UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Learning Natural Language Interfaces using Deep Neural Networks

Permalink
https://escholarship.org/uc/item/70r066g9

Author
GUR, IZZEDDIN

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/70r066q9
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Learning Natural Language Interfaces using Deep
Neural Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy
in

Computer Science
by

Izzeddin Gur

Committee in charge:

Professor Xifeng Yan, Chair
Professor Ambuj Singh
Professor William Wang

September 2019



The Dissertation of Izzeddin Gur is approved.

Professor Ambuj Singh

Professor William Wang

Professor Xifeng Yan, Committee Chair

June 2019



Learning Natural Language Interfaces using Deep Neural Networks

Copyright (©) 2019
by

Izzeddin Gur

111



To my parents, sisters, and my wife for their unconditional love

and support.

v



Acknowledgements

First and foremost, I want to thank my advisor Professor Xifeng Yan. Xifeng sup-
ported me throughout my Ph.D. journey in UCSB by giving me invaluable advises in
academia, in industry, and in real life. He provided me with excellent mentorship, enabled
me to understand and grow myself, guided me towards what is the most valuable not
only in conducting research but also in keeping good relationships with my peers. Xifeng
inspired me by his passionate and hardworking personality for which and for dedication
of his time, experience, and ideas I am endlessly grateful.

I would like to thank my committee members, Professor Ambuj Singh and Professor
William Wang, for their great guidance on my research and my professional life after
graduation. I am grateful to have them in my committee as they have always encour-
aged me to understand my potential. I am also very grateful to Professor Amr El Abadi,
Professor Shiv Chandrasekaran, Professor Kenneth Rose, Professor Stefano Tessaro, Pro-
fessor Tevfik Bultan, and Professor Matthew Turk for giving me different perspectives in
my Ph.D. career. In addition, I would like to thank to the academic staff: Benji Dunson,
Nicole McCoy, Karen van Gool, Simran Singh, who have provided me enormous support
every time I needed. I would like to also thanks my lab peers, especially Semih Yavuz,
Yu Su, Honglei Liu, Shengqi Yang, Bo Zong, and Fangqiu Han for insightful discus-
sions on machine learning and collaboration. Also, Wenhu Chen, Keqgian Li, Xiaoyong
Jin, Hanwen Zha, Hongmin Wang, Zhiyu Chen, Xiyou Zhou, Theodore Georgiou, Huan
Sun, Shulong Tan, and Dong-Anh Nguyen for all the research discussions and activi-
ties. Furthermore, I would like to express my gratitude to all the funding agencies that
supported me during my studies including Computer Science Department at UCSB and
Army Research Lab.

Additionally, T have had the opportunity to collaborate with a lot of valuable re-



searchers during my internships. I would like to thank Dr. Dilek Hakkani-Tur who has
given me invaluable guidance throughout my internships which led to impactful research.
I want to express my thanks to Dr. Gokhan Tur from whom I learned how to gain a
broader perspective. I would like to thank Dr. Aleksandra Faust who has guided me
not only during my research but also after in my industry life. I am also grateful to
Ulrich Rueckert who gave me practical advice during my internship. I want to express
my thanks to Dr. Daniel Hewlett for introducing me to research at Google. I would
like to extend my thanks to David Berthelot, Abhinav Rastogi, Ankur Bapna, Jindong
Chen, Nevan Wichers, Raghav Gupta, Amir Fayazi, Aleksandre Lacoste, Thyago Duque,
Bing Liu, Ondej Klejch, Rama Kumar Pasumarthi, Shyam Upadhyay, Pararth Shah, and
many others for all the research discussions and fun we had together.

This thesis would not have been possible without the support and encouragement
of my families. I want to thank my dad and mom, Ebubekir and Kamile, and my
sisters Busra, Ayse, and Fatma. Even though, I spent most of my time away from home
studying, they always supported me in every decision and aspect of my life and made
me who [ am today. Lastly, I would like to thank my wife Kubra for her love, energy,
comfort, and constant support. She is my biggest motivation, my best friend, and my

inspiration and I admire her for her modesty, kindness, and intelligence.

vi



Curriculum Vitae
[zzeddin Gur

Education
2019 Ph.D. in Computer Science, University of California, Santa Barbara.
2013 M.S. in Computer Science, Bilkent University.
2012 B.S. in Mathematics, TOBB Economy and Technology University.
2011 B.S. in Computer Engineering, TOBB Economy and Technology
University.

Publications

1. Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, Dilek Hakkani-Tur, Learning to

Navigate the Web, ICLR ’2019 (International Conference on Learning Representa-
tions).

. Chantal Nguyen, Kimberly J Schlesinger, Fangqiu Han, Izzeddin Gur, Jean M Carl-

son, Modeling individual and group evacuation decisions during wildfires, Fire Tech-
nology '2019.

. Izzeddin Gur, Dilek Hakkani-Tur, Gokhan Tur, Pararth Shah, User Modeling for

Task Oriented Dialogues, SLT 2018 (IEEE Spoken Language Technology Workshop
(SLT))

. Izzeddin Gur, Semih Yavuz, Yu Su, Xifeng Yan, Dialsql: Dialogue based structured

query generation, ACL 2018 (Annual Meeting of the Association for Computational
Linguistics)

. Semih Yavuz, Izzeddin Gur, Yu Su, Xifeng Yan, What It Takes to Achieve 100%

Condition Accuracy on WikiSQL, EMNLP "2018 (Conference on Empirical Methods
in Natural Language Processing).

. Yu Su, Honglei Liu, Semih Yavuz, Izzeddin Gur, Huan Sun, Xifeng Yan, Global

relation embedding for relation extraction, NAACL 2018 (Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies).

Semih Yavuz, Izzeddin Gur, Yu Su, Xifeng Yan, Recovering question answering er-
rors via query revision, EMNLP ’2017 (Conference on Empirical Methods in Natural
Language Processing).

. Izzeddin Gur, Daniel Hewlett, Llion Jones, Alexandre Lacoste, Accurate supervised

and semi-supervised machine reading for long documents, EMNLP ’2017 (Confer-
ence on Empirical Methods in Natural Language Processing).

. Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, Izzeddin Gur, Zenghui Yan,

Xifeng Yan, On generating characteristic-rich question sets for qa evaluation, EMNLP
’2016 (Conference on Empirical Methods in Natural Language Processing).

Vil



10. Semih Yavuz, Izzeddin Gur, Yu Su, Mudhakar Srivatsa, Xifeng Yan, Improving

11.

semantic parsing via answer type inference, EMNLP 2016 (Conference on Empirical
Methods in Natural Language Processing).

Izzeddin Gur, Mehmet Guvercin, Hakan Ferhatosmanoglu, Scaling forecasting algo-
rithms using clustered modeling, VLDB Journal 2015 (The International Journal
on Very Large Data Bases).

viil



Abstract

Learning Natural Language Interfaces using Deep Neural Networks
by

Izzeddin Gur

Automating user tasks with natural language utterances, such as answering questions
over Wikipedia or booking flight tickets on the Web, is a key component in designing
intelligent systems. Natural language is usually preferred as a unified interface for these
systems and requires no domain expertise for users; however, understanding wide range of
diverse inputs and resolving errors that occur during this process are still open challenges
and the topics of this thesis.

Traditional machine learning systems for natural language interfaces usually require
large-scale labeled datasets with handcrafted rules to train and evaluate the performances
of the respective models. Firstly, the handcrafted design constrains the scope to a limited
set of domains and prevents the adaptation to new tasks. Additionally, large-scale labeled
data collection is generally domain dependent, costly, and time consuming. These systems
further assume that the underlying database, such as Freebase, is accessible and can be
queried indefinitely which is prohibitive when learning from constrained user interfaces,
such as Web pages. Last but not least, current systems focus on training offline in a
closed loop where users are excluded from the system inference process. They lack the
capabilities to continuously learn from users.

In this thesis, we address the drawbacks of the existing systems and propose data
efficient and user-centric solutions. We classify the natural language inference problem
based on two different perspectives: Accessiblity of the system functions — unconstrained

or constrained user interfaces, and nature of user involvement during inference — non-

1X



interactive or interactive user interfaces. We first develop neural network based systems
for non-interactive and unconstrained users interfaces with different data types (i.e. struc-
tured and unstructured). The system is trained to learn a continuous representation of
user utterance, generate and rank candidate answers from underlying database using
this representation. We augment these systems with an extractive candidate refinement
framework by integrating task-oriented human-machine dialogues. Our system is able to
understand, point, and refine the error in candidates by asking users validation questions
and offering alternatives. We also address the limitations of unconstrained user inter-
faces and propose reinforcement learning methods to develop policies that are capable of
learning from more constrained web interfaces. The policies are trained on a variety of
web pages, such as flight booking and social media interaction, with task-based reward
signals and no human supervision. We test the performance of our models with simu-
lated as well as real users. Empirical results show that the proposed models are able to
learn from limited supervised data and have successful dialogues with users. We observe

improvements in answer prediction accuracy, task success rate, and real user ratings.
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Chapter 1

Introduction

1.1 Motivation

Building natural language interfaces that enable users to communicate with complex
systems to complete tasks without any domain expertise is one of the most prominent
and challenging problems in Artificial Intelligence. Before we delve into tackling these
challenges, we need to understand the scope of the problems. Consider the following set

of sample tasks that users face frequently.

e question answering. Take the following question that a user wants to answer
from Wikipedia: How many states are there in United States? Omne way for our
system to answer this question is to understand that United States points to the
Wikipedia document, states is the search token, and answer should be a number.
By searching the document with the corresponding fields, the answer should be

extracted and returned.

e assistant interaction. Consider the following instruction that a user issues to an
intelligent assistant: Set up an alarm for 9:30am in the morning. Our system first
needs to detect the actual action set up alarm and the time 9:30am; then, call the

corresponding low level functions to set the alarm.

1



Introduction Chapter 1

e web page navigation. Let’s assume that a user wants to Book a flight ticket
from SFO to NYC on June, 24 on an airline website. Extracting the departure
and destination airports with the date of the flight is the first job of the system.
Next, it is to navigate the airline website with the extracted fields and complete

the task.

We argue that natural language can serve as a unified interface for all these different
tasks. It can simplify the design and complexity of the system by fusing various types
of sensory inputs into a single and general form of input. Natural language interfaces
offer users a holistic view of the system, reducing the effort to learn and adapt to new
systems.

In this thesis, we are interested in learning natural language interfaces — under-
standing a user utterance as a form of representation and reflecting this representation
on the underlying system as a sequence of write and read actions. An utterance can be
represented as a continuous vector generated from a machine learning model or a sym-
bolic representation such as a LISP program. This representation can be converted into
a write or read action to alter the state of the system or return a response to the user.
In the web page navigation task above, the utterance can be represented as a list of key
and value pairs where each pair reflects an argument, such as {date: ”June, 2/”}, or an
action such as {action: "inform”}. Guided by the utterance representation, the system
can navigate the airline website and reserve a flight ticket. Particularly, we will focus on
using deep neural networks, a powerful class of function approximators which are shown
to perform superior across a range of tasks, to learn natural language interfaces.

