training set contains

verify size (function: verify, type: size, attr: ?) and filter shape (function: filter,

type: shape, attr: ?) functions in the recipes, and instantiated module is capable of infer-

ring the functionality of an unseen but similar function verify shape (function: verify,

type:shape, attr: ?) from the recipe embedding space. Table 4.3 shows that the zero-

shot accuracy of the proposed meta module is significantly higher than NMN (equivalent

to random guess), which demonstrates the generalizability of proposed MMN architec-
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ture. Instead of handcrafting a new module every time when new function appears like

NMN [76], our MMN is more flexible and extensible for handling growing function sets.

Such observation further validates the value of the proposed method to adapt a more

challenging environment where we need to handle unknown functions.

4.3.2 Interpretability and Error Analysis

To demonstrate the interpretability of MMN, Figure 4.7 provides some visualization

results to show the inferential chain during reasoning. As shown, the model correctly

executes the intermediate results and yields the correct final answer. More visualization

examples are provided in the Appendix. To better interpret the model’s behavior, we also

perform quantitative analysis to diagnose the errors in the inferential chain. Here, we

held out a small validation set to analyze the execution accuracy of different functions.

Our model obtains Recall@1 of 59% and Recall@2 of 73%, which indicates that the

object selected by the symbolic teacher has 59% chance of being top-1, and 73% chance

as the top-2 by the student model, significantly higher than random-guess Recall@1 of

2%, demonstrating the effectiveness of module supervision.

Furthermore, we conduct a detailed analysis of function-wise execution accuracy to

understand the limitation of MMN. We found that most erroneous functions are relate

and query, having 44% and 60% execution accuracy respectively. These errors are mainly

related to scene understanding, which suggests that the scene graph model is critical to

surpassing NSM [92] on performance. However, this is out of the scope of this chapter

and we plan to leave it for future study.
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4.4 Related Work

Neural Module Networks By parsing a question into a program and executing the

program through dynamically composed neural modules, NMN excels in interpretability

and compositionality by design [75, 76, 77, 78, 79, 90, 80, 93]. For example, IEP [77]

and N2NMN [78] aims to make the whole model end-to-end trainable via the use of

reinforcement learning. Stack-NMN [79] proposes to make soft layout selection so that the

whole model is fully differentiable, and Neural-Symbolic VQA [90] proposes to perform

completely symbolic reasoning by encoding images into scene graphs. However, its success

is mostly restricted to simple datasets with a limited set of functions, whose performance

can be surpassed by simpler methods such as relational network [94] and FiLM [95].

Our MMN is a module network in concept, thus possessing high interpretability and

compositionality. However, different from traditional NMN, to enhance its scalability and

generalizability, MMN uses only a general-purpose meta module for program execution

recurrently, which makes MMN inherently a monolithic network, ensuring its strong

empirical performance without sacrificing model interpretability.

Monolithic Network Another line of research on visual reasoning is focused on de-

signing monolithic network architecture, such as MFB [96], BAN [97], DCN [98], and

MCAN [91]. These black-box models have achieved strong performance on challenging

datasets, such as VQA [70, 99] and GQA [85], surpassing the NMN approach. More

recently, multimodal pre-training algorithms [100, 101, 102, 103, 104] have been pro-

posed that further lift state of the art on diverse tasks such as VQA [99], NLVR2 [105],

and VCR [106]. They use a unified neural network to learn general-purpose reasoning

skills [81], which is more flexible and scalable than NMN. Most monolithic networks

for visual reasoning resort to attention mechanism for multimodal fusion [107, 108, 109,
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91, 96, 110, 97, 111, 112, 113]. To realize multi-hop reasoning on complex questions,

SAN [114], MAC [81] and MuRel [115] models have been proposed. As the monolithic

network is not tied to any pre-defined functionality, it has better generalizability to un-

seen questions. However, since the reasoning procedure is conducted in the feature space,

such models usually lack interpretability, or the ability to capture the compositionality

in language.

GQA Models GQA was introduced in [85] for real-world visual reasoning. Simple

monolithic networks [116], MAC netowrk [81], and language-conditioned graph neural

networks [113, 117] have been developed for this task. LXMERT [100], a large-scale pre-

trained encoder, has also been tested on this dataset. Recently, Neural State Machine

(NSM) [92] proposed to first predict a probabilistic scene graph, then perform multi-

hop reasoning over the graph for answer prediction. The scene graph serves as a strong

prior to the model. Our model is designed to leverage dense visual features extracted

from object detection models, thus orthogonal to NSM and can be enhanced with their

scene graph generator once it is publicly available. Different from the aforementioned ap-

proaches, MMN also performs explicit multi-hop reasoning based on predicted programs

to demonstrate inferred reasoning chain.
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Chapter 5

Generating Logically Faithful Text

from Web Table

5.1 Introduction

In the previous chapters, we have talked about natural language understanding, which

serves as a cornerstone for building a powerful natural language interface to interact with

Web knowledge. Another necessary cornerstone is to enable the model to communicate

with human language, which is known as natural language generation problem. The

model aims to condition on a specific meaning representation to realize it in the form

of natural language. Such generation problem has been extensively studied in lots of

previous literature, where the model is tasked with generating the description for the

given structured data like tables, knowledge graphs, dialog actions, etc. We summarize

the different datasets in Figure 5.1. Here, we mainly focused on table-to-text generation

task, where we need to summarize the most salient and interesting claims from the given

table. This task has been investigated in previous literature [118, 119, 120, 121], and the

existing generation models like GPT-2 [56] can already generate very fluent and coherent
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sentences. However, a critical property that is necessary but often overlooked is fidelity,

i.e., what is generated should be faithful to the underlying data, knowledge, or meaning

representation. A line of recent work has started to address the surface-level fidelity

issue of natural language generation (NLG) by encouraging the model to learn to reuse

the verbatim of certain inputs through copy mechanism [122, 123, 121, 119], structured

attention [119], or planning and selection/entity modeling [124, 125]. While shown to be

effective, most such methods so far are primarily focused on surface-level realization and

simply restate the facts in the underlying data (Figure 5.2).

Gardent et al. 2017
Chen et al. 2020
Radev et al. 2020

Wen et al. 2013
Remi et al. 2016
Chen et al. 2020
Parikh et al. 2020

Liang et al. 2013
Dušek et al. 2018

Murakami et al. 2017
Aok et al. 2019

Knowledge

chart

pair

triple

table

Text

report

dialog

description

biography

Datasets

Figure 5.1: Data-to-text Generation from various different structured knowledge.

However, humans have the ability to generalize beyond superficial facts (e.g., “Canada

has got 3 gold medals.”) by inferring and communicating with new statements that can

be entailed from these facts (e.g., “Canada obtained the most gold medals.”). We believe

it is important for NLG models to be able to generalize beyond the superficla facts

given to them as well. Therefore, we propose a new task, logical NLG, where a model

is tasked with generating natural language statements that can be logically entailed by
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Nation Gold Medal Silver Medal Bronze Medal Sports

Canada 3 1 2 Ice Hockey

Mexico 2 3 1 Baseball

Colombia 1 3 0 Roller Skating

Sentence: Canada obtained 1 more gold medal than Mexico. 
Sentence: Canada obtained the most gold medals in  the game.

Medal Table from Tournament

Sentence: Canada has got 3 gold medals in the tournament.
Sentence: Mexico got 3 silver medals and 1 bronze medal.

Surface-level Generation

Logical Natural Language Generation

Figure 5.2: Table-to-text generation examples with and without implicit logical infer-
ence. Logical NLG requires a generation model to generate natural language state-
ments that can be logically entailed by the facts in the table instead of simply restating
certain superficial facts in natural language.

the given data (i.e., the premises). The new task requires a model to jointly reason

and generate sentences that are consistent both linguistically and logically. Since there

are a variety of reasoning/inference tasks such as natural language inference [126] and

commonsense reasoning [127], to avoid confusion, this chapter is specifically focused on

inferences involving symbolic operations over the given table [24].

To empower research in this direction, we collect a new corpus LogicNLG based

on the existing TabFact [63], which brings two major renovations to the existing NLG

paradigm: 1) the text involves diversified types of logical inferences including math oper-

ations like max/min/sum/add, comparison operations like same/different, and counting

operations like total/only. A more detailed description of logical inference is listed in

the Appendix. 2) while existing datasets are often restricted to a specific domain such

as weather [118], restaurant [120], NBA [121], etc, LogicNLG uses open-domain tables

without prior knowledge about their schema. As such, existing methods based on surface-

level copying [122, 123, 124] becomes insufficient, so are the existing fidelity evaluation
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Colombia has 4 medals in total.

5 ? ? ?

2 more silver medals than Canada.[Logic: Diff]

[Logic: Total]

[Wrong ] ? ? ?

Figure 5.3: When making the decision at the third step, the model needs to foresee
the future tokens to ensure logical consistency. There is no back-tracking once the
model makes a wrong decision like “5”.

based on the surface-level information extraction [121, 128, 129], which extracts surface

triples in a certain pre-defined form (i.e. subj-pred-obj, n-gram) and compare them with

the surface content given in the knowledge.