This thesis is centered around the following classification of natural language in-
terfaces — unconstrained interfaces, the database (structured or unstructured) and the

querying language are accessible and constrained interfaces, the database can be accessed
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user

natural
language
input

system I

Figure 1.1: An overview of natural language interface types studied in this thesis.

(A) denotes a semantic parsing based representation of utterance with structured

database, (B) is a neural network based representation with unstructured documents,

and (C) is a constrained interface via interaction with a web page by mouse and

keyboard.
by the limited functionality of the user interface. Former set of tasks assumes that the
underlying database can be observed by executing arbitrary number of queries; while,
in the latter, user interface forms a restricted view of the database by executing only
a limited set of queries. Setting up an alarm task, where the system is able to insert
an entry to the underlying database by forming a query from user specified fields, is an
example of unconstrained interfaces. As an example to constrained interfaces, we can
give the flight booking task where our system is only able to interact with the database
by navigating the website. In addition to the previous perspective of natural language
interfaces, we can also classify based on the nature of user interaction — non-interactive
interfaces, where system inference process is uninterrupted by user, and interactive in-

terfaces, where users are involved in the process. Our classification of a general natural

language interface is illustrated in Figure (1.1}
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1.2 Thesis Outline

Based on the above classification, in this thesis, we study non-constrained and con-
strained natural language interfaces that are non-interactive or interactive.

In Chapter [2] we focus on learning from structured databases, such as Freebase. In
Section [2.1] we first give a brief introduction to semantic parsing problem and discuss
recent approaches. Next, we present a hierarchical neural model for encoding semantic
parse structures and a ranking model. Section introduces a new dialogue-based struc-
tured query generation problem. We first discuss the labeled data collection bottleneck
and give a user simulation approach for the query generation. Then, we propose a hier-
archical neural dialogue model that learns to refine candidate SQL queries by multi-turn
conversations with humans. To alleviate the first problem, labeled data collection, we
propose a range of neural user simulators in Section [2.3] We inject diversity and goal-
oriented models by integrating neural variational inference and a new goal regularization
approach. This chapter is based on our works [40], and [39].

In Chapter [3| we present neural models for learning natural language interfaces from
unstructured databases, such as Wikipedia. We first give an overview of the reading
comprehension problem for long document texts. Next, we give supervised neural ap-
proaches for long document representations. Finally, we propose novel semi-supervised
neural networks that learns better models when the labeled data is scarce. This chapter
is based on our work [3§].

In Chapter [ we focus on learning from constrained interfaces, more specifically web
interfaces. We first introduce the instruction following on web pages problem and discuss
the shortcomings of a baseline reinforcement learning policy. Next, we propose guided
policy learning with curriculum learning and meta-learning methods which are built on

top of our baseline model and substantially improve the baseline. This chapter is based



Introduction Chapter 1

on our work [4T].

Finally, in chapter [0, we propose a set of models for understanding neural model
predictions. We first introduce the neural indicators, the most important input tokens
in a sequence based on confidence of the output prediction. Then, we propose two
approaches based on statistical uncertainty to rank indicators. These indicators are used

to understand neural predictions as well as to regularize the neural network.

1.3 Contributions

In this thesis, we make the following contributions,

e We are one of the first to study the neural semantic parsing and neural reading
comprehension problems. In particular, our neural models for reading compre-
hension achieved state-of-the-art performance and showed superior results when

labeled data is very scarce.

e We introduced the dialogue-based structured query generation problem. We devel-
oped hierarchical neural models to illustrate that by human-machine conversation,

query performance can be improved.

e Our web page navigation works are among the first to pioneer the research in
learning from constrained interfaces domain. We proposed a novel meta-learning
framework that achieves superior performance and broadly applicable to other do-

mains.

e We made an attempt at understanding neural network predictions. Our statistical
uncertainty based approach to the problem showed that token level inputs, the

most effective when making predictions, can be successfully detected.



Chapter 2

Learning from Structured Data

In this chapter, we explain deep neural models equipped with the capability to map
natural language utterances into structured queries which then can be executed against
a given database to retrieve the desired answer.

In Section 2.1], we describe semantic parsing on Freebase problem and develop a neural
semantic parsing framework in Section Our framework consists of a joint utterance
and logical form encoder and a ranking module which outputs the highest scoring logical
form. We detail our hierarchical logical form encoder that incorporate the structure of the
logical forms without handcrafted feature engineering and discuss the scoring function
and logical form ranking approach in the end.

Next, in Section [2.2] we introduce our interactive query generation problem. We
discuss a rule-based user simulator for structured query generation that interacts with
our models to supply labeled dialogue data in Section [2.2.3] A novel hierarchical task-
oriented dialogue model that extracts precise errors in candidate queries and refines by
validating with users via multiple turns is proposed in Section [2.2.4]

Finally, we tackle modeling users in task-oriented dialogue systems in Section [2.3
In Section [2.3.4] we propose hierarchical neural user simulator models that can generate
diverse user responses using variational inference. We develop a new goal regularization

approach that penalizes models if the generated user responses diverge from the user
6
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goal.

2.1 Semantic Parsing on Freebase

In recent years, an array of question answering methods have been proposed for
knowledge bases. Some derive logical forms from the input question using a grammar
[54], 1T], [10], while some others directly construct logical forms from a KB, in the form
of query graphs [IT19]. Despite of these progresses, the challenge of factoid question
answering remains open, especially for complex questions involving more than one re-
lation. Figure illustrates a question requiring multiple KB relations to represent.
The path from ViggoMortensen to ANSWER is the core relation representing all the
characters starred by ViggoMortensen, and the other path Film.LoTR serves as an aux-
iliary constraint, limiting the answer to the character that ViggoMortensen starred in
LoTR. For this particular example, Agendall, [I0] is able to correctly identify the core
relation, ViggoMortensen.Film.Character, but has trouble recognizing the auxiliary
constraint.

We aim to develop an end-to-end neural model for factoid question answering, which
can capture the holistic structure of multi-relation questions and query graphs (logical
forms) with minimal feature engineering. Our goal is to embed both the input question
and its corresponding query graphs into the same vector space, such that the embedding
of the correct query graph is the closest to the embedding of the question. Fig.
sketches our model, which consists of two encoder neural networks. The first encoder
(left), instantiated as a Long Short-Term Memory (LSTM) model, maps a question into
a fixed-length vector. The second encoder (right) is a hierarchical LSTM. It first encodes
auziliary relations (S) and then combines the local embeddings with the core relation

(R) to get a global embedding of the entire query graph. By recursively encoding both

7
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Who did [Viggo Mortensen] play in Lord of the Rings ?

( LordOfTheRings (LoTR) )

Film

Film Character
(ViggoMortensen) @ ANSWER

Figure 2.1: An example question and the corresponding query graph. Each node
represents a real world entity or a hyperedge called compound value type (CVT) con-
necting multiple entities together.

auxiliary and core relations, our model is able to fully exploit the hierarchy of a query
graph. We develop a max-margin objective function to jointly train the two encoders,
such that the embedding of the correct query graph is closer to the embedding of the

input question than anyone else.

2.1.1 Related Work

Factoid Question Answering. As a promising method for QA, many semantic
parsing techniques have been proposed recently, which utilize combinatory categorical
grammar (CCG) [I3] 54, 80, 18], Dependency-based Compositional Semantics (DCS)
[62, 1T}, @, 10], and query graphs [7] for aligning questions with entities and relations in
knowledge bases. Vector space embedding approaches are also emerging [12], 112], which
jointly embed questions and KB subgraphs to measure their semantic similarity.

Our method is mostly related to graph-centric and vector space encoding based ap-
proaches. [I17] attacks the problem from an IE perpective and learns patterns of question
and answer pairs. They utilize a graph perspective by representing both question and
candidate answers as graphs based on dependency parse tree of question and Freebase

graph structure of answers, respectively. Features from question graph and Freebase
8
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o

SCORING

POOLING POOLING
« A %

@GO @O GO
W1 WK WN

Figure 2.2: Our joint embedding model for question (left) and logical form (right)
pairs. W is a question. R and S are the corresponding relation mappings in KB. R is
a core relational path and S is an auxiliary path. There could be multiple auxiliary
paths.

graph are then combined per node by pairwise concatenation. This captures the associ-
ations between question patterns and answer nodes. Similar to [I17], [80] converts the
question into a graph representation, exploiting CCG parse instead of dependency parse,
which is then grounded onto Freebase. This way, the problem reduces to graph match-
ing problem where the objective is to identify which Freebase graph best corresponds to
ungrounded NL graph. On the other hand, [I2] uses an embedding method to represent
both question and candidate answers in the same low dimensional vector space. Similar-
ity between questions and candidate answers are measured in this vector space. Similar

to high-level approach in [12], [61] is the first method to use neural network for encoding
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questions into the same vector space as embeddings of candidate answers. While embed-
ding of the answer-related Freebase subgraphs resembles the approach in [12], [61] uses
multi-column Convolutional Neural Network (CNN) for encoding the natural language
question. [I09] uses a CNN based approach to extract relations and retrieve the candi-
date answers from Freebase. In addition, they introduce a validation step that prunes
incorrect answers based on evidence from Wikipedia.

The work closest to ours is Yih et al. [I19], in which a CNN is used to score question-
query graph pairs. Instead of extracting features for compositional semantics, our model
takes the holistic structure of query graphs as input. Yih et al. [IT19] use deterministic
rules to augment the core query graph with constraints. In contrast, we systematically
augment the query with a large set of candidate relations. We generate much richer logical
forms that span a broader range of semantics by leveraging type constraints, auxiliary
relations, dates, etc. Our model directly utilizes all the relations in a query graph, which
allows to integrate constraints in a more systematic way.

LSTM Models. LSTM models have been shown to succeed at learning sequential
patterns in machine translation [65], handwriting recognition [34], and language modeling
[76], among others. Our model bears a resemblance to Tree-LSTM models [98], which
generalize the LSTM model to tree-structured data. The main distinction is that our
model is tailored for a core-auxiliary structure, while Tree-LSTM deals with general tree
structures. The information from different layers of a tree is processed using the same
set of parameters in Tree-LSTM. In contrast, we use different parameters for core and
auxiliary relations, which helps to differentiate core and auxiliary information. Moreover,
Tree-LSTM combines the cell states of children to generate a new cell state. In our model,
we use auxiliary path embeddings as inputs to the upper layer. The model can then be
more focused on the core relation, and changes in auxiliary relations will have a less

direct impact on the final cell state. For example, in Figure 2.2 a change on S, will have

10
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a smaller impact than a change on the core path, Ry,..., Ry.