Most neural generation models follow a monotonic generation schema from left to

right with the current prediction only depending on the preceding words. Logical NLG

poses unique challenges to the traditional generation scheme due to the mismatch between

sequence order and logical order. As illustrated in Figure 5.3, the word “2” is derived from

the logical inference of ‘diff(Silver medal of Colombia, Silver medal of Canada))→ 2.’ In

other words, the logical order of word “2” should be after “more”, “silver”, and “Canada”,

while the sequence order of “2” is before those words. Since the monotonic generation

scheme is purely based on sequence order while agnostic to logical order, existing NLG

models struggle to maintain the fidelity as they cannot model the logical dependency

on future tokens. To alleviate such an order mismatch, an NLG model must have the

capability to plan ahead for the next few steps before generation. In this context, we

believe LogicNLG to be an important testbed to study such a planing/inference ability

in generation models [130, 131]. In this chapter, we further propose a non-monotonic

coarse-to-fine generation model and show that it is able to alleviate the order mismatch

problem and achieve better performance. The contribution of this work is three-fold:

• We propose a new research problem of logical natural language generation, and

provide novel metrics to approximately evaluate the logical fidelity of generation
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Vocab Examples Tables Domain Inference Schema

WEATHERGOV 394 22.1K 22.1K Weather No Known
WikiBIO 400K 728K 728K Biography No Limited
ROTOWIRE 11.3K 4.9K 4.9K NBA Few Known
LogicNLG 122K 37.0K 7.3K Open Rich Unlimited

Table 5.1: Comparison of LogicNLG against existing NLG datasets in different aspects.

models.

• We justify the mismatch problem between sequence order and logical order of the

traditional monotonic generation scheme in logical NLG.

• We conduct comprehensive experiments with state-of-the-art neural generation

models under both automatic and human evaluation, which demonstrates the chal-

lenges and opportunities for future research on logic NLG.

5.2 Dataset and Problem Definition

Existing NLG datasets [132, 120, 133, 118] are mainly composed of surface-level de-

scription over the given records. Though ROTOWIRE [121] involves sporadic inference

in the long document, and the inference is restricted to domain-specific knowledge (e.g.

double-double, smash, triple-double and other NBA-related terms). Hence, we need a

better testbed for studying the proposed problem.

Statistics We construct a dataset based on TabFact [63], which is a table-based fact-

checking dataset with rich logical inferences in the annotated statements. Specifically,

we took their positive statements (the sentences which are entailed by the knowledge in

the table) collected from “complex channel” (required to annotate sentences with logical

inference) as our target text. To prevent confusion with the original dataset, we name this
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Nation Gold Medal Silver Medal

Canada 3 1

Mexico 2 3

Colombia 1 3

Type Sentence

Surface Canada obtained 3 gold medals during the Tournament

Logical

Canada obtained 1 more gold medal than Mexico.

Canada obtained the most gold medal

Colombia has 4 medals in total

IE

(Canada, Gold, 3)
Failed
Failed
(Colombia, Medal, 4)

Support

Refuted

Medal Table for XXX

Figure 5.4: Evaluation of surface-level generation vs. logical natural language genera-
tion. It suffices to use IE-based evaluation [121, 128] to verify surface-level generation,
but it causes either “empty triple” or “false negative” problems to verify logical NLG.

table-to-text dataset as LogicNLG, which contains 28,450 training, 4,260 validation and

4,305 test examples based on 7,392 open-domain tables crawled from Wikipedia. Each

table has 5 different examples covering diverse types of logical inference. More detailed

statistics and comparisons are listed in Table 5.1. LogicNLG is distinguished from the

existing datasets due to:

• It involves very rich logical inference, every annotated sentence involves certain

types of inference with minimum domain-specific knowledge. The open-domain

characteristic simulates a realistic setting, where we cannot enumerate the possi-

ble inference based on the scheme, which poses great challenges to the model’s

generalization capability.

• It is mainly composed of short sentences with an average length of 11 and a simple

syntactic structure, which isolates from other linguistic complexity to focus on the

problem of logical inference.

The dataset contains tables with open schema crawled from diversified domains Fig-

76



Generating Logically Faithful Text from Web Table Chapter 5

0%

10%

20%

30%

40%

Domain Distribution of Tables

Team/Player (Sports) Compeition (Sports) Politics Entertaiment Celebrity Science

Figure 5.5: The domain distribution of LogicNLG.

ure 5.5. The major categories are sports, politics, and entertainment.

The schema diversity of the tables make the rule-based system infeasible to apply.

Besides, most of the tables have very rich numeral records, which provide a great testbed

for logical inference.

Problem Definition Here, we formally define our proposed table-to-text generation

task. The input is a table T with its title denoted as a natural language sequence W .

The table T = {Ti,j|i ≤ RT , j ≤ CT} has RT rows and CT columns with the Tij being the

content in the (i, j)-th cell. Tij could be a word, a number, a phrase or even a natural

language sentence. The annotated statement is a sentence Y = y1, y2, · · · , yn, we aim to

train a neural generation model p(Y |T) to generate statement Ŷ which are both fluent

and logically (numerically) supported by the given table T.

5.3 Automatic Evaluation

In this section, we discuss the evaluation of our proposed NLG task. The fluency

evaluation is simply based on the standard metrics like Perplexity [134] and BLEU-

1,2,3 [5] based on NLTK [135]. The most challenging problem is to evaluate the logical

fidelity of the generated sentences, which is also the core problem of this chapter. The
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Sentence: Canada obtained 1 more gold medal than Mexico

Eq(Hop(Filter(Nation==Canada), Gold Medal)… 1)

Parsing [Link->Search]
True

False

Sentence: Canada obtained 1 more gold medal than Mexico

Table: In the first row …. In 
the second row, ….

Linearize NLI

Orig: Canada obtained 1 more gold medal than Mexico

Adv: Canada obtained 1 less gold medal than Mexico
Model

𝑝(𝑌|𝑇)

𝑝(𝑌!"#|𝑇)
>

𝑝$%&(𝑌|𝑇)

Execute ✓

✕

✓

✕

✓

✕

Figure 5.6: The parsing-based and adversarial evaluation to measure model’s correct-
ness in logical reasoning.

existing IE-based extractive evaluation [121] leads to two issues as shown in Figure 5.4:

1) Empty Extraction: the sentence can not be formulated as (subject, predicate, object)

structure, thus the IE system fail to extract triples for verification. 2) False Negative: the

sentence is a logical composition (instead of surface form) of the fact from the table, the

IE system cannot match it against the table. For these reasons, we test two approximate

automatic metrics:

Parsing-based Evaluation We first propose a model-based evaluation method, which

aims to directly extract the meaning representation from the generated sentence and

execute it against the table to verify its correctness. Our evaluation is based on weakly-

supervised semantic parsing [118, 136], the basic idea is to first link entities and predicates

in the sentence, and then use linked entities to perform a breadth-first search to synthesize

potential logical forms, finally, a scorer is used to re-rank these logical forms and filter out

spurious ones. The logical form returns a binary value of True to indicate whether its logic

is supported by the knowledge. The basic idea is shown in the upper part of Figure 5.6,

the implementation details are in the Appendix. We pre-train the semantic parser fγ

on the training set (T, Y ) ∈ Dtrain with weakly supervised algorithm, at test time, we
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use it to parse a sentence Y into a set of logical forms, which is re-ranked to obtain the

highest logical form Pbest. We compute the ratio of Pbest returning “true” on Dtest to

approximate model’s fidelity.

SP-Acc = E
(T,Ŷ )∈Dtest

I(Pbest → True|Pbest = fγ(Ŷ ))

where I is the indicator function.

NLI-based Evaluation We then propose another model-based evaluation method to

complement the parsing-based evaluation (which is sensitive to semantic variation), the

basic idea follows [137] to evaluate the entailment score between the table and the gen-

erated sentence. The NLI model is based on TableBERT [63], which linearizes the table

into textual form and uses it as the evidence for natural language inference. The model

is trained with TabFact [63] dataset containing both positive/negative samples. During

the evaluation, we use this NLI model to predict the entailment relationship based on

the likelihood of pNLI(Y |T ). Finally, we compute the ratio of “entailed” to approximate

model’s fidelity:

NLI-Acc = E
(T,Ŷ )∈Dtest

I(pNLI(Y |T) > 0.5)

where I is the indicator function.

Adversarial Evaluation Adversarial evaluation [138, 139] is used to study the gener-

ation model’s robustness in logical reasoning. Specifically, we hire human workers from

Amazon Mechanical Turk1 to annotate adversarial examples for the test/validation set

by simply changing minimum words to revert the logic of the sentence. Such adversarial

1https://www.mturk.com/
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examples preserve linguistic components like length and style except the logic-related

words to specifically disentangle the generation model’s reasoning skill. As drawn in the

lower part of Figure 5.6, the original sentence modifies its word “more” into “less” as

an adversarial example. There are two principles the workers need to follow to make

their jobs accepted: 1) the modified words/phrases should be roughly equally frequent

to balance the language prior, for example, the number “1” is better swapped with “2,3”

rather than “9999” which rarely appears in the corpus. 2) the perturbation should be

diverse enough to cover different aspects of logical reasoning skills. We use the genera-

tion model p(Y |T; β) to score the original sentence Y and the adversarial sentence Yadv.

If the confidence of the original example is higher than its adversarial counterpart, we

count it as a successful defense, otherwise as a failed defense. We use the success rate to

approximate model’s logical reasoning capability.

Adv-Acc = E
(T,Y,Yadv)∈Dtest

[I(p(Y |T) > p(Yadv|T))]

where I is the indicator function.

Discussion Both types of metrics have pros and cons, the SP-Acc and NLI-Acc are two

metrics unbiased as it measures the peak samples in the model’s likelihood, however, both

metrics are based on imperfect models and thus their evaluation scores are inaccurate.