2.1.2 Question Answering with Hierarchical LSTM

Our question answering framework consists of three steps: (1) Detecting and linking
entity mentions, (2) generating query graphs, and (3) learning a model to rank query
graphs. Yih et al. [I19] show that a better entity detection/linking algorithm can improve
F1 score by a substantial margin (4.1% absolute improvement in their case). This work

is focused on Steps 2 and 3.

Query Graph Generation

Core Relational Path. Given the topic entity T, identified in ', we generate can-
didate paths starting at T, using a breadth-first search (BFS). To generate a manageable
set of paths, we restrict the length of the path to 2 if there is a CVT node, otherwise to
1. The core paths will later be augmented with other auxiliary relations. For the ques-
tion, “Who did Viggo Mortensen play in Lord of the Rings?” the topic entity mention is
“Viggo Mortensen”, which is linked to ViggoMortensen in K. We then generate candi-
date paths using a BF'S, e.g., Film.Character, StarringRoles.Character, and Film.
Film. Out of these candidate paths, only ViggoMortensen.Film.Character gives the
correct answer and captures the main relation in the question. We aim at ranking cor-
rect paths higher to produce a set of high quality paths for query augmentation. Before
delving into the details of our ranking model, we first describe the augmentation of the
initial core paths with auxiliary relations.

Query Augmentation. The initial query path of a given question is likely to capture
the core relation and can be executed against a KB to retrieve candidate answers. In

our example, the initial query path ViggoMortensen.Film.Character is going to return

11
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all the characters that ViggoMortensen played in. Although the set of characters will
include the answer Aragorn, the precision of this set will be small. To further restrict
the answer set and interpret the question better, we augment the initial query graph by
attaching additional KB paths. Starting from the nodes in the initial query path, we can
add other paths reachable in the KB. These new paths are called auxiliary paths, related
to other relations and constraints mentioned in the question. To reduce the search space
of auxiliary paths, we only consider one-hop relations from the CVT and ANSWER
nodes. The relation from the ANSWER node will be restricted to Type and Gender. For
instance, in Figure 2.2] our query augmentation process returns the following auxiliary
paths {Film.TheLordOfTheRings, Film.TheIndianRunner} from the CVT node and
{Type .BookCharacter, Type.OperaCharacter} from the ANSWER node. Finally, we

rank the resulting augmented candidate queries to attain the correct answer.

Long Short-Term Memory with Pooling

We propose a neural network architecture that learns to encode input questions and
query graphs into fixed-length vectors. We extend the traditional LSTM model to our
“core-auxiliary” structure. Representations of auxiliary paths are combined with the
core relation path to obtain a global embedding of the entire query. In the following, we
briefly introduce our implementation of LSTM.

LSTM is a kind of recurrent neural networks. It introduces several gates that control
information flow and a memory cell that carries the long-term information throughout

the sequence. Given the current input vector x;, the previous hidden vector h;_;, and

12
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the previous cell state ¢;_1, the new cell state and hidden vector are estimated as follows,

Xy =[xy he ] (2.1)
iy = o(W;X;+0b;) (2.2)
fi = o(WeXi+by) (2.3)
o = o(W,X;+b,) (2.4)
z = tanh(W,X;+b,) (2.5)
¢ = fixci_1 i x 2z (2.6)
hy = oy xtanh(c), (2.7)

where i, f;, 04, and z; are input, forget, output, and block input gates, respectively. o is
the sigmoid function which controls the information flow for each dimension. W and b
matrices are model parameters to learn. We add a “pooling” layer on top of the hidden

vectors :
h = POOLING(hy,. .. ), (2.8)

where [ is the length of the sequence, and POOLING is a generic function that operates
on each dimension independently and returns a single vector h as a result. We empirically
found that AVERAGE pooling works better for our problem.

Given input vectors {xy,...,z;} for each word in the question, we represent the

resulting output vector h as
h = LSTMyg(xy,... ), (2.9)

where 6 is the parameters of the LSTM model and £ is the word embedding matrix for

13
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POOLING

ViggoMortensen Film Character

(000 > (000 @D > (00®

POOLING

LoTR Film
(000 »(000®)

Figure 2.3: Hierarchical LSTM for computing the vector representation of the query
graph in Figure Input to each node is either generated recursively from child
vectors or using its corresponding word vectors.

word vectors. We refer to LSTM with Pooling as the “standard LSTM” model.

Hierarchical LSTM Network

We use the standard LSTM to encode questions and modify the standard LSTM
to encode the tree-like query graph where a node in the core path might have a child
auxiliary path. Figure [2.3] shows the modified LSTM.

Assume there is a query graph @ defined as a core path C' = (z1, 29, ...,x,) with an
auxiliary path A = (a1, as, ... ), where A is the child auxiliary path at node x;. The new

cell state and hidden vector at x; is estimated using the representation of A as input in

(2.1),

where LST Mpg (A) is the representation of the auxiliary path A and the model parame-
ters [ are shared by all the auxiliary paths. The query graph is then encoded as follows,
14
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hQ = LSTMQE(QIM ey LSTMg,E(A% c. ,{En). (211)

In practice, 8 can be different from 6 to allow the model to differentiate core and auxiliary
paths. Word embeddings E are shared for question, auxiliary, and core pathes.

The input to each LSTM cell is the output generated by another LSTM if the cell has
any child, otherwise the input is the word vector at that node. For the question “Who
did Viggo Mortensen play in Lord of the Rings?” we first compute the output of the
auxiliary path Film.LoTR as ﬁauw = LSTM (xpiym, xrorr) and use this as input at the
CVT node, i.e., xoyr = flam. We use the word vectors at other nodes (ViggoMortensen,
Film, and Character) as their corresponding inputs. The gate vectors at the CVT cell
are estimated using lAzaM and the previous cell state in , ie., Xoyr = [ﬁaw; hF“m]
The pooling layer is then applied to obtain the final semantic representation of the query
graph.

The intuition to our LSTM model is that, a single core relational path carries the
essential information, while it is restricted by several auxiliary relations. These auxiliary
relations modify the information that flows on the core path to reflect other facts. The
cell state on the core path is affected by auxiliary paths indirectly. For example, if we
change the relation Character in our example, the hidden vector at that node will be
affected, which will in turn affect the representation of the query graph. However, if we
change the relation Film at the auxiliary path, this will affect the final output via two
more steps: hidden vector at auxiliary path, pooling layer at auxiliary path, and then
hidden vector at the CVT node. This hierarchical structure has the advantage that the
network output will focus on the core query graph more and reflect the effects of the

auxiliary paths indirectly.
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Ranking Loss Function

Given a question-answer pair (u,y), we generate a set of candidate query graphs
where each yields an answer set S, for ¢ € ). For the training data, let f, be the F1
score between a candidate answer set .S, and the true answer y.

Let C'(u) denote the set of query graphs that have positive F1 score. Given a query
graph ¢, let C'(u, ¢) be the set of queries ¢’ with f, < f,. For every question, we aim at
ranking query graphs so that queries with higher F1 score appear earlier in the candidate

list. The loss function is defined as follows,

Ou(©,F) =
>3 max(0,Aq.¢) — hEhy + hERy),

ueld qeC(u) ¢'€C’ (u,q)

(2.12)

where U is the set of questions, O is the parameters of the LSTM models for question
and query graph, and F is the word embedding matrix. We use the difference between
F1 scores as the separation margin, A(q,q¢') = f, — fy. We use inner product between
embedding vectors to measure the semantic similarity.

The final loss function also includes an L2 regularization term g”@“ to prevent
overfitting. We use AdaDelta [122] for optimization of © and F.

The above model does not consider the error that could be introduced by topic entity
detection and linking. If the topic entity linking is wrong, likely the query graphs and
answers derived in the following steps will not be useful. Fortunately, entity linking
algorithms often generate a score between an entity mention in the question and the
linked entity in the KB. This score shall be combined with the LSTM output in Figure

to give a final score. We apply a log-linear model to achieve this goal.
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# | Template Example Question

1 | Entity linking score Who played Luke Skywalker in Star Wars episode 4 ?
2 | Question Category Which airport to fly into Rome ?

3 | "What” + NOUN What state was theodore roosevelt from?

4 | Temporal Information | Who does David James play for 2011 ¢

Table 2.1: Lexical features to prune the search space of auxiliary paths.

Initializing Word Embeddings

For each relation description in Freebase, we tokenize it using separators, “.” and “_".
For example, relation People.Person.Profession is tokenized as People, Person, and
Profession. The embedding matrix F is initialized with Glove word vectors [75]. As
the relations in Freebase can be described very differently from natural language, some
words are not found in the Glove vocabulary. For example, in relation
Base.Semanticnames.PersonWithName, Semanticnames is not found. We adopt a prefix-
based greedy search approach to solve this problem. If a word is not found in the vocab-
ulary, we greedily search for the largest prefix in the word that can be found. The prefix
found is appended to the input sequence, and removed from the word. The process con-
tinues until the whole word is consumed or no prefix can be found in the vocabulary. In
our example, the word “semanticnames” is tokenized into “semantic” and “names” which
both can be found in the vocabulary. For the words that can not be further tokenized,

we initialize them with an average word vector.

Template-Based Augmentation

Query augmentation might produce correct auxiliary paths but with ambiguous or
incorrect entities. Consider the following example “Who played Luke Skywalker in Star
Wars episode 47”7 Our model correctly identifies the core relation PortrayedInFilms.Actor

and auxiliary relation Film but several entities such as StarWarsEpisodeb and
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StarWarsEpisode4 correspond to the same auxiliary path. To tackle this problem, we
propose a template-based learning approach which searches for lexical clues in the ques-
tion. A small set of templates (Table is designed to advise whether query augmen-
tation shall be done or not.

To resolve the entity disambiguation problem, we extract the mention of the auxiliary
entity and use the entity linking score as a feature. In our example, “Star Wars episode 4”
will be extracted and will be correctly mapped to StarWarsEpisode4. “Which” questions
generally ask for a specific type and “Who” questions usually ask for a Person. We
categorize each question according to its WH word {What, Where, How, Who, Which}
and use its category as a feature. Furthermore, we use “What” word and the NOUN
next to it as a feature for the “answer type”. For example, “what state” and “what
city” will be used to augment State and City types to the query, respectively. We also
generate a small set of type triggers (such as “governor”, “senator”, and “ethnicity”) that
we observe in the KB but our templates can not capture. The CVT nodes might have
relations that define a time interval for an event such as the duration of a contract. We
use years in questions to capture this temporal information. To provide some flexibility,
we use a window of [-1, +1] for a year as the start and end date of an event might be
represented slightly different in Freebase. To capture gender information, we identify a

2

set of words such as “wife,” “son,” and “daughter” as binary features.

Miscellaneous

Our LSTM model takes question and graph query as input. How to handle entities
in the input is an open question. Given an entity, at least we could have four options:
Using the entity directly without modification, replacing it with its most common KB
type, replacing it with a common token, e.g., #ENTITY#, or remove it. Relations

often have type specification. For example, the relation People.Person.Place0fBirth
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Model Parameter

Search Space

Input vector dimension
Hidden vector Dimension
Dropout rate

L2

Batch size

Initialization

Relearn embeddings
Pooling operator

LSTM parameters

50 - 100 - 300
50 - 100 - 300 - 500
0-0.5
0-0.001-0.01
8-16 - 32
Glove - Random
True - False
Average - Max
Shared - Not

Table 2.2: Hyper-parameter setting for our model. Bold terms represent the final setting.

in Freebase takes a Person as subject and Location as object. We empirically observe

that using the most common type of the entity in the question and removing the entities

from query graphs give the best result. Note that the relation representation in query

graphs already contain subject/object type information.

2.1.3 Experimental Evaluation

In this section, we evaluate our methods and conduct error analysis.

Dataset and Evaluation Metric

Dataset. We evaluate our model on the popular WEBQUESTIONS dataset [11]

which contains 5,810

question/answer pairs. The questions are collected using Google Suggest API and the

answers are collected via crowdsourcing using Amazon MTurk. It is split into training

(3,778) and testing sets (2,032). The dataset has natural questions and has been widely

used in question answering.

Identifying Topic Entities. Stanford NER Tagger [68] is used to detect topic enti-

ties in these questions. We use the Freebase Search API to get a ranked list of candidate

Freebase entities for each span annotated with the NER tag. The top-2 returned entities
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are used, and the entity linking scores are also used as a feature.

Training Data Preparation. Since WEBQUESTIONS dataset only provides question-
answer pairs, we need to generate candidate logical forms as training data. We run a
BF'S search from the identified topic entities for each question to extract candidate query
graphs. We first retrieve all 1-hop and 2-hop relations from the annotated topic entity as
initial query graphs. We then augment each initial query with auxiliary 1-hop relations.
We restrict the 1-hop relations from the ANSWER node to type and gender. We run each
query against Freebase and retrieve candidate answers. Each query is associated with the
F1 score of the corresponding answer set. To train our model, we generate positive and
negative question/query graph pairs using the training set. Given a training question,
the query graphs with a positive F'1 score are the positive samples, while the ones taht
get a zero F1 score are the negative samples. We develop our system using Theano [99].

Experimental Setup. Table[2.2|gives a list of hyper-parameters tuned in our model.
Following [36], we tune each parameter independently. Our empirical results show that
initializing word vectors using Glove and updating these vectors during LSTM training
gives the best performance. Average pooling performs significantly better than Max
pooling. Using separate parameters for the two LSTMs that encode questions and query
graphs gives better results than sharing. We tune all the parameters for core relational

path ranking and simply apply the same setting to augmentation.

Main Results

Table shows the main results in comparison with the existing question answer-
ing methods. Our system achieves a very competitive result compared to the existing
approaches without utilizing any external corpora. Two recently proposed question an-
swering systems [119] and [109] utilize external corpora (ClueWeb and Wikipedia) and

an advanced entity linking system, S-MART [113]. To make the results more directly
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Model Accuracy
[117] (Yao et al., 2014) 33.0
[11] (Berant et al., 2013) 35.7
[7 (Bao et al., 2014) 37.5
[12] (Bordes et al., 2014) 39.2
[9] (Berant et al., 2014) 39.9
[61] (Dong et al., 2015) 40.8
[112] (Yang et al., 2014) 41.3
[116] (Yao, 2015) 44.3
[10] (Berant et al., 2015) 49.7
[81] (Reddy et al.,, 2016) 50.3
[119] (Yih et al., 2015) 52.5
[109] (Xu et al., 2016) 53.3
[109] w/o Wikipedia 47.1
[119] w/ Freebase API 48.4
[119] w/o ClueWeb 50.9
Our Approach 51.0

Table 2.3: Comparison of our system with several existing works on the WEBQUES-
TIONS dataset.

Model Accuracy
Core Path 49.2
Core + Auxiliary Path 51.0

Table 2.4: Performance of (1) using only core relational paths and (2) adding auxiliary

paths.
comparable, we also provide the F1 score of [119] in the settings of (1) without ClueWeb
(50.9%) or (2) using Freebase Search API (same as ours) for entity linking (48.4%). For
[109], if tested without Wikipedia, its F'1 score is 47.1% (still using S-MART).

Table [2.4] shows the performance of the main designs. It shows that using core
relational path achieves a competitive result. Our LSTM model on augmented query

graphs further improves the performance by a substantial margin.
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Model Accuracy
Core Path 49.2
+ WH Word (Which) 49.3
+ What+NN 49.6
+ Secondary Entities 49.7
+ Dates (in years) 49.3
+ Type and Gender Triggers 49.9
All 51.0

Table 2.5: Performance of using each trigger template separately for query augmentation.

Augmentation Ablation

Next, we examine the contribution of each component in the template-based augmen-
tation module.

Table shows the results of the template generation module. Out of the 2,032 test
questions, 301 of them are augmented by our model. Each template improves the result
by a small margin, but together they lead to a substantial improvement. A few questions
have an additional type constraint such as “which country” or “which political party.”
One of the major improvements comes from type constraints as reflected by what+NOUN
template. Our system performs better by incorporating the secondary entity information
in the question. Temporal triggers give a small improvement and the reason is that in
the KB, dates might include different months and days for the same year which makes

it hard to pick a specific year.

Error Analysis

A certain amount of errors are caused by the imperfect answer annotation process
of WEBQUESTIONS, where crowdsourcing workers are directed to find answers in the
Freebase page of a topic entity. One interesting observation is that a considerable number
of questions, 288 in training and 139 in testing, have exactly 10 answers, the maximum

possible F1 score for 265 and 127 of which are lower than 1.0. We find that for a
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single relation, at most 10 results will be displayed on a Freebase page. For example,
JoshHutcherson has starred in 27 movies, but only 10 of them are shown on his Free-
base page. A worker needs to click the “expand” button in order to get the full list.
Some workers may not realize that, resulting in incomplete answer sets. Excluding such
questions, our F1 score will reach 51.6%. Since this problem is systematic for the WE-
BQUESTIONS datset, it is not clear how other systems will behave if this problem is
corrected.

We also randomly selected 100 testing questions that have an imperfect F1 score
(< 1.0) and categorize the errors. 4% of the errors are due to answer annotation process.
17% of the errors are caused by entity linking. Yih et al. Yih et al. [IT9] show that an
entity linking system better than the combination of Stanford NER tagger and Freebase
Search API improves F1. 14% of the errors are the result of incorrect or missing labels
of the answers. 48% of the errors are due to incorrect core relational path ranking and
16% of the errors come from incorrect augmentations of query graphs. The remaining

1% error is caused by the template set selection approach.

2.2 Dialogue-Based Structured Query Generation on
Relational Databases

In the previous section, we described how we can train a hierarchical deep learning
model to map user questions into structured logical form representations that can be
executed on Freebase. We used a single-turn methodology where the user informed her
intent at the beginning and our model executed without any interruption from the user.
This form of closed-loop execution of systems is also practiced in recent work on learning

natural language interfaces to relational databases (NLIDB).
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Natural Language Question : | What are the countries that joined the NATO before 2004 ?
Ground Truth SQL Query : SELECT country WHERE date of join < 2004

Initial SQL Query : SELECT count ( country ) WHERE date of join = 2004
‘ Turn Side ‘ NL Expression using Rule-Based Templates ‘ Response
System: Could you please confirm if you are asking total number of the results? ‘ validate_agg (1, 2)
User: No, that’s not true. ‘ negate()
System: Could you please select one of the following options : ffor_ace (averas )
ystem: (i) average number of results, (ii) all the results? offer_agg (average, no_agg)
User: It should be all the results. select(2)
System: Could you please confirm if date of join is 2004 ? validate_where_change(6, 11)
User: That’s wrong. negate()

Could you please select one of the following options :

(i) date of join is before 2004, (i) date of invitation is before 20047 offer_where (date of join < 2004, date of invitation < 2004)

System:

User: Date of join is before 2004. select(1)

Table 2.6: DialSQL model running example. Initial SQL query is generated by running
a black box model on the question. Natural language (NL) expressions are generated
using a template based method. Substrings in red represent the error spans and
substrings in blue represent the choices offered. Each response is accompanied with
natural language utterances for clarity.

While taking a single-turn approach could result in faster execution times with less
user efforts, methods that achieve the state-of-the-art performance on NLIDB datasets,
such as WikiSQL [I11) 126, 110}, [47], suffer from lack of understanding ambiguous user
questions and errors made during inference process. After analyzing the error cases of
Seq2SQL [126] and SQLNet, we recognized that many wrong translations cannot be easily
corrected without any external knowledge or semantic understanding which is why we
aim to integrate humans into the inference process of these systems. Previous human-in-
the-loop NLIDBs [56] 111] rely on users to carefully go through a generated SQL query
and revise it accordingly, which is infeasible for users without domain expertise. Instead,

we resort to a different approach by introducing a goal-oriented dialogue model, DialSQL,

that interacts with users to extract and refine potential errors in the generated queries.

2.2.1 Overview

Given a candidate SQL query generated from a natural language question using any

black-box query generation system (such as SQLNet), we assume any segment, or span,
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of the generated query such as a WHERE clause can be potentially erroneous. The goal
of DialSQL is to extract the erroneous spans and ask users multi-choice questions to
validate and correct these errors. DialSQL is based on a hierarchical encoder-decoder
architecture with attention and pointer mechanisms. The model first encodes each turn
of interaction and runs a dialogue level RNN network on the dialogue history. The output
of the network is then used to predict the error category, i.e., whether it is a selection,
projection, or aggregation error. Conditioned on the error category, the output of a
second RNN is used to predict the start and end positions of the error span by pointing
to the query tokens. Finally, candidate choices are decoded from the error category and
span representations. Following previous work [126] [110], we only use column names and
do not utilize table values.