SP-Acc is more sensitive to number/calculation errors, and NLI-Acc is more sensitive to

semantic errors, therefore, we report both of them to help increase the metrics’ robustness.

In contrast, the adversarial evaluation score is accurate in terms of reflecting the model’s

reasoning capability on the given samples. However, as the provided samples might not

lie in the high-confidence area of the model’s distribution, it is biased in reflecting the

model’s general reasoning capability. Though these fidelity metric models are prone to
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Figure 5.7: The Non-pretrained and Pre-trained generation models, the detailed table
is shown in Figure 5.2.

errors, in section 5.6, we show their consistency with human judgment, which reveals

their potential to assist human evaluation.

5.4 Baselines

In this section, we design comprehensive baseline models to perform logical NLG.

Specifically, we consider the following two cases: non-pretrained models (LSTM/Transformer)

with copy mechanism and pre-trained models (GPT-2 and BERT) with sub-word unit.

We train these models with three different algorithms: Maximum Likelihood, Adversarial

Training, and Reinforcement Learning.
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5.4.1 Non-pretrained Models

Here we mainly consider two table encoding methods, namely field-infusing and field-

gating. These two methods differ in their strategies to coalesce the field information

into cells. After the table is represented as a sequence of vectors, a decoder based on

LSTM [140] or Transformer [89] is applied to generate text token by token. The two

methods are depicted in the upper part of Figure 5.7:

Field-Infusing This strategy is inspired by [133]. We first use an LSTM [140] to

encode the table field text word by word and then use the last output zi as field repre-

sentation. This representation is concatenated with the embedding of row index #j and

word embedding at each cell to obtain a position-aware cell embedding ek for each word

inside the cell. We stack transformers layers on top of the cell embedding to obtain the

table representation as hi ∈ RD with D as the dimension.

Field-Gating This strategy is inspired by by [119]. Like the previous strategy, we

first use an LSTM [140] to obtain field representation zi. The field representation is

concatenated with ending distance information as the input to an additional field gate

built inside the LSTM as suggested in [119], such a field gate is used to control whether

the current cell is already encoded. Such a mechanism can help LSTM to identify the

boundary between different cells to grasp local information.

5.4.2 Pre-trained Models

To further enhance the fluency and resolve the out-of-vocabulary problem, we use

pre-trained language models and finetune them on LogicNLG. Specifically, we consider

two models based on GPT-2 [56] and BERT [39], respectively, and name them as GPT-

TableGen and BERT-TableGen.
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Table Linearization We follow previous work on linearizing knowledge base as natural

language [141, 142] to propose “table linearization”, which uses template to flatten the

table T as a document PT = w1, · · · , w|T | fed into pre-trained language models to generate

statement Y , where we use wi to denote the i-th word in the generated paragraph PT

and |T | to denote the length of the paragraph (the word wi is either a table entry or

a functional word in the template). As depicted in the left bottom part of Figure 5.7,

the original table T is transformed into a paragraph by horizontally scanning each cell

T11 → T1,CT
→ TRT ,CT

in the table.

GPT-TabGen we directly feed the paragraph PT as the input to the pre-trained GPT-

2 model and generate the output sentence Y . We finetune the model on LogicNLG

by maximizing the likelihood of p(Y |PT ; β), with β denoting the parameters of GPT-2

model [56].

BERT-TabGen 1) we encode the linearized paragraph PT using the pre-trained BERT

model into the source representation h1, · · · ,h|T|. 2) at the i-th time step, we replace all

the words in the groundtruth statement Y after i-th time step by <MASK> token and

use BERT to encode the partially masked Y i as gi
1, · · · ,gi

n. 3) we use an attention layer

fθ to obtain the output hidden states ĝi
1, · · · , ĝi

n, where ĝi
i is used to predict the word

ŷi. We jointly optimize β of BERT and θ to maximize the likelihood of generating text

Y conditioned on the table and the masked partial sentence. As BERT is a bidirectional

model, we need to re-encode the target sentence at each step to get gi
1:n. Therefore, the

generation is finished with n passes.
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𝑃! [ENT]GPT-2 Canada obtained 1 more gold medal than Mexico.obtained [ENT].more [ENT] than[ENT]

Figure 5.8: Coarse-to-fine generation scheme: first generates a template, and then
realize the surface form. It exposes more context to the surface realization model for
better capturing logical dependency.

5.4.3 Training

Except for the standard maximum likelihood training, we also use the following train-

ing algorithms:

Adversarial Regularization To encourage the model to ground on the table rather

than relying on artificial language priors [143], we use an adversarial regularization to

enhance the maximum likelihood training. Specifically, we first perform entity resolution

to locate all the numbers, count, entities in the sentence and then randomly replace them

with entities or numbers appearing in the table T. These perturbed samples Yadv are

used as adversarial examples to regularize the model’s behavior. Formally, we optimize

β to maximize the objective:

argmaxβ log p(Y |T;β)− λ log p(Yadv|T;β)

where λ is the controlling hyper-parameter.

Reinforcement Learning The maximum likelihood training is a fluency-driven ob-

jective, which is inconsistent with the goal of logical consistency. To bridge the gap,

we view the generation problem from the reinforcement learning perspective to optimize

the long-term fidelity. We use the trained semantic parser to assign reward to the pol-

icy p(yi|y1:i−1; β). At i-th step, the generator will sample different actions yi and roll-out

from i+1-th step to produce a full sequence starting from yi using greedy search. The full
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sentence receives a binary score r(Y,T) from the semantic parser as reward. Formally,

we optimize the objective:

argmaxβ E
yi∼p(yi|y1:i−1)

[ E
yi+1:n

[r(y1:n,T)]] log p(yi|y1:i−1;β)

where we only use one trajectory to approximate the inner roll-out expectation for effi-

ciency.

5.5 Coarse-to-Fine Generation

As discussed before, the baseline models follow the monotonic generation scheme and

suffer from the mismatch between sequence order and logical order (Figure 5.3). In this

section, we propose an imperfect remedy for such a situation based on the coarse-to-fine

generation paradigm.

Before plunging into technical details, it is helpful to first realize the resemblance

between logical NLG and semantic parsing [86]. Compared to traditional NLG tasks like

machine translation and summarization, logical NLG is closer to semantic parsing in the

sense that a model may make catastrophic errors that are impossible to be corrected

at later steps (Figure 5.3). Therefore, we take inspiration from semantic parsing mod-

els [86] that have proven effective in mitigating such errors and propose a coarse-to-fine

generation scheme. We break down generation into two phases. In the first phase, the

model only generates a template which determines the global logical structure, while in

the second phase the model generates the final, grounded sentence conditioned on the

template generated in the first phase. As depicted in Figure 5.8, we use the entity linker

(Section 5.3) to identify the entities and numbers in the original sentence Y and replace

them with placeholder “[ENT]”, which we call as the template YT . During the genera-
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Model Training PPL BLEU-3 SP-Acc NLI-Acc Adv-Acc

Field-Gating + LSTM MLE 27.7 6.9 38.0 56.8 56.2
Field-Gating + Trans MLE 26.8 8.3 38.5 57.3 58.1
Field-Infusing + LSTM MLE 27.9 7.1 38.6 57.1 56.9
Field-Infusing + Trans MLE 26.9 8.4 38.9 57.3 58.2

BERT-TabGen (sm) MLE 7.5 11.9 42.2 68.1 62.4
GPT-TabGen (sm) MLE 8.8 12.6 42.1 68.7 62.3
GPT-TabGen (sm) Adv-Reg 12.1 9.6 40.9 68.5 64.7
GPT-TabGen (sm) RL 11.3 9.1 43.1 67.7 61.9
GPT-C2F (sm) MLE - 26.8 42.7 72.2 64.9

BERT-TabGen (lg) MLE 6.3 13.5 44.4 73.9 64.0
GPT-TabGen (med) MLE 6.8 14.2 44.7 74.6 64.3
GPT-TabGen (med) Adv-Reg 10.1 10.8 44.1 73.0 65.4
GPT-TabGen (med) RL 10.0 10.0 45.5 73.3 63.7
GPT-C2F (med) MLE - 14.6 45.3 76.4 66.0

Table 5.2: The experimental results of different models on the test split of LogicNLG,
where we split the table into non-pretrained LSTM/Transformer, small pre-trained
LM (sm) and medium/large pre-trained LM (med/lg).

tion of GPT-TabGen, instead of directly predicting the final sentence Y , we first predict

the template YT and then Y . The process is simply realized by maximizing the overall

likelihood of p(Ỹ |T; β), where Ỹ = [YT ; [SEP];Y ].

Unlike template-based or delexicalized generation [4, 144], which uses rigid slot filling

prone to grammatic errors, our fine-grained generation has the flexibility to modify the

surface form of non-slot words, which alleviates the linguistic coherence problem [145].

By decoupling sentence structure generation and entity grounding, our proposed

coarse-to-fine scheme could partially alleviate the mismatch problem. For example, the

generation of “Canada” is now aware of “more than” in the latter part of the sentence,

which exposes the model to more context than standard monotonic models to help make

logically consistent decisions though the dependency on the “1” and “Mexico” is still not

captured. The proposed two-step generation could be viewed as the first step towards a

fully non-monotonic generation model to solve such mismatch problem.
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5.6 Experiments

In this section, we explain the experimental details and then comprehensively report

the automatic evaluation of different generation models and training algorithms. Finally,

we will conduct detailed human evaluation and error analysis.

5.6.1 Experiment Setup

For the non-pretrained models, we fix the hidden size of both LSTM and transformer

to be 256, the transformer is 3-layered with 4 heads, while LSTM is also 3-layered. We

use Adam optimizer [146] with a learning rate of 2e-4 to jointly optimize the parameters

and keep the model with the best perplexity on the validation set. During test time,

we use a greedy search to generate text and calculate the BLEU-1,2,3 scores with the 5

references from the table. For the pre-trained models, we base our implementation on

Huggingface’s Transformer [147] for both BERT [39] and GPT-2 [56] with subword unit

vocabulary of 30K. During linearization, we found that using the whole table compromises

the performance greatly, partly due to 1) over-length issue with pre-trained LM, 2) too

much irrelevant information input. Therefore, we propose to use partial table as input,

specifically, we run entity linking over the sentences to detect the linked columns of the

table and only linearize the partial table as input PT .

Both are finetuned using Adam optimizer [146] with a learning rate of 1e-6. In both

adversarial training and reinforcement learning algorithms, we add maximum likelihood

objective to stabilize the training, we select the appropriate balancing factor based on

the validation Adv-Acc socre. For coarse-to-fine training, we first warm up the model to

generate the template sequence and then finetune it on the concatenated full sequence.

Model selection is based on the bleu-3 score on validation split.
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Figure 5.9: The human evaluation results of different models on the sampled sentences.

5.6.2 Experimental Results

We first perform an automatic evaluation to approximately measure the performance

of different models and then conduct an in-depth human evaluation to have a better

understanding.

Automatic Evaluation: The experimental results are summarized in Table 5.2, where

we comprehensively survey different architectures and training algorithms. For the non-

pretrained models, we observe that Transformer is slightly better than LSTM and two

different table encoding strategies achieve similar results. In contrast, pre-trained models

are much better at lowering the perplexity, besides the generated sentences significantly

outperform the non-pretrained models in terms of both fluency and fidelity score with

GPT-TabGen and BERT-TabGen achieving similar performance. As the BERT-TabGen

runs much slower due to multiple passes of decoding, we favor GPT-TabGen in the fol-

lowing experiments. With the adversarial regularization and reinforcement training, the

model can only improve the optimized fidelity metric, with the fluency scores dropping

significantly. Such phenomena confirm our assumption about the caveats of the mono-

tonic generation paradigm. For the proposed coarse-to-fine generation scheme, as the

“[ENT]” tokens are replaced by entity names, which normally contain a phrase like “Feb
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2nd”. Such n-gram phrase substitution preserves the completeness of entity names and

thus leads to higher 2/3/4-gram matches, which translates to higher BLEU-3 and lower

BLEU-1 in Table 5.2. The proposed coarse-to-fine generation can yield reasonable im-

provement over NLI-Acc and Adv-Acc, which demonstrates its advantages of in capturing

logical dependency.

Human Evaluation To further investigate the quality of the generated text, we pro-

pose to perform human evaluation. Specifically, we sample 200 sentences from different

models and distribute them independently to human experts (graduate students from

the computer science department) to verify their quality. Specifically, the quality mea-

sure is categorized into categories: 1) non-sense: the sentence does not make much sense,

which is mainly due to disfluency or repetition problem. 2) wrong: a fluent sentence with

wrong logic. 3) partial-correct: the sentence contains more than one fact, at least one

of them is correct 4) correct: the high-quality in both fluency and logic correctness. We

demonstrate the results in Figure 5.9, from which we observe that pre-training signifi-

cantly decreases the non-sense proportion. However, the RL and Adv-Reg both harm the

fluency and lead to more non-sense sentences. In contrast, the coarse-to-fine model can

maintain the non-sense proportion while significantly increasing correct/partial-correct

sentences. From human evaluation, even the best performing model can get slightly over

20% of its prediction logically correct, which reflects the challenges of LogicNLG for

existing paradigm.

Evaluation Metrics We here analyze the effectiveness of the defined automatic eval-

uation metrics for fidelity evaluation. For the Parsing-based evaluation and NLI-based

evaluation, we use the adversarial set (containing positive/negative sample pairs) to

evaluate their consistency with human judges. Parsing-based model only achieves an
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accuracy of 60%, while NLI-based model achieves a higher accuracy of 65%. It indi-

cates that the fidelity measurement model is itself a very challenging problem and the

existing models are still in a premature stage. Therefore, the exact number of SP-Acc

or NLI-Acc cannot reliably reflect the exact proportion of sentences logically entailed by

the table. However, we still believe they are informative for model development based

on the following reasons: 1) the automatic fidelity scores are quite stable, not sensitive

to random initialization or different configurations, 2) when comparing different models

(Transformer vs. GPT-2 vs. RL/Adv-Reg vs. Coarse-to-Fine), the trends of different

automatic scores are consistent with human evaluation, which indicates its potential in

assisting the development of new models.

Fine-grained Analysis To better understand the generation model’s reasoning capa-

bility in regarding different logical operations, we pick the most frequent 9 operations

(definition in the Appendix) and analyze the best model’s capability in expressing these

different logic. We demonstrate our human evaluation in Figure 5.10 to make the follow-

ing inspections: 1) the model performs best in justifying the order of different entities

(before/after) and relating two entities (both/neither/comparison). 2) the model per-

forms reasonably well at superlative and count operation. 3) the generation model per-

forms much worse in operations like “only, unique”. 4) the model is not able to perform

mathematical aggregation like average, sum, etc. Overall, the string-based operations are

easier than numeric-based operations, how to infuse the numeric knowledge is an open

research question to move forward.
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Figure 5.10: The human evaluation results of different models on the sampled sentences.

5.7 Related Work

Natural Language Generation Natural language generation is a long-standing prob-

lem [148, 149, 4], which involves generating text from records or data. Recently, many

neural-based generation models have been proposed [124, 125, 133, 150] to achieve im-

pressive performance on the existing datasets [132, 118, 133, 120, 121] since the annotated

text are mostly surface-level annotation without logical inference. Unlike them, Logic-

NLG has rich inference, which poses great challenges to existing models and evaluations.

Non-monotonic Generation There have been attempts recently to study the prob-

lem of non-monotonic text generation, which aims to teach the generation model to learn

the generation order without external supervision [130, 131, 151, 152]. These models have

shown to learn rational generation order to approach similar performance as the left-to-

right case. These approaches are useful at capturing more sophisticated dependency

within the sentence, which provides a plausible direction to pursue in LogicNLG.

Factualness Evaluation Fidelity is an important research topic in generation, In

ROTOWIRE [121] and MSCOCO [73], IE-based extractive evaluation [128, 129] are

adopted for surface-level matching to replace costly human evaluation. In abstractive
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summarization, [153] proposes NER + Relation Classification method to investigate fi-

delity in generated summarization while [137] proposes to use NLI models to understand

the entailment between generated text with the given document. These evaluations are

beyond surface-level to study more sophisticated linguistic phenomena like paraphrasing,

compression, entailment, inclusion, etc, which are common in summarization tasks.
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Chapter 6

Pre-training Data-to-Text Generator

with Web Data

6.1 Introduction

The previous chapter has studied the problem of data-to-text generation from Web

Tables. The proposed methods are mostly based on pre-trained language models like

GPT-2 [56], T5 [154], etc. However, these existing pre-trained language models are pre-

trained with pure unstructured textual data while lacking the capability to understand

structured data like tables, graphs, charts, etc. Therefore, the structured data needs

to be linearized as the input to these language models. With such workaround, their

performance of the data-to-text tasks are highly compromised due to the transformation.

It’s of urgent need to invent a pre-trained generation model to understand and ground

on structured data to generate coherent and faith text. In this chapter, we are specifi-

cally interested in building such a pre-trained generation model by leveraging distantly

supervised (data, text) pairs from the Web without any human annotation.

We hope the pre-trained models could adapt to various of downstream scenarios with
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Moses Malone, Hakeem Olajuwon, and James Harden have been 
named the NBA's Most Valuable Player while playing for the 
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Figure 6.1: An example from the constructed KGText, which pairs a hyperlinked
sentence from Wikipedia with a knowledge subgraph from WikiData.

very few or even zero training examples. Our model draws inspiration from the recent

wave of pre-trained language model [39, 56, 155] to exploit large-scale unlabeled data from

the web for pre-training. The data pairs are constructed through the following procedure.

We first crawl sentences with hyperlinks from Wikipedia, and then link the hyperlinked

entities to WikiData [156] to find their 1-hop knowledge triples. Finally, we build a

subgraph based on the linked triples. Such automatic alignment between knowledge

graph and texts provides distant supervision [157] for pre-training but it is bound to be

noisy. Therefore, we design a selection strategy and only retain plausible alignments with

high semantic overlap. The harvested knowledge-grounded corpus KGText consists of

over 1.8M (knowledge subgraph, text) pairs, as depicted in Figure 6.1.

We unify the input of KGText and down-stream data-to-text tasks into a gener-

alized format and design a novel architecture KGPT to encode it. We use KGText
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to first pre-train KGPT and then fine-tune it on downstream data-to-text tasks like

WebNLG [158], E2ENLG [120] and WikiBio [119]. Experimental results demonstrate

KGPT’s several advantages: 1) with full down-stream dataset, KGPT can achieve re-

markably better performance than known competitive baselines, 2) with zero training,

KGPT can still achieve a reasonable score on WebNLG. 3) with a few training instances,

KGPT can maintain a high BLEU score while the non-pre-trained baselines only gener-

ate gibberish text. A quantitative study shows that our pre-training scheme can reduce

annotation costs by roughly 15x to achieve a decent BLEU score of 30. Our contribution

is summarized as follows:

• We design a distantly supervised learning algorithm to exploit large-scale unlabeled

web text to pre-train data-to-text models.