How to train and evaluate DialSQL become two challenging issues due to the lack
of error data and interaction data. We construct a simulator to generate simulated dia-
logues, a general approach practiced by many dialogue studies. Inspired by the agenda-
based methods for user simulation [86], we keep an agenda of pending actions that are
needed to induce the ground truth query. At the start of the dialogue, a new query is
carefully synthesized by randomly altering the ground truth query and the agenda is
populated by the sequence of altering actions. Each action consists of three sub-actions:
(i) Pick an error category and extract a span; (ii) Raise a question; (iii) Update the
query by randomly altering the span and remove the action from the agenda. Consider
the example in Figure Step-1 synthesizes the initial query by randomly altering the
WHERE clause and AGGREGATION; Step-2 generates the simulated dialogue by validating

the altered spans and offering the correct choice.
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e h e s e s — - -
! Q: What are the countries that joined the NATO before 20047
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i
i Step-1. Initial Query Generation i i Step-2. Dialogue Generation i
| | ! !
1. System: validat 1, 2) - offe
| SELECT count ( country ) WHERE date of join = 2004 1 Bt Ui::m ;Zgaé;e%s_ggs;emi) afler (no._agg) W
AGG (1, 2, count)
‘ SELECT country WHERE date of join = 2004 W b CEGE ) MR SR [ ) = )
User: negate() - select()
WHERE_CHANGE (6, 7, =)

‘ SELECT country WHERE date of join < 2004 1 3. System: confimn()
User: confirm()

Figure 2.4: An instantiation of our dialogue simulation process. Step-1 synthesizes
the initial query (top) by randomly altering the ground truth query (bottom). Step-2
generates the dialogue by validating the sequence of actions populated in Step-1 with
the user. Each action is defined by the error category, start and end positions of the
error span, and the random replacement, ex. AGG (1, 2, count).

2.2.2 Related Work

Research on natural language interfaces to databases (NLIDBs), or semantic parsing,
has spanned several decades. Early rule-based NLIDBs [104] [3, [78] employ carefully de-
signed rules to map natural language questions to formal meaning representations like
SQL queries. While having a high precision, rule-based systems are brittle when facing
with language variations. The rise of statistical models [125] 49, [T1], especially the ongo-
ing wave of neural network models [119, 23] ©95] 126, 110} 37, 118], has enabled NLIDBs
that are more robust to language variations. Such systems allow users to formulate ques-
tions with greater flexibility. However, although state-of-the-art systems have achieved
a high accuracy of 80% to 90% [23] on well-curated datasets like GEO [123] and ATIS
[124], the best accuracies on datasets with questions formulated by real human users, e.g.,
WebQuestions [I1], GraphQuestions [93], and WikiSQL [126], are still far from enough
for real use, typically in the range of 20% to 60%.

Human-in-the-loop systems are a promising paradigm for building practical NLIDBs.

A number of recent studies have explored this paradigm with two types of user interaction:
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coarse-grained and fine-grained. Iyer et al. [47] and Li et al. [59] incorporate coarse-
grained user interaction, i.e., asking the user to verify the correctness of the final results.
However, for real-world questions, it may not always be possible for users to verify result
correctness, especially in the absence of supporting evidence. Li and Jagadish [56] and
Yaghmazadeh et al. [ITI] have shown that incorporating fine-grained user interaction
can greatly improve the accuracy of NLIDBs. However, they require that the users have
intimate knowledge of SQL, an assumption that does not hold for general users. Our
method also enables fine-grained user interaction for NLIDBs, but we solicit user feedback
via a dialogue between the user and the system.

Our model architecture is inspired by recent studies on hierarchical neural network
models [91] 87, B38]. Recently, Saha et al. [85] propose a hierarchical encoder-decoder
model augmented with key-value memory network for sequential question answering over
knowledge graphs. Users ask a series of questions, and their system finds the answers
by traversing a knowledge graph and resolves coreferences between questions. Our in-
teractive query generation task significantly differs from their setup in that we aim to
explicitly detect and correct the errors in the generated SQL query via a dialogue between
our model and the user.

Agenda based user simulations have been investigated in goal-oriented dialogues for
model training [86]. Recently, Seq2seq neural network models are proposed for user
simulation [5] that utilize additional state tracking signals and encode dialogue turns
in a more coarse way. We design a simulation method for the proposed task where we
generate dialogues with annotated errors by altering queries and tracking the sequence

of alteration steps.

27



Learning from Structured Data Chapter 2

Error Category ‘ Meaning in a dialogue
validate_sel Validate the select clause
validate_agg Validate the aggregation operator

validate where_changed | Validate if a segment of a where clause is incorrect
validate where removed | Validate if a new where clause is needed
validate_where_added Validate if an incorrect where clause exists
no_error Validate if there is no remaining error

Table 2.7: The list of error categories and their explanations for our interactive query
generation task.

2.2.3 Problem Setup and Datasets

We study the problem of building an interactive natural language interface to databases
(INLIDB) for synthesizing SQL queries from natural language questions. In particular,
our goal is to design a dialogue system to extract and validate potential errors in gen-
erated queries by asking users multi-choice questions over multiple turns. We will first

define the problem formally and then explain our simulation strategy.

Interactive Query Generation

At the beginning of each dialogue, we are given a question Q = {q1,q2,- -+ ,qn}, a
table with column names T' = {11, T5, - -+ , Tx } where each name is a sequence of words,
and an initial SQL query U generated using a black box SQL generation system. Each
turn ¢ is represented by a tuple of system and user responses, (S, R;), and augmented
with the dialogue history (list of previous turns), H;. Each system response is a triplet
of error category c, error span s, and a set of candidate choices C, i.e., S; = (¢, s,C). An
error category (Table denotes the type of the error that we seek to correct and an
error span is the segment of the current query that indicates the actual error. Candidate
choices depend on the error category and range over the following possibilities: (i) a
column name, (ii) an aggregation operator, or (iii) a where condition. User responses are
represented by either an affirmation or a negation answer and an index ¢’ to identify a
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choice. We define the interactive query generation task as a list of subtasks: at each turn
t, (i) predict ¢, (ii) extract s from U, and (iii) decode C. The task is supervised and each
subtask is annotated with labeled data.

Consider the example dialogue in Table 2.2l We first predict validate_agg as the
error category and error span (start = 1,end = 2) is decoded by pointing to the ag-
gregation segment of the query. Candidate choices, (average, no_agg), are decoded
using the predicted error category, predicted error span, and dialogue history. We use
a template based natural language generation (NLG) component to convert system and

user responses into natural language.

Dialogue Simulation for INLIDB

In our work, we evaluate our model on the WikiSQL task. Each example in WikiSQL
consists of a natural language question and a table to query from. The task is to gen-
erate a SQL query that correctly maps the question to the given table. Unfortunately,
the original WikiSQL lacks error data and user interaction data to train and evaluate
DialSQL. We work around this problem by designing a simulator to bootstrap training
dialogues and evaluate DialSQL on the test questions of WikiSQL.

Inspired by the agenda-based methods [86], we keep an agenda of pending actions that
are needed to induce the ground truth query. At the start of the dialogue, we synthesize
a new query by randomly altering the ground truth query and populating the agenda
by the sequence of altering actions. Each action launches a sequence of sub-actions: (i)
Randomly select an error category and extract a related span from the current query, (ii)
randomly generate a valid choice for the chosen span, and (iii) update the current query
by replacing the span with the choice. The dialogue is initiated with the final query and
a rule-based system interacts with a rule-based user simulator to populate the dialogue.

The rule-based system follows the sequence of altering actions previously generated and
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asks the user simulator a single question at each turn. The user simulator has access
to the ground truth query and answers each question by comparing the question (error
span and the choice) with the ground truth.

Consider the example in Figure where Step-1 synthesizes the initial query and
Step-2 simulates a dialogue using the outputs of Step-1. Step-1 first randomly alters
the WHERE clause; the operator is replaced with a random operator. The updated query
is further altered and the final query is passed to Step-2. In Step-2, the system starts
with validating the aggregation with the user simulator. In this motivating example, the
aggregation is incorrect and the user simulator negates and selects the offered choice.
During training, there is only a single choice offered and DialSQL trains to produce this
choice; however, during testing, it can offer multiple choices. In the next step, the system
validates the WHERE clause and generates a no_error action to issue the generated query.
At the end of this process, we generate a set of labeled dialogues by executing Step-1
and Step-2 consecutively. DialSQL interacts with the same rule-based simulator during
testing and the SQL queries obtained at the end of the dialogues are used to evaluate

the model.

2.2.4 Dialogue Based SQL Generation

In this section, we present our DialSQL model and describe its operation in a fully
supervised setting. DialSQL is composed of three layers linked in a hierarchical structure
where each layer solves a different subtask : (i) Predicting error category, (ii) Decoding
error span, and (iii) Decoding candidate choices (illustrated in Figure . Given a
(Q,T,U) triplet, the model first encodes @, each column name T; € T, and query U
into vector representations in parallel using Recurrent Neural Networks (RNN). Next,

the first layer of the model encodes the dialogue history with an RNN and predicts the
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5. Decoding Candidate Choices
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Figure 2.5: DialSQL model: Boxes are RNN cells, colors indicate parameter sharing.
Dashed lines denote skip connections, dashed boxes denote classifications, and black
circles denote vector concatenation. Blue boxes with capital letters and numbers (X.1,
X.2) denote that the embeddings of predicted token at X.1 is passed as input to X.2.
Each component in the pipeline is numbered according to execution order. <GO> is a
special token to represent the start of a sequence and ST and ED denote the start and
end indices of a span, respectively.

error category from this encoding. The second layer is conditioned on the error category
and decodes the start and end positions of the error span by attending over the outputs
of query encoder. Finally, the last layer is conditioned on both error category and error

span and decodes a list of choices to offer to the user.
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Preliminaries and Notation

Each token w is associated with a vector e, from rows of an embeddings matrix FE.
We aim at obtaining vector representations for question, table headers, and query, then
generating error category, error span, and candidate choices.

For our purposes, we use GRU units [I7] in our RNN encoders which are defined as

hy = f(ﬂft; ht—l)

where h; is the hidden state at time ¢. f is a nonlinear function operating on input vector
x; and previous state h;_;. We refer to the last hidden state of an RNN encoder as the

encoding of a sequence.

Encoding

The core of our model is a hierarchical encoder-decoder neural network that encodes
dialogue history and decodes errors and candidate choices at the end of each user turn.
The input to the model is the previous system turn and the current user turn and the

output is the next system question.

Encoding Question, Column Names, and Query. Using decoupled RNNs (Enc),
we encode natural language question, column names, and query sequences in parallel and
produce outputs and hidden states. 0%, 0”¢, and oV denote the sequence of hidden states
at each step and h%, h7i, and hY denote the last hidden states of question, column name,
and query encoders, respectively. Parameters of the encoders are decoupled and only the

word embedding matrix F is shared.

Encoding System and User Turns Since there is only a single candidate choice dur-
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ing training, we ignore the index and encode user turn by doing an embedding lookup
using the validation answer (affirmation or negation). Each element (error category, error
span, and candidate choice) of the system response is encoded by doing an embedding

lookup and different elements are used as input at different layers of our model.