• The proposed pre-training algorithm can bring significant performance under dif-

ferent settings, especially zero-shot and few-shot scenarios.

6.2 Dataset Construction

The construction process has two stages, namely the crawling stage (downloading

data) and the selection stage (filtering data):

6.2.1 Hyperlinked Sentence Crawling

We use English Wikidump1 as our data source. For each Wikipedia page, we split the

whole paragraphs into an array of sentences and then tokenize with the nltk toolkit [159].

We loop through each sentence to keep the sentences with more than 2 Wikipedia an-

chor links and within the length of 10 and 50. For each candidate sentence, we use its

1https://dumps.wikimedia.org/
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Wikipedia hyperlink to query WikiData [156] and obtain its corresponding entity page2.

We retrieve the neighboring knowledge triples from these entity pages to construct a local

1-hop graph for each entity. The knowledge triples are divided into two types: 1) the

object of the triple is also an entity like ‘(Roma F.C., country, Italy)’, 2) the object of the

triple is in plain text like ‘(Roma F.C., inception, 7 June 1927)’. In the first case, if the

object entity also appears in the sentence, we use it as the bridge to build a multi-hop

graph like Figure 6.2. After this step, we collected roughly 4 million pairs in the form of

(subgraph, sentence) as the candidate for the following step.

6.2.2 Data Selection

We observe that the collected pairs are overly noisy with many sentences totally

irrelevant to their paired subgraphs. Apparently, these pairs cannot serve our goal to

build a knowledge-grounded language model. Therefore, we propose a data selection

step to suppress the noise and filter out the data pairs of our interests. An example is

depicted in Figure 6.2, the first sentence does not rely on any information provided by the

knowledge graph, while the second sentence has a tight connection to the facts presented

in the knowledge graph. Ideally, our proposed strategy should favor the second sentence

over the first one.

To achieve this, we propose a simple lexical-based selection strategy to perform data

selection. For example, the sentence ‘He was born ...’ in Figure 6.2 has two query

words ‘Italy’ and ‘Germany’, we will conduct two rounds of lexical matching. In the first

round, we use ‘Italy’ to query its surrounding neighbors in WikiData to the neighboring

unigram, i.e. ‘(Rome, capital, Europe, Continent, Country, Roma F.C)’. We compute

the unigram overlap with the original sentence ‘(He, was, ...)’, which is still 0%. In the

second round, we use ‘Germany’ to do the same computation and calculate the lexical

2https://www.wikidata.org
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overlap, which is still 0%. So the final averaged grounding score of two rounds is 0%. We

can follow the same procedure to compute the grounding score for the second sentence

in Figure 6.2 with four rounds ‘(AS Rome, FB, Rome, Italy)’. The grounding score is

above 30%, which indicates that the sentence is highly grounded on WikiData subgraph.

In this chapter, we use a threshold of 0.13, which selects the top 7M ‘good’ sentences

from the original 12M Wikipedia corpus.

Italy Germany

Europe

Continent

Rome

capital

Berlin

capital

Roma	F.C.
country

Football
Club

instance

He was born in Italy and raised in Germany.

Bad: No Grounding, Few Lexical Overlap

A.S Roma is a football club based in Rome, Italy. 

Good: Grounding, Strong Lexical Overlap

Data Selection

Italy

Europe

Continent

Rome

capital

Italy

Roma	F.C.
country

Football Club

instance

Merge

Figure 6.2: Data denoising procedure for the KGText.

After the selection step, we obtain a denoised knowledge-grounded corpus KGText

for pre-training. However, there still exist noisy false positives in the corpus, for example,

a subgraph contains triple ‘(Roma F.C., country, Italy)’, which is associated with the

text ‘An Italian player plays for A.S. Roma’. Though the two entities co-occur, they are

not meant to describe the fact triple. By applying more strict rules, we can suppress

such false positives, but the data capacity could significantly drop consequently. We
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experimented with different thresholds to balance noise and data capacity and finally

decide on a threshold with an acceptable noise degree. The detailed statistics of the

KGText is listed in Table 6.1. We held-out 10,000 sentences for both validation and

testing to evaluate the pre-trained model.

#Sent Length #Ent #Pred #Triple #Ent/Sent
7M 20.2 1.8M 1210 16M 3.0

Table 6.1: Statistics of collected KGText dataset

<triple> Stuart_Parker_(footballer) | club | Chesterfield_F.C.
<triple> 1_Decembrie_1918_University | nickname | Uab.

Stuart Parker: [(club, Chesterfield F.C.), …], 
1 Decembrie 1918 University: [(nickname, Uab), …]

Born Education Employer Article

September 1972 Northwestern Houston Rockets Morey
WikiBio

WebNLG

Daryl Morey: [(Born, 1972), (Education, Northwester), 
(Employer, Houston Rockets), … ]

name[The Eagle], eatType[coffee shop], priceRange[moderate] The Eagle: [(eat type, coffee shop), (price range, moderate)] E2ENLG

Figure 6.3: The conversion criterion to unify different structured data input into our
generalized format.

6.3 Model

We formally define the problem setting and KGPT’s architectures in this section.

6.3.1 Problem Setting

In this chapter, we consider inputs from structured data with diverse formats, like

knowledge subgraph in KGText, dialog act in E2E [120], RDF triples in WebNLG [158]

and tables in WikiBio [133]. Here we unify them into a generalized dictionary format,

which uses keys to represent subjects and values to denote the predicate-object pairs

following the subject. We showcase the conversion criteria from structured inputs in

different data-to-text datasets into our generalized format in Figure 6.3. The generalized
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input is denoted as X, and the output is denoted as y. Our model encodes X into a

sequence of dense vectors, and then uses the decoder to attend and generate y.

6.3.2 Encoder

The encoder network is crucial to our model to capture the highly structured graph

input. We mainly experiment with two types of encoders:

Graph Encoder This encoder is mainly based on graph attention network [160, 161,

162] to explicitly encode the structure information. Specifically, we view each object,

predicates, and subjects as the leaf nodes, and add [ENT], [TRIPLE] as pseudo nodes for

message passing purposes. The built graph is depicted in Figure 6.4.

First of all, we initialize the node representation with the averaged embedding of its

subword units. For example, the node ‘Moses Malone’ has a representation of (E[Mos] +

E[es] + E[Ma] + E[lone]) / 4 with E denoting the embedding. After we obtain the initial

node representation, we use message propagation to update the node representations

based on neighboring information.

In the first layer, we exchange the information between nodes inside a triple, e.g.,

‘Moses Malone’ receives message from siblings ‘Gender’ and ‘Male’. In the second

layer, we aggregate information from sub/pred/obj nodes to the [TRIPLE] node, e.g.,

‘[TRIPLE1]’ receives message from children ‘Moses, Gender, Male’. In the third layer,

we aggregate the information from different [TRIPLE] to the [ENT] node. In the fourth

layer, we exchange information between different [ENT] nodes to enhance cross-entity

interactions. Formally, we propose to update the representation of the i-th node gi ∈ RD

with the multi-head attention network, which aggregates information from neighboring
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nodes gj ∈ Ni as follows:

αmj =
e(W

m
Q gi)

T (Wm
K gj)∑

j∈Ni
e(W

m
Q gi)T (Wm

K gj)

v = concat[
∑
j∈Ni

αmj W
m
v (gj)]

ĝi = LayerNorm(MLP (v + gi))

(6.1)

where m denotes the m-th head in the attention layer, Wm
Q ,W

m
K ,W

m
V ∈ RD×D are the

matrices to output query, key, value vectors for m-th head. The attention output v and

the residue connection from gi are fed through the final MLP and LayerNorm to update

i-th node representation as ĝi.
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Figure 6.4: Graph Encoder with hierarchical propagation, where we propagate the
information from bottom to top.
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The output of graph encoder is denoted as G ∈ Rn×D = {g1, · · · , gn} with n nodes.

Sequence Encoder This encoder is mainly based on transformer [89] with special

embedding as an auxiliary input to infuse the structure information to the sequence

model. The concept of special embedding was initially proposed by BERT [39], more

recently, it has been adopted by [54] to infuse structural information. We visualize the

embedding layer in Figure 6.5, where we leverage additional entity embedding, triple

embedding, and property embedding to softly encode the structure of the subgraph as

a linearized sequence. For example, the entity embedding can inform the model which

entity the current token belongs to, while the triple embedding can indicate which triple

the current token belongs to and the property embedding indicates whether the token

is a subject, predicate, or a subject. Such an encoding mechanism is designed to softly

encode the graph structure into the embedding space for further self-attention. Compared

to the graph encoder, the sequence encoder does not enforce the structure as a hard

constraint and allows more flexibility for the model to perform cross-triple and cross-

entity interactions. Formally, the dot-product self-attention follows the definition of

Transformer [89]:

fatt(Q,K, V ) = softmax(
QKT

√
D
V )

Gm = fatt(QW
m
Q ,KW

m
K , V W

m
V )

G = MLP (Concat(G1, · · · , Gm))

(6.2)

where Q,K, V are the computed from the input embedding, m represents m-th head

and fatt is the core attention function, the final output is denoted as G ∈ Rn×D with n

denoting the sequence length.
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6.3.3 Decoder

Our decoder architecture is mainly based on Transformer [89] and copy mecha-

nism [122]. At each decoding time step, the model has a copy gate pgen to select yi

should be generated from the vocabulary w ∈ V or copied from the input tokens x:

αj =
eo

T
i Gj∑

j′ e
oTi Gj′

, pgen = σ(MLP (oi))

P (yi = w) = pgenPvoc(w) + (1− pgen)
∑

j:xj=w

αj

(6.3)

where oi is the last layer hidden state of the decoder at i-th time step, αj is the copy

probability over the whole input token sequences x.