Encoding Dialogue History At the end of each user turn, we first concatenate the
previous error category and the current user turn encodings to generate the turn level
input. We employ an RNN to encode dialogue history and current turn into a fixed

length vector as

hyt = he
oPt, gPr = Enc([E., E,))

't = [Attn(g;”, HT), 07

where [.] is vector concatenation, E, is the error category encoding, E, is the user turn
encoding, hé) ! is the initial hidden state, and h? ! is the current hidden state. Attn is an

attention layer with a bilinear product defined as in [66]
Attn(h,O) = Z softmaz(tanh(hWO)) * O

where W is attention parameter.
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Predicting Error Category

We predict the error category by attending over query states using the output of the

dialogue encoder as

¢, = tanh(Lin([Attn(hP*, 0V, hP1)))

l; = softmax(c, - E(C))

where Lin is a linear transformation, F(C') is a matrix with error category embeddings,

and [; is the probability distribution over categories.

Decoding Error Span

Consider the case in which there are more than one different WHERE clauses in the
query and each clause has an error. In this case, the model needs to monitor previous
error spans to avoid decoding the same error. DialSQL runs another RNN to generate a

new dialogue encoding to solve the aforementioned problem as

hP2 = he
01, 9;* = Enc(E,)

hy? = [Attn(g;, H" )oy”]

where h}? is the initial hidden state, and h;”* is the current hidden state. Start position 4

of the error span is decoded using the following probability distribution over query tokens

pi = softmax(tanh(hP?L,HY))
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where p; is the probability of start position over the ith query token. End position j of

the error span is predicted by conditioning on the start position

Cizzpi*HU

pj = softmax(tanh([hP?, c;| Ly HY))

where p; is the probability of end position over the jth query token. Conditioning on
the error category will localize the span prediction problem as each category is defined

by only a small segment of the query.

Decoding Candidate Choices

Given error category ¢ and error span (i,7) , DialSQL decodes a list of choices that
will potentially replace the error span based on user feedback. Inspired by SQLNet [I10],
we describe our candidate choice decoding approach as follows.

Select column choice. We define the following scores over column names,
h = Attn(Lin([o} ,, 0;], E)]),H")

Sset = ul x tanh(Lin([HT, h)]))

where oY | is the output vector of the query encoder preceding the start position, and 0§-]

is the output of query encoder at the end position.
Aggregation choice. Conditioned on the encoding e of the select column, we define

the following scores over the set of aggregations (MIN, MAX, COUNT, NO_AGGREGATION)

Sagg = V' * tanh(Lin(Attn(e, H?)))
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Where condition choice. We first decode the condition column name similar to de-
coding select column. Given the encoding e of condition column, we define the following

scores over the set of operators (=, <, >)

Sop = W' x tanh(Lin(Attn(e, H?)))

Next, we define the following scores over question tokens for the start and end positions

of the condition value

sq = Attn(e, H?)

S = Attn(le, hy, H?))

where hg; is the context vector generated from the first attention. We denote the number
of candidate choices to be decoded by k. We train DialSQL with £ = 1. The list of £ > 1
candidate choices is decoded similar to beam search during testing. As an example,
we select k& column names that have the highest scores as the candidate where column
choices. For each column name, we first generate k different operators and from the set
of k % 2 column name and operator pairs; select k operators that have the highest joint
probability. Ideally, DialSQL should be able to learn the type of errors present in the
generated query, extract precise error spans by pointing to query tokens, and using the

location of the error spans, generate a set of related choices.

2.2.5 Experimental Results and Discussion

In this section, we evaluate DialSQL on WikiSQL using several evaluation metrics by

comparing with previous literature.
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Evaluation Setup and Metrics

We measure the query generation accuracy as well as the complexity of the questions
and the length of the user interactions.

Query-match accuracy. We evaluate DialSQL on WikiSQL using query-match accu-
racy [126] 110]. Query-match accuracy is the proportion of testing examples for which
the generated query is exactly the same as the ground truth, except the ordering of the
WHERE clauses.

Dialogue length. We count the number of turns to analyze whether DialSQL generates
any redundant validation questions.

Question complexity. We use the average number of tokens in the generated valida-
tion questions to evaluate if DialSQL can generate simple questions without overwhelming
users.

Since SQLNet and Seq2SQL are single-step models, we can not analyze DialSQL’s
performance by comparing against these on the last two metrics. We overcome this issue
by generating simulated dialogues using an oracle system that has access to the ground
truth query. The system compares SELECT and AGGREGATION clauses of the predicted
query and the ground truth; asks a validation question if they differ. For each WHERE
clause pairs of generated query and the ground truth, the system counts the number of
matching segments namely COLUMN, OP, and VALUE. The system takes all the pairs with
the highest matching scores and asks a validation question until one of the queries has no
remaining WHERE clause. If both queries have no remaining clauses, the dialogue termi-
nates. Otherwise, the system asks a validate where_added (validate where removed)
question when the generated query (ground truth query) has more remaining clauses.
We call this strategy Oracle-Matching (OM). OM ensures that the generated dialogues

have the minimum number of turns possible.
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Model QM-Dev | QM-Test
Seq2SQL [110] 53.5% 51.6%
SQLNet [110] 63.2% 61.3%
BiAttn [37] 64.1% 62.5%

Seq2SQL - DialSQL | 62.2% 61%
SQLNet - DialSQL | 70.9% 69.0%

Seq2SQL - DialSQL* | 68.9% 67.8%

SQLNet - DialSQL* | 74.8% 73.9%
Seq2SQL - DialSQL* | 84.4% 84%
SQLNet - DialSQL* | 82.9% 83.7%

Table 2.8: Query-match accuracy on the WikiSQL development and test sets. The
first two scores of our model are generated using 5 candidate choices, (T) denotes a
variant where users can revisit their previous answers, and (*) denotes a variant with
more informative user responses.

Training Details

We implement DialSQL in TensorFlow [I] using the Adam optimizer [51] for the
training with a learning rate of le—4. We use an embedding size of 300, RNN state
size of 50, and a batch size of 64. The embeddings are initialized from pretrained GloVe
embeddings [75] and fine-tuned during training. We use bidirectional RNN encoders with
two layers for questions, column names, and queries. Stanford CoreNLP tokenizer [6§]
is used to parse questions and column names. Parameters of each layer are decoupled
from each other and only the embedding matrix is shared. The total number of turns is
limited to 10 and 10 simulated dialogues are generated for each example in the WikiSQL
training set. SQLNet and Seq2SQL models are trained on WikiSQL using the existing
implemention provided by their authors. The code is available at https://github.com/

izzeddingur/DialSQL.

Evaluation on the WikiSQL Dataset

Table presents the results of query match accuracy. We observe that Dial-

SQL model with a number of 5 choices improves the performance of both SQLNet and
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Model QC Dev | DL Dev QC Test | DL Test
Seq2SQL - OM 3.47 (2.25) | 0.84 (1.77) | 3.51 (2.41) | 0.88 (1.8)
SQLNet - OM 3.37 (2.63) | 0.61 (1.45) | 3.34 (2.51) | 0.63 (1.49)
Seq2SQL - DialSQL | 3.53 (1.79) | 5.54 (2.32) | 3.55 (1.81) | 5.55 (2.34)
SQLNet - DialSQL | 3.6 (1.86) | 5.57 (2.34) | 3.17 (1.55) | 4.77 (1.57)

Table 2.9: Average query complexity and dialogue length on the WikiSQL datasets
(values in paranthesis are standard deviations). Metrics for SQLNet and Seq2SQL
models are generated by the OM strategy as described earlier.

Seq2SQL by 7.7% and 9.4%, respectively. The higher gain on Seq2SQL model can be
attributed that the single-step Seq2SQL makes more errors: DialSQL has more room for
improvement. We also show the results of DialSQL where users are allowed to revisit
their previous answers and with more informative user responses; instead the model only
validates the error span and the user directly gives the correct choice. In this scenario,
the performance further improves on both development and test sets. It seems decoding
candidate choices is a hard task and has room for improvement. For the rest of the

evaluation, we present results with multi-choice questions.

Query Complexity and Dialogue Length

In Table , we compare DialSQL to the OM strategy on query complexity (QC)
and dialogue length (DL) metrics. DialSQL and SQLNet-OM both have very similar
query complexity scores showing that DialSQL produces simple questions. The number
of questions DialSQL asks is around 3 for both query generation models. Even though
SQLNet-OM dialogues have much smaller dialogue lengths, we attribute this to the fact
that 61.3% of the dialogues have empty interactions since OM will match every segment
in the generated query and the ground truth. The average number of turns in dialogues

with non-empty interactions, on the other hand, is 3.10 which is close to DialSQL.
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Figure 2.6: DialSQL performance on WikiSQL with a varying number of choices at each turn.

A Varying Number of Choices

In Figure [2.6, we plot the accuracy of DialSQL on WikiSQL with a varying number of
choices at each turn. We train DialSQL once and generate a different number of choices
at each turn by offering top-k candidates during testing. We observe that offering even
a single candidate improves the performance of SQLNet remarkably, 1.9% and 2.5%
for development and test sets, respectively. As the number of choices increases, the
performance of DialSQL improves in all the cases. Particularly, for the SQLNet-DialSQL
model we observe more accuray gain. We increased the number of choices to 10 and
observed no notable further improvement in the development set which suggests that 5

is a good value for the number of choices.

Error Distribution

We examine the error distribution of DialSQL and SQLNet. In DialSQL, almost all

the errors are caused by validate sel and validate where_change, while in SQLNet
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validate_where_change is the major cause of error and other errors are distributed

uniformly.

Human Evaluation

We extend our evaluation of DialSQL using human subject experiment so that real
users interact with the system instead of our simulated user. We randomly pick 100
questions from WikiSQL development set and run SQLNet to generate initial candidate
queries. Next, we run DialSQL using these candidate queries to generate 100 dialogues,
each of which is evaluated by 3 different users. At each turn, we show users the headers
of the corresponding table, original question, system response, and list of candidate
choices for users to pick. For each error category, we generate 5 choices except for the
validate where added category for which we only show 2 choices (YES or NO). Also,
we add an additional choice of None of the above so that users can keep the previous
prediction unchanged. At the end of each turn, we also ask users to give an overall score
between 1 and 3 to evaluate whether they had a successful interaction with the DialSQL
for the current turn. On average, the length of the generated dialogues is 5.6.

In Table[2.10] we compare the performance of SQLNet, DialSQL with user simulation,
and DialSQL with real users using QM metric. We present the average performance
across 3 different users with the standard deviation estimated over all dialogues. We
observe that when real users interact with our system, the overall performance of the
generated queries are better than SQLNet model showing that DialSQL can improve the
performance of a strong NLIDB system in a real setting. However, there is still a large
room for improvement between simulated dialogues and real users.