6.3.4 Optimization

As we have defined our encoder-decoder model, we will simply represent it as pencdec(x)

to output a distribution over word yi ∈ V at the i-th time step. During pre-training,

we optimize the log-likelihood function on DKGText. After pre-training, we convert the

downstream task’s input into the defined dictionary format and denote the dataset as

Ddown, and then further optimize the log-likelihood objective with θ initialized from the

pre-training stage.

The pre-train and fine-tuning procedure is displayed in Figure 6.6, where we first use

KGText to pre-train KGPT, and then fine-tune with different types of inputs using the

standard auto-regressive log-likelihood objective.
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Figure 6.6: Overall pre-training and fine-tuning procedures for KGPT. The down-
stream knowledge data formats are converted into the generalized format.

6.4 Experiments

We experiment with three different down-stream tasks, which covers various table-

to-text applications to verify the generalization capability of KGPT. Besides the fully

supervised learning, we also evaluate zero-shot and few-shot learning.

6.4.1 Datasets

We use WebNLG [158], E2ENLG [120] and WikiBio [133] to evaluate the performance

of KGPT. Their basic statistics are listed in Table 6.2. WebNLG and E2ENLG are both

crowd-sourced by human annotator while WikiBio is from the Web.

Dataset Train Val Test Input
WebNLG 34,338 4,313 4,222 RDF Triple
E2ENLG 42,061 4,672 4,693 Dialog Act
WikiBio 582,657 72,831 72,831 Table

Table 6.2: Statistics of different data-to-text datasets
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WebNLG This dataset [158] aims to convert RDF triples into a human annotated

textual description. We use the recent release 2.0 from GitLab3. It contains sets with up

to 7 triples each along with one or more references. The number of KB relations modeled

in this scenario is potentially large and generation involves solving various subtasks (e.g.

lexicalisation and aggregation). As the input RDF triples were modified from the original

triples in DBPedia, we first need to check whether there are seen triples in pre-training

dataset KGText. We verify that there is zero RDF triple seen during pre-training

though 31% entities are seen. Therefore, we can confirm the comparison with other

baselines is still fair given no information from test/dev is leaked.

E2ENLG This dataset [120] aims to convert dialog act-based meaning representation

into a spoken dialog response. It aims to provide higher-quality training data for end-to-

end language generation systems to learn to produce more naturally sounding utterances.

In this dataset, each meaning representation is associated with on average with 8.65

different reference utterances.

WikiBio This dataset [133] aims to generate the first sentence of biography descrip-

tion based on a Wikipedia infoboxes table, with each table associated with only one

reference. Unlike the previous two human-annotated datasets from different domains,

WikiBio is also scraped from Wikipedia. Therefore, we filtered out the instances of KG-

Text from the first paragraph of the biography domain to ensure no overlap or leakage

about Wikibio’s dev/test set.

3https://gitlab.com/shimorina/webnlg-dataset
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6.4.2 Experimental Setup

We apply the standard GPT-2 [56] tokenizer from Hugginface Github4 to tokenize

the text input, which has a vocabulary of over 50K subword units. We test with both

graph encoder and sequence encoder. We set their hidden size to 768 and stack 6 layers

for both encoder and decoder with 8 attention heads. During pre-training, we run the

model on KGText on 8 Titan RTX GPUs with a batch size of 512 for 15 epochs using

Adam [146] optimizer with a learning rate of 1e-4. The pre-training procedure takes

roughly 8 days to finish. We use a held-out validation set to select the best checkpoint.

During fine-tuning, we use a learning rate of 2e-5.

In our following experiments, we compare with the known best models from different

datasets. As none of these models are pre-trained, we also add Template-GPT-2 [13]

and Switch-GPT-2 [163] as our pre-trained baselines. Both models apply GPT-2 [56] as

the generator to decode description from a table. For the ablation purposes, we list the

performance of all non-pre-trained KGPT to see the performance gain brought by pre-

training alone. All the best models are selected based on the validation set score, and the

numbers are reported in the following tables are for test split. For evaluation, we report

the performance with BLEU [5], METEOR [6] and ROUGE-L [7] using e2e-metric5. It’s

worth noting that we perform comprehensive data contamination studies in the following

experiments to make sure the pre-training data contains very little overlap with the test

split in downstream tasks. We filter out potentially information-leaking pages during the

data crawling process.

4https://github.com/huggingface/transformers
5https://github.com/tuetschek/e2e-metrics
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6.4.3 Preliminary Study on KGText

In the preliminary study, we evaluate our pre-trained model’s performance on the

held-out set of KGText to conduct ablation study over KGPT. Specifically, we inves-

tigate 1) which encoding mechanism is better, 2) whether we need copy mechanism or

copy supervision. As demonstrated in Table 6.3, we observe that the trivial difference

between two encoder designs. With the copy mechanism, KGPT can greatly decrease

the perplexity. However, supervising the copy attention does not have much influence on

the performance. Therefore, in the following experiments, we will run experiments for

both encoding schemes with a copy mechanism without copy loss.

Model BLEU-4 Perplexity
KGPT-Graph 24.71 4.86
KGPT-Graph + Copy Loss 24.77 4.91
KGPT-Graph w/o Copy 22.69 7.23
KGPT-Seq 24.49 4.95
KGPT-Seq + Copy Loss 24.31 4.93
KGPT-Seq w/o Copy 22.92 7.11

Table 6.3: Ablation Study on held-out set of KGText.

6.4.4 Fully-Supervised Results

We experiment with KGPT under the standard fully-supervised setting to compare

its performance with other state-of-the-art algorithms.

WebNLG Challenge We list WebNLG’s experimental results in Table 6.4, here we

compare with the known models under the unconstrained setting. The baseline mod-

els [158] uses sequence-to-sequence attention model [164] as the backbone and propose

delexicalization and copy mechanism to enhance model’s capability to handle rare items

from the input. The GCN model [165] uses graph convolutional neural encoder to en-
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code the structured data input. Its implementation is from Github6. As can be seen,

KGPT without pre-training already achieves better performance than the GCN baseline.

With pre-training, the performance is further boosted by 1-2 BLEU-4, which reflects the

effectiveness of our method.

Model BLEU METEOR ROUGE
Seq2Seq† 54.0 37.0 64.0
Seq2Seq+Delex† 56.0 39.0 67.0
Seq2Seq+Copy† 61.0 42.0 71.0
GCN 60.80 42.76 71.13
KGPT-Graph w/o Pre-Training 62.30 44.33 73.00
KGPT-Seq w/o Pre-Training 61.79 44.39 72.97
KGPT-Graph w/ Pre-Training 63.84 46.10 74.04
KGPT-Seq w/ Pre-Training 64.11 46.30 74.57

Table 6.4: Experimental results on WebNLG’s test set, w/ Training refers to the model
with pre-training, otherwise it refers to the model training from scratch. † results are
copied from [158].

E2E Challenge We list E2ENLG’s experimental results in Table 6.5, here we compare

with the state-of-the-art systems on the leaderboard of E2E challenge7. These baselines

methods are based on neural template model [150], syntax-enhanced algorithms [166],

slot alignment [167] and controlling mechanism [168]. As is seen from the table, KGPT

can beat the SOTA systems by a remarkable margin. Overall, the improvement brought

by pre-training is roughly 0.5-1.0 in terms of BLEU-4, which is less significant than

WebNLG. Such a phenomena is understandable given that this dataset contains limited

patterns and vocabulary in the input meaning representation, a full training set over 40K

instances is more than enough for the generation model to memorize. In the following few-

shot experiments, we will show the strength of KGPT to generate high-quality faithful

descriptions with only 0.1% of training data.

6https://github.com/diegma/graph-2-text
7http://www.macs.hw.ac.uk/InteractionLab/E2E/
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Model BLEU METEOR ROUGE
NTemp 55.17 38.75 65.01
TGen 65.93 44.83 68.50
SLUG2SLUG 66.19 44.54 67.72
Adapt 67.37 45.23 70.89
KGPT-Graph w/o Pre-Training 66.47 44.20 67.78
KGPT-Seq w/o Pre-Training 67.67 45.33 70.39
KGPT-Graph w/ Pre-Training 67.87 44.50 70.00
KGPT-Seq w/ Pre-Training 68.05 45.80 70.92

Table 6.5: Experimental results on E2E’s test set. NTemp is from [150], TGen is
from [166], SLUG2SLUG is from [167] and Adapt is from [168].

WikiBio Dataset We list WikiBio’s experimental results in Table 6.6 and compare

with models like Table2Seq[169], Order Planning [170], Field Gating [119], Background-

KB Attention [171], Hybrid Hierarchical Model [172] trained with multiple auxiliary loss

functions. We also train Template-GPT-2 on this dataset to observe pre-trained model’s

performance. As can be seen from the table, KGPT can achieve better results than

the mentioned baseline models. Pre-training can yield an improvement of roughly 0.5

BLEU-4. As this dataset trainin/testing have similar table schema and the large num-

ber of training instances already teach the model to memorize the generation patterns,

exploiting an external corpus of on par size (1.8M) does not bring a significant boost. So

is the template-GPT-2 [13], which performs on par with Field Gating [119]. However, in

the few-shot setting, we will show the 25+ BLEU gain brought by pre-training.