In Figure we present the correlation between DialSQL ranking of the candidate
choices and user preferences. We observe that, user answers and DialSQL rankings

are positively correlated; most of the time users prefer the top-1 choice. Interestingly,
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] Model \ Accuracy ‘
SQLNet 58
DialSQL w/ User Simulation | 75
DialSQL w/ Real Users 65 (1.4)

Table 2.10: QM accuracies of SQLNet, DialSQL with user simulation, and DialSQL
with real users (value in paranthesis is standard deviation).

®1 €2 ¢ 3 04 @5 06

Figure 2.7: Distribution of user preference for DialSQL ranking (scaled to 1-6 with 6

is None of the above.).
15% of the user answers is None of the above. This commonly happens in the scenario
where DialSQL response asks to replace a correct condition and users prefer to keep
the original prediction unchanged. Another scenario where users commonly select None
of the above is when table headers without the content remain insufficient for users to
correctly disambiguate condition values from questions. We also compute the Mean
Reciprocal Rank (MMR) for each user to measure the correlation between real users and
DialSQL. Average MMR is 0.69 with standard deviation of 0.004 which also shows that
users generally prefer the choices ranked higher by DialSQL. The overall score of each
turn also suggests that users had a reasonable conversation with DialSQL. The average
score is 2.86 with standard deviation of 0.14, showing users can understand DialSQL

responses and can pick a choice confidently.
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2.3 Modeling Users in Task-Oriented Dialogue Sys-
tems

In the previous section, we introduced a new type of structured query generation
framework where humans are integrated into the generation process. We extracted precise
errors from candidate queries which are then refined over multiple turns via having multi-
turn dialogues with users. Our models are trained with rule-based user simulators as
collecting large-scale labeled dataset is costly and time consuming; however, rule-based
user simulators lack the necessary diversity of user responses and might not accurately
reflect user behavior.

Besides training end-to-end dialogue systems, modeling user behavior has other use
cases. Google Duplex demd]is a good example of machines mimicking humans for achiev-
ing certain tasks. Furthermore, these simulators can be used to evaluate the alternative
approaches for a task oriented dialogue system. Most systems are evaluated on fixed
testing corpora (collected via crowd sourcing), a very limited way in its ability to test
if a system can accurately interact with various different users. A scalable and accurate
evaluation criteria that can compare multiple systems in a similar set-up is critical to
ameliorate the aforementioned bottlenecks. We propose several end-to-end user simula-
tion models that aim to mimic realistic and diverse user behaviors. Our user simulators
aim to enable side-by-side comparisons of dialogue systems or their components across a
given set of user goals and dialogue scenarios. Another goal of our approach is to enable
training of dialogue policies via supervised and reinforcement learning using a diverse set

of interactions.

Thttps:/ /www.youtube.com/watch?v=bdImEm2Fy08
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User Goal: date=Friday, num_tickets=2, theatre_name=DontCare, movie=Sully,
time=DontCare
0- SYSTEM Hi, how can I help you?
greeting()
USER Hi, I'd like to buy tickets to see the Sully movie.
greeting() intent(buy movie_tickets)
inform(movie=Sully)

1- SYSTEM You wanna see Sully. How many tickets would you need?
confirm(movie=Sully) request(num tickets)

USER 2 tickets please.

inform(num_tickets=2)

Figure 2.8: An example dialogue from the movie ticket booking domain. Each dialogue
has an initial user goal randomly assigned at the beginning.

2.3.1 Overview

Inspired by recent conversational models [88], we develop a hierarchical seq2seq user
simulator (HUS) that implicitly tracks user goal over multiple turns. HUS first encodes
a user goal and each system turn observed in the dialogue history into vector represen-
tations. Initialized from the user goal vector, a higher level encoder generates a dialogue
history representation using system turn vectors as input at each time step. Finally, the
simulated user turns are decoded from this dialogue history representation.

While HUS can generate successful dialogues, it will always generate the same sim-
ulated user turns given the same user goal and system turns. To induce human-like
variations and generate a richer set of user turns, we propose a variational framework
where an unobserved latent variable generates user turns. Furthermore, with HUS, user
turns and user goals are related only through a user turn decoder, resulting in repetition
of previously specified information throughout the interaction. We introduce a new goal
regularization approach where a penalization term that aims to maximize the overlap of
tokens between the user turns and the user goals is added to the final loss. The proposed
user simulators work at the dialogue act level and generate responses in the form of acts

and associated slot and value pairs (a sample dialogue is shown in Figure . Final out-
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puts are then converted into natural language utterances using a template-based natural
language generation approach.

We evaluate our models on a movie ticket booking domain by systematically inter-
acting each user simulator with multiple system policies trained with different objectives
and architectures. We show that a reinforcement learning based policy is more robust to
random variations in user behavior, while a supervised model suffers from a considerable
drop in accuracy. Our goal regularization approach generates significantly shorter dia-
logues (i.e. avoiding loops around user or system misunderstandings) across all system
policies and shows higher task completion rates. Finally, human evaluations show high

naturalness scores for all proposed approaches.

2.3.2 Related Work

The proposed model architectures in our work are inspired by hierarchical deep learn-
ing models studied in [91, 88| [57] which are also shown to perform better than plain
seq2seq and language models on dialogue generation tasks. Variational approaches such
as Variational Autoencoders are used for unsupervised or semi-supervised model train-
ing [50], 25] that improves the final performance metrics as well as the diversity of the
generated outputs.

Agenda based user simulations have been investigated in task oriented dialogues for
model training [86]. Supervised learning approaches using linear models [32] B3] as well
as hidden markov models [21] have also been proposed for simulating users. Recently,
seq2seq neural network models are proposed for user simulation [5] [74, 53, among oth-
ers|] that utilize additional state tracking signals and dialogue turns are encoded more
coarsely. Kreyssig et al. [53] further showed that plain seq2seq models with state track-

ing signals at each turn can outperform agenda-based user simulators on several metrics

45



Learning from Structured Data Chapter 2

including success rate. Another work that also uses seq2seq models for user simulation
is [20], where seq2seq models are compared with language modeling based approaches for
generating user turns in natural language. They encode the context (previous user turn)
and current system turn using two independent encoders and concatenate the output
vectors. Simulated user turn is then decoded from this final vector. However, we propose
an end-to-end hierarchical seq2seq approach that can encode the entire dialogue history
without any feature extraction and does not require any external state tracking anno-
tations. Furthermore, we introduce several novel variants using variational approaches
and goal regularization that improves the dialogue metrics and allows a more thorough

comparison with different system policies.

2.3.3 Problem Description

Following the recent progress on end-to-end supervised dialogue models, we consider
the inverse problem of generating a user turn U, given a user goal C' and the history of
system turns Sy, S, - -+, S;. A user goal is a set of slot-value pairs (ex. time: 12pm) with
a predefined user personality (e.g., aggressive, cooperative) that defines the sampling
distribution when generating user turns. Similarly, system and user turns are sets of
actions where each action has a dialogue act (ex. inform) and a set of corresponding
slot-value pairs, e.g., inform(time=12pm, theatre="AMC Theatre”).

We first generate a more coarse level representation of each input by replacing the
value of each slot with one of the following values: {Requested, DontCare, ValueInGoal,
ValueContradictsGoal, Other }. If the value of a slot is requested by system, we re-
place those slot values with Requested. If the value of a slot appears in or contradicts
the user goal, we replace those values with ValueInGoal or ValueContradictsGoal, re-
spectively. If the value of a slot in the user goal is flexible, meaning the user is open to
accept any offered value, we replace the value of the corresponding slot with DontCare
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Figure 2.9: HUS model: Boxes are RNN cells, colors indicate parameter sharing.

in each input. Finally, we replace other values with Other. During testing, based on
the coarse value, we sample an actual value either from the user goal, system turn, or
from the knowledge base. Inspired by the success of recent approaches to structured
data, we next linearize each input (user scenario, system and user turns) following [100]
to generate token sequences. As an example, we replace the actual movie name Sully in
system Turn-1 from Figure [2.8 with ValueInGoal and convert the sequence of actions
into a sequence of tokens as

"confirm", "(", "movie=ValueInGoal", ")",

"request", "(" "num tickets", ")".

We now describe our problem more formally. Given a user goal sequence C' and the
history of system turn sequences S; at each turn, our task is to generate a new sequence
of tokens that match the correct user turn sequence U; = {us, U, -+ , Uy, } at turn
t. Here, a successful user turn might require blending information from the user goal,
and history of system and user turns. Furthermore, we do not assume that a supervised

signal for dialogue state tracking is given.
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2.3.4 Hierarchical Seq2Seq Models for User Simulation

We now present our supervised models, in Figure [2.9, and describe their operations
in a fully end-to-end setting. Our baseline model is a hierarchical seq2seq neural net-
work that operates on individual system and user turns as well as at the overall dialogue
level. Given a (C, Sy, U) triplet, the model first encodes user goal C' and the system turn
dialogue act at turn ¢, S}, into vector space representations in parallel with decoupled Re-
current Neural Networks (RNN). Another RNN is initialized from the goal representation
and encodes the sequence of system turn representations into a hidden vector at turn t.
Finally, simulated user response in dialogue act and arguments at turn ¢, Uy, is decoded
from this hidden vector using an RNN sequence decoder. We next discuss the shortcom-
ings of this model and propose several model improvements that are unsupervised in the

sense that no additional supervised data is required.

Preliminaries and Notation

Each token w comes from a vocabulary V and is associated with a vector e,,. E¢, B>t
and EYt denotes the sequence of token embedding vectors for user goal, system and user
turns at turn ¢, respectively. Our models utilize the power of RNN encoders and decoders
where we utilize GRU units [16]. We refer to the average of hidden states of a turn level

RNN encoder as the encoding of a sequence.

Hierarchical Seq2Seq User Simulation (HUS)

The core of our model is a hierarchical seq2seq neural network that first encodes user

goal and system turns and generates user turns from dialogue level representations.

Encoding User Scenario and System Turns Using a RNN (Enc), we encode user
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goal as

hY = Enc(e;6¢) (2.13)

where h¢ is the encoding and ¢ represents the parameters of goal encoder. We employ

another RNN to encode each system turn as

hY = Enc(e®; 0s) (2.14)

where h? is encoding and fg represents the parameters of system turn encoder. fg is
shared for every system turn encoder and is decoupled from 6.

Encoding Dialogue History Given the sequence of system turn encodings, hj, h, - -
we employ another RNN conditioned on the user goal encoding to encode dialogue history

as

hY = h¢ (2.15)

hP = Enc({h}}iz1..+;0p) (2.16)

where h{ is the initial hidden state, h” is the history encoding, and @p represents the
parameters of the dialogue level RNN. Ideally, the dialogue level RNN should keep track
of the user goal and generate meaningful user turns.