6.4.5 Few-Shot Results

The few-shot learning setting aims to study the potential of the proposed pre-training

to decrease annotation labor in data-to-text generation tasks. Under this setting, we not

only compare with non-pre-trained baselines to observe how pre-training can benefit the

model’s few-shot learning capability but also compare with other pre-trained LM [163, 13]

to see the benefit of KGPT over existing pre-trained LM.
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Model BLEU
Table Neural Language Model [133] 34.70
Table2Seq LSTM [169] 40.26
Order Planning [170] 43.91
Field-Gating LSTM [119] 44.71
KBAtt [171] 44.59
Hierarchical+Auxiliary Loss [172] 45.01
Template-GPT-2 44.67
KGPT-Graph w/o Pre-Training 44.64
KGPT-Seq w/o Pre-Training 44.58
KGPT-Graph w/ Pre-Training 45.10
KGPT-Seq w/ Pre-Training 45.06

Table 6.6: Experimental results on WikiBio’s test set.

Model 0.5% 1% 5% 10%
Seq2Seq 1.0 2.4 5.2 12.8
Seq2Seq+Delex 4.6 7.6 15.8 23.1
KGPT-Graph w/o Pre-Training 0.6 2.1 5.9 14.4
KGPT-Seq w/o Pre-Training 0.2 1.7 5.1 13.7
Template-GPT-2 8.5 12.1 35.3 41.6
KGPT-Graph w/ Pre-Training 22.3 25.6 41.2 47.9
KGPT-Seq w/ Pre-Training 21.1 24.7 40.2 46.5

Table 6.7: Few-shot results on WebNLG’s test set.

Model 0.1% 0.5% 1% 5%
TGen 3.6 27.9 35.2 57.3
KGPT-Graph w/o Pre-Training 2.5 26.8 34.1 57.8
KGPT-Seq w/o Pre-Training 3.5 27.3 33.3 57.6
Template-GPT-2 22.5 47.8 53.3 59.9
KGPT-Graph w/ Pre-Training 39.8 53.3 55.1 61.5
KGPT-Seq w/ Pre-Training 40.2 53.0 54.1 61.1

Table 6.8: Few-shot results on E2ENLG’s’s test set.

WebNLG & E2ENLG Dataset In these two datasets, we use 0.1%, 0.5%, 1%, 5%,

10% of training instances to train the model and observe its performance curve in terms

of BLEU-4.

For WebNLG challenge, the few-shot situation will pose a lot of unseen entities during

test time. From Table 6.7, we can observe that the delexicalization mechanism can
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remarkably help with the few-shot situation. However, the improvement brought by

delexicalization is much weaker than our proposed pre-training. Under the 5% setting,

while the non-pre-trained baselines are only able to generate gibberish text, pre-trained

KGPT can maintain a high BLEU score over 40.0 due to its strong generalization ability.

For E2E challenge, the task is comparatively simpler with rather limited items.

From Table 6.8, we can observe that TGen [166] is achieving similar performance as

our non-pre-trained KGPT, they both perform quite well even under 1% training in-

stances. However, after we further reduce the training samples to roughly 0.1%, the

baseline models fail while pre-trained KGPT still maintains a decent BLEU over 40.0.

WikiBio Dataset In this dataset, we adopt the same setting as Switch-GPT-2 [163]

and Pivot [173] to use 50, 100, 200 and 500 samples from the training set to train the

generation model. From the results in Table 6.9, we observe that KGPT can achieve

best scores and outperform both Template-GPT-2 and Switch-GPT-2 under most cases.

Though Template-GPT-2 is getting slightly better score with 500 training samples, the

overall performance on three datasets are remarkably lower than KGPT, especially under

more extreme cases. It demonstrates the advantage of our knowledge-grounded pre-

training objective over the naive LM pre-training objective.

Model 50 100 200 500
Field-Infusing 1.3 2.6 3.1 8.2
KGPT-Graph w/o Pre-Training 0.2 1.1 3.8 9.7
KGPT-Seq w/o Pre-Training 0.6 1.7 3.0 8.9
Pivot† 7.0 10.2 16.8 20.3
Switch-GPT-2† 17.2 23.8 25.4 28.6
Template-GPT-2 19.6 25.2 28.8 30.8
KGPT-Graph w/ Pre-Training 24.5 27.5 28.9 30.1
KGPT-Seq w/ Pre-Training 24.2 27.6 29.1 30.0

Table 6.9: Few-shot results on Wikibio’s test set. † results are copied from [163].
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Quantitative Study We further investigate how much sample complexity KGPT can

reduce. Specifically, we specify a BLEU-4 score and vary the training data size to ob-

serve how much training samples are required to attain the performance. We specify

BLEU=30 as our standard and display our results in Table 6.10. We compute the ratio

Model WebNLG E2ENLG WikiBio
KGPT w/o Pre-Training ∼10000 ∼300 ∼8000
KGPT w/ Pre-Training ∼700 ∼20 ∼500
Ratio 14x 15x 16x

Table 6.10: Required number of training samples to reach designated BLEU on dif-
ferent dataset.

of sample quantity to characterize the benefits from pre-training. Roughly speaking,

pre-training can decrease the sample complexity for training by 15x, which suggests the

great reduction rate the annotation cost with pre-trained KGPT to achieve the desired

‘promising’ performance.

6.4.6 Zero-Shot Results

We further evaluate KGPT’s generalization capability under the extreme zero-shot

setting and display our results for WebNLG in Table 6.11. As can be seen, all the

non-pre-trained baselines and Template-GPT-2 fail under this setting, while KGPT can

still manage to generate reasonable outputs and achieve a ROUGE-L score over 30.

Given that no input knowledge triples in WebNLG were seen during pre-training, these

results reflect KGPT’s strong generalization ability to cope with out-of-domain unseen

knowledge inputs.

6.4.7 Human Evaluation

We conduct human evaluation to assess the factual accuracy of the generated sen-

tences. Specifically, we sample 100 test samples from WebNLG and observe the model’s
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Model BLEU METEOR ROUGE
All Baselines 0 0 1.2
Template-GPT-2 0.3 0.5 3.4
KGPT-Graph w/ Pre-Training 13.66 19.17 30.22
KGPT-Seq w/ Pre-Training 13.86 20.15 30.23

Table 6.11: Zero-shot results on WebNLG’s test set.
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Figure 6.7: Human evaluation of the factual consistency of different models on
WebNLG samples.

factual consistency with given fact triples. We use AMT to distribute each generated

sentence to four high-quality workers (95% approval rate, 500+ approved jobs) to choose

from the three ratings. The majority voted rating is the final rating. We compare four

different systems, i.e., non-pre-trained and pre-trained KGPT. Conditioned on the fact

triples, we categorize the generated samples into the following categories: 1) hallucinating

non-existing facts, 2) missing given facts without hallucination, 3) accurate description of

given facts. We visualize the results in Figure 6.7, from which we observe that pre-trained

KGPT are less prone to the known hallucination issue and generate more accurate text.

The human evaluation suggests that pre-training can enhance the model’s understanding

over rare entities, thus reducing the over-generation of non-existent facts.

6.5 Related Work

Data-to-Text Generation Data-to-text is a long-standing problem [148, 4], which

involves generating natural language surface form from structured data. The traditional
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system is primarily built on a template-based algorithm. Recently, with the develop-

ment of deep learning, attention has been gradually shifted to end-to-end neural gen-

eration models, which achieve significant performances on existing large-scale datasets

like WebNLG [158], E2ENLG [120], WikiBio [133], ROTOWIRE [174], TOTTO [55],

LogicNLG [13], etc. However, these neural generation models are mainly focused on fully

supervised learning requiring a huge amount of human annotation for the specific task.

This chapter focuses on building a more generalized model architecture, which can adapt

to specific tasks well with only a handful of training instances.

Knowledge-Grounded Language Modeling It is of primary importance to ground

language models on existing knowledge of various forms. The neural language mod-

els [134] have been shown to well capture the co-occurrences of n-grams in the sentences,

but falls short to maintain the faithfulness or consistency to world facts. To combat such

an issue, different knowledge-grounded language models [175, 176, 177] have been pro-

posed to infuse structured knowledge into the neural language model. These models are

mainly focused on enhancing the factualness of unconditional generative models. Inspired

by these pioneering studies, we explore the possibility to connect the unconditional gen-

erative model with downstream conditional generation tasks. The most straightforward

knowledge-intensive conditional generative task is the data-to-text generation, which

aims to verbatim given knowledge into lexical format. We demonstrate great potential of

the knowledge-grounded pretraining in enhancing the model’s factualness on these down-

stream data-to-text tasks and believe such language models can be applied to broader

range of NLP tasks requiring knowledge understanding.

Pre-trained Language Model Recently, the research community has witnessed the

remarkable success of pre-training methods in a wide range of NLP tasks [39, 178, 56,
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155, 179, 43, 180, 181, 182, 183]. These models trained on millions or billions of data

unlabeled data demonstrate unprecedented generalization ability to solve related down-

stream tasks. However, the existing pre-trained text generation models [56, 180, 183] are

initially designed to condition on text input, thus lacking the ability to encode structured

inputs. The work closest to our concept is Switch-GPT-2 [163], which fits the pre-trained

GPT-2 model as the decoder part to perform table-to-text generation. However, their

knowledge encoder is still trained from scratch, which compromises the performance. In

this chapter, we follow the existing paradigm to construct an unlabeled web data for LM

pre-training.
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Conclusion and Future Work

7.1 Summary

This P.h.D. dissertation has outlined how to build a natural language interface by

grounding on the diverse forms of Web knowledge including structured, unstructured,

and visual forms. The interface requires two capabilities, 1) grounding on diverse Web

knowledge to understand human language input, 2) grounding on diverse Web knowledge

to generate natural language response. We use question answering and data-to-text

generation as the benchmarks to measure the existing models’ performance in these two

aspects. We presented different algorithms to enhance models’ performance in these two

different tasks. However, the problem of building a real-world natural language interface

is still far from being done, and this dissertation is simply the beginning of this journey.

Part I is mostly about understanding natural language by grounding on diverse

Web knowledge, including structured, unstructured, and multi-modal forms. We resort

to various question answering tasks to evaluate models’ capabilities to handle different

knowledge forms to predict answers. Specifically, we are mostly focused on answering

more complex questions, especially multi-hop questions which require multi-step infer-
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ence. Our results have shed light on how to utilize different reasoning algorithms with

deep neural networks to achieve promising performance. Part II is mostly about natural

language generation from diverse Web knowledge, including various types of structured

forms. Specifically, we investigate how to build models to generate natural language

descriptions conditioning on structured data like graphs and tables, which are pervasive

to store world knowledge. Our algorithms have shed light on how to leverage free un-

labeled data to bootstrap the existing data-to-text models and enhance its capability

to understand structured knowledge inputs. We discovered and proposed several new

under-studied research topics, like Hybrid Question Answering [8, 9], Multi-Modal Ques-

tion Answering [10] and Logical Text Generation [13]. We defined research problems and

collected new real-world datasets to enable these research directions. Our datasets can

be utilized to properly benchmark the progress of the current models to resolve different

use cases.

One core contribution in question answering tasks is our investigation of the knowl-

edge integration problem [8, 9], which is understudied in the recent literature. However,

knowledge integration is an essential concept when building a real-world interface like

Google Search, etc. We studied different fusion mechanisms to allow mutual interaction

and cross attention between different forms, which is able to incorporate knowledge from

different forms to perform joint reasoning. Another contribution is the neural symbolic

combination in building more powerful reasoning machines [10]. We propose to com-

bine meta-learning into the existing neural module network [75] to greatly improve its

generalization skills.

In the text generation tasks, we discovered that the biggest challenge is to maintain

the model’s fidelity to the given knowledge input. We need to ensure that generated

text does not include any hallucination in the generation process. We proposed models

to specifically focus on increasing the logical fidelity under table-to-text scenarios [13].
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We also propose novel pre-training techniques to handle the zero-shot/few-shot scenarios

in data-to-text generation [14]. We expect our approaches to be adopted in real-world

applications to have higher impacts on AI research. Therefore, we believe it would be

beneficial to summarize the strengths, limitations, and implications of our work as follows.

7.1.1 Reasoning over Hybrid Knowledge

In the proposed datasets, our model is designed to hop between the structured and

unstructured forms to aggregate information. However, it is still limited to using the

hyperlinks provided in the Wikipedia pages, which is not always realistic in other domains

where hyperlink annotations are not provided. For example, in the medical or political

domains without annotated links, it’s not immediately clear how to reason across different

documents. On the other hand, there are many implicit links across different documents,

which cannot be plausibly encoded as hyperlinks. Under such more implicit cases, the

existing models are incapable to handle such more sophisticated scenarios.

Another disadvantage is the model’s weakness to deal with mathematical/numerical

reasoning, especially when it comes to different operations like argmax, argmin, sum,

diff, etc. As the tabular data normally contains numerical information like numbers,

dates, weights, etc, many questions would require performing these operations over the

input table. For example, if you ask ‘How much older is XX compared to XXX’, or

‘What is the average score of the team playing in San Antonio in the 2020 NBA Final’,

etc. Compare or inferring the quantitative relations between different numbers inside the

table is necessary to answer these questions. However, the current reader models [49] built

with neural networks do not support these mathematical operations. In the future, we

might need to consider how to empower the neural models with mathematical reasoning

capability.
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7.1.2 Reasoning over Multi-Modal Knowledge

The Web contains knowledge in very rich forms, images/videos are pervasive forms to

store world knowledge. Thus, it’s important for the model to reason under multi-modal

scenarios as well. For example, we might ask questions like ‘Which color is the jersey

of Lebron Jame’s home team?’ or ‘Is Santa Barbara to the north of Los Angeles?’, etc.

To answer these questions, we normally need to resort to pictures on the Web to obtain

information. In our thesis, we mainly experiment with GQA [85] dataset to test the

model’s capability to reason over visual inputs. To enhance the model’s explainability,

we aim to develop neural module networks to help us perform compositional reasoning.

However, the module networks are still lagging behind the monolithic networks by a huge

margin. Such degradation in performance indicates that we are trading the accuracy for

better explainability. Moving forward, we need to consider how to further improve neural

modules’ performance to match the state-of-the-art performance of monolithic networks.

On the other hand, our proposed meta-learning algorithm requires a high-quality

scene graph as the training data, which could be unrealistic in different applications. In

the future, we need to consider how to better utilize the Web images without extensive

annotation to train the module networks.

7.1.3 Fidelity in Text Generation

In data-to-text generation, the problem of fidelity to world knowledge is the primary

focus. The existing models are prone to hallucination. For example, if a restaurant

doesn’t have any open tables in the system but the AI agent still replies to the customer

with availability, it might hurt the reputation of the restaurant. How to improve the

model’s fidelity is a challenging topic because the semantic drift can be very brittle and

hard to detect. We proposed the knowledge grounded pre-training algorithm to make
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Figure 7.1: The world knowledge iceberg, containing explicit and tacit parts.

the generation model more grounded on the given structured knowledge in KGPT [14].

However, the effectiveness is still limited mainly because the knowledge covered by the

WikiData knowledge graph is quite restricted. Moving forward, we need to consider how

to increase the coverage of the given structured knowledge and enlarge the pre-training

corpus significantly. Potentially, we could utilize some knowledge graph construction,

relation extraction methodologies to utilize a broader corpus outside Wikipedia.

7.2 Future Directions

My long-term research goal is to build a better natural language interface that can

learn to seek and ground on Web information to communicate with humans. To make the

model more adaptable to realistic applications, we still have many problems to address

at this moment. With this end goal in mind, I identify the following research directions

to pursue next.
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7.2.1 Reasoning with Tacit Knowledge

In the previous chapters, we have already covered how to reason over more explicit

knowledge like structured, unstructured, or visual data. However, as depicted in Fig-

ure 7.1, the world knowledge also consists of tacit parts like commonsense, causal knowl-

edge, social knowledge, etc. The previous approaches by searching over the Web data

are not able to cover the tacit knowledge. For example, if the question is ‘What will

likely happen if I drunk drive?’. By searching over the Web, we won’t be able to find any

relevant pieces of documents, tables or images containing the answer. However, accord-

ing to our commonsense, ‘drunk driving’ will potentially lead to ‘car accidents’. Such

tacit knowledge is also essential for answering many questions on the Web, or act as an

important hop in understanding the question. To leverage such tacit knowledge, retrieval

is impossible and we need to find better algorithms to inject such tacit knowledge into

the model or the reasoning procedure. In the future, I’m interested in diving deeper to

deal with such tacit knowledge and utilize them to help the question-answering tasks.

7.2.2 Reasoning with Adversarial Knowledge

In the previous chapters, we normally assume the given knowledge or data is totally

clean and trustworthy. However, there are lot of misinformation on the Web like fake

documents, tables, or synthesized images. Such information is either spread out by

hackers on purpose or obsolete. The current models don’t have the capability to deal

with such adversarial knowledge during retrieval or reading to distinguish their falsity.

In order to build trustworthy interface models to communicate with humans, we need to

better deal with such adversarial knowledge on the Web. In order to resolve such issues,

we can use fake detection models to have helped us filter such adversarial knowledge.

In the future, I’m interested in investigating deeper to develop models to handle such
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adversarial scenarios.
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[137] W. Kryściński, B. McCann, C. Xiong, and R. Socher, Evaluating the factual
consistency of abstractive text summarization, arXiv preprint arXiv:1910.12840
(2019).

133



[138] I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial
examples, arXiv preprint arXiv:1412.6572 (2014).

[139] A. Kannan and O. Vinyals, Adversarial evaluation of dialogue models, arXiv
preprint arXiv:1701.08198 (2017).

[140] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation
9 (1997), no. 8 1735–1780.

[141] A. Liu, J. Du, and V. Stoyanov, Knowledge-augmented language model and its
application to unsupervised named-entity recognition, in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 1142–1150, 2019.

[142] N. Zhang, S. Deng, Z. Sun, J. Chen, W. Zhang, and H. Chen, Relation
adversarial network for low resource knowledgegraph completion, arXiv preprint
arXiv:1911.03091 (2019).

[143] S. Ramakrishnan, A. Agrawal, and S. Lee, Overcoming language priors in visual
question answering with adversarial regularization, in Advances in Neural
Information Processing Systems, pp. 1541–1551, 2018.
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