Decoding User Turns Given the history encoding at turn ¢, an RNN decoder (Dec)
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generates the user turn token sequence:

hy = hP (2.17)
hy; = Dec(hyy s wo) (2.18)
PU;; = w;) ~ e:zp(ef(WUhgi +by)) (2.19)
U = argmaz;(P(Uf; = wy)) (2.20)

where A{ is the initial hidden state and H}; is the hidden vector at turn ¢ and timestep
1. U} is the sequence of user turn tokens generated. Wy, by and wy are the parameters
of the user turn decoder. The training objective is to minimize the cross-entropy error
Lerossent between the candidate sequence U* and the correct user turn U.

Incorporating Dialogue Length During training, we observe that sampling proba-
bilities of different user personalities randomly generate shorter or longer dialogues which
is not captured by HUS. To overcome this problem, we append the length of the corre-
sponding dialogue to system turn encodings at each turn during training. During testing,
we randomly sample a dialogue length from the following normal distribution N (5,2).
For the subsequent sections, we always incorporate dialogue length in our models.

An alternative model would also incorporate the previous user turn more explicitly,
such as by encoding user turns and conditioning dialogue history encoder on user turn
encodings; however we observe no significant benefit. One plausible reason is that, user
turns are decoded from history encodings which are implicitly conditioned on previous

user turns via previous history encodings.

Variational HUS

The HUS model will generate exactly the same user turns given the same user goal

and dialogue history. However, to explore the robustness of a system policy and model
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Figure 2.10: VHUS model: A variational sampling step before user turn decoder is

proposed. Boxes are RNN cells, colors indicate parameter sharing.
different types of users, we need a model that can generate more diverse and at the same
time meaningful user turns. Here, we propose a novel variational hierarchical seq2seq
user simulator (VHUS) where an unobserved latent random variable generates the user
turn sequence (Figure . The encoders are exactly the same as HUS, but the hidden
state hP is not directly passed to the decoder. Instead, it is first concatenated with a
latent vector generated from a Gaussian distribution with a diagonal covariance matrix
and then passed to the decoder.

More formally, given the sequence of dialogue representations hf’, hY ... hP we
learn a prior Gaussian distribution N (z|u,, X;) using the previous dialogue history: The

mean and covariance is estimated as follows

e = W,hE, +b, (2.21)

Y, = WshP | + by (2.22)

where W,, Wy, b,, and by are new parameters for prior distribution. The decoder is
then initialized with a single vector hP? = FC([hP; z,]) where [] is vector concatenation,
FC is a single layer neural network, and z, is sampled from the prior distribution,

2e ~ N(z|pe, X2). We also learn a posterior Gaussian distribution using the current

o1



Learning from Structured Data Chapter 2

( Goal Regularization |
@ mulaﬂzaﬂon BOW
l ! _ \
4 sigmoid { User Turn Decodin 1

inform { <EQS> i

i time 2pm today |! Dialogue History Encodin T -

—_—

t

Figure 2.11: VHUSReg model: Divergence between user turns and user goal is regu-
larized. Boxes are RNN cells, colors indicate parameter sharing.

dialogue history as

f, = W,hP + b, (2.23)

¥, = Weh? 4 by (2.24)

where WM, W, Bw and by, are new parameters for posterior distribution. We add the

Kullback-Leibler divergence between trained prior and posterior distribution, i.e.,

Lvar = aKL(N(Z|,Uxa Ex)|N(Z|luy> 23}))?

to the cross-entropy loss, where « is a balancing parameter between the two losses.

Our main intuition is that, when the decoder is conditioned on a noisy history, it will
generate a slightly different user turn. By penalizing the KL divergence between prior
and posterior distributions, we control the level of noise by ensuring that the previous

and current histories are consistent.
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Goal Regularization

HUS and VHUS models learn the relationship between a user turn and a user goal
only through the decoder loss which might generate considerably longer dialogues when
user turns diverge from the initial user goal. Here, we introduce a new goal regularization
approach called VHUSReg to eliminate the aforementioned problem (Figure 2.11). Our
turn level encoders are exactly the same as in HUS, but instead of initializing the dialogue
level RNN with user goal representation, we initialize it with zero vector and condition
the decoder on user goal more directly. Furthermore, we penalize the divergence between
dialogue level representations and user goal to enforce a more direct correspondence.

More formally, given the sequence of system turn encodings, we generate dialogue

representation as

hP = Enc({h}iz1.. 4;0p) (2.25)

where the encoder is initialized with zeros. Next, we generate a new dialogue represen-

tation as

WP = FC(hP:h0)) (2.26)

where new output is generated by blending user goal and old dialogue representation.
Similarly, an RNN decoder is used to generate the user turn token sequence from new
dialogue representation.

To regularize the divergence of user turn and user goal, we minimize the discrepancy
between user turn and user goal tokens conditioned on the current system turn. We first

generate a bag-of-words approximation of current user turn and current system turn:

P = FC(hP) (2.27)

by = FO(hY) (2.28)
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where F'(C'is a single layer neural network with sigmoid activation function. Following, we
build a new bag-of-words representation for current user turn conditioned on the current
system turn:

b = FO([by;:07]) (2.29)

Next, we introduce a new loss to minimize the divergence between initial user goal and

user turn tokens by ensuring that each bag-of-words approximation is accurate :

Lyeg = |Ib} = BOW(C)|| + ||by” — BOW (Uy)| |+

167 — BOW(S,)[| (2-30)

where BOW (z) is a function that outputs a bag-of-words vector for a set of tokens z,
for example we use BOW (C') to generate a bag-of-words vector for initial user goal. By
minimizing the discrepancy between the bag-of-words representations in each term, we

align the tokens in user goal and user turn.

Variational HUS with Goal Regularization

Finally, we combine both approaches in a hybrid framework and sum the three losses:

L = Lcrossent + Lvar + Lreg (2.31)

2.3.5 Experimental Results and Discussion

We present our experimental results by systematically interacting each user simulator
model with two different system policies, trained with supervised learning and reinforce-
ment learning. We use a dataset from mouwzie ticket booking domain and use several metrics

to evaluate and compare our models, including task completion rates [77] and dialogue
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length. We use template-based NLG to produce utterances for user and system action
sequences, where we sample a template from a set of templates written by crowd workers

for each dialogue act and the set of arguments that are possible for this application.

System Policy Models

For comparison, we train two state-of-the-art end-to-end system policy models: (i)
supervised policy, and (ii) reinforcement learning policy.

Supervised policy is an end-to-end deep neural network that learns to map natural
language user turns into system actions [63].

Reinforcement learning policy is first initialized with the supervised policy model
and further fine-tuned by interacting with an agenda-based user simulator (different from
our simulators) [63] to explore and generate more training data. Parameters of the neural
network is updated using the REINFORCE algorithm [I03]. At each turn a small negative
reward (such as -1) is given and at the end of each dialogue a large positive reward is
given (such as 20) if the dialogue is successfully terminated. As a result, RL policy tries
to minimize the number of turns while achieving a high success rate.

These policies use natural language utterances as input and generate a sequence of
system actions which are then converted into natural language using template-based
generation. However, the user simulator only utilizes the dialogue acts and arguments
of the system turns. In our user simulator, we also leverage a template-based NLG to
generate utterances as input to system policies where templates were sampled from a
template set (about 10000) collected from crowdworkers. Each policy is trained on a
dataset different from ours and fixed. To maintain a fair comparison, we first randomly
generate 1000 user goals. To evaluate policies and simulators, we generate a dialogue for

all user goals by interacting each user simulator and policy pair.
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Dataset

We use a task oriented dialogue corpus following [89]. At the beginning of each dia-
logue, a user goal is randomly generated and the dialogue is populated using a dialogue
agent with finite state machine and an agenda based user simulator [86]. Each dialogue
also incorporates a user personality with different cooperativeness and randomness set-
tings. The training and testing datasets have 10,000 dialogues each. Maximum number
of dialogue turns is set to 20 and at each turn there are at most 3 sequences of dialogue

actions with at most 5 slot-value pairs.

Metrics

We use three metrics to assess the successful interactions between user simulators and

system policies: exact goal match, partial goal match, and dialogue length.

e A simulated dialogue has an exact goal match (EM) score of 1 if the final slot-value

pairs that system confirmed at the end of dialogue fully matches user’s goal.

e Partial goal match (PM) score of a simulated dialogue is the number of correct

slot-value pairs over the set of all possible slots in user goals.

e We also report numbers on dialogue length, the average number of turns (both user
and system) per dialogue, to assess the effect of different setups such as inducing

noise.

Two response diversity metrics are also utilized to measure the diversity of user
responses and the robustness of system policies: entropy and perplexity of the dialogue

acts of the user responses per system response.
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Exact Partial Dialogue

Match (%) | Match(%) | Length
HUS o169 | ssar | T |RL
+ dinlogue length b %0 7076 RL
viUS 5 | 053 | TaB | RL
HUSRes G0 | oss | 6878 | RL
s T

Table 2.11: Comparison of user simulation models and system policies using task
completion and dialogue length metrics. Rows in gray show supervised learning based
(SL) policy and rows in white show reinforcement learning based (RL) policy.

Training Details

We use randomly initialized word embeddings of size 150. We set state size of turn
level and dialogue level RNN as 200. We train our models using Adam optimization
method [51] with initial learning rate of le-3. We apply dropout with probability 0.5
and use mini-batches of size 32. We train our models for 10 epochs and choose the best

model via validation.

Task Completion and Dialogue Length Results

In Table 2.T1] we present our results related to task-completion and dialogue length
metrics. We used 10 different user simulation and system policy pairs. In our earlier
experiments, we also implemented a plain seq2seq user simulation model without explicit
dialogue state tracking but we omitted from the paper due to having poor results.

Evaluating Dialogue Policies When compared to SL policy, RL policy outperforms
SL policy and generates remarkably higher task completion rates. We observe that in
the EM metric, the gap is larger than the PM metric. One plausible explanation is that

SL policy gets stuck in a local minima and can not recover some of the slot-value pairs.
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Table 2.12: Comparison of user simulation models and system policies using response

diversity metrics at the level of dialogue acts.
RL policy, on the other hand, is able to successfully produce the correct set of pairs. RL
policy also yields considerably fewer turns per dialogue across all user simulators. When
we decrease the complexity and effectiveness of user simulators (from bottom to top),
the gap between RL and SL increases. The performance of RL policy on EM and PM
metrics is not affected by different user simulators; however SL policy shows a drop when
a weaker user is present. These observations indicate that RL is more robust to different
types of users even when the responses are more stochastic (as in VHUS). When we
exclude dialogue length from HUS, SL performance drops due to its lack of robustness to
a weaker user. Note that these evaluation results obtained using fully automatic methods
with a user simulator are in line with human evaluation results presented in [63].

Evaluating User Simulators We also compare user simulators and their compo-
nents using the same set of policies and metrics. When we incorporate dialogue length,
HUS is able to untangle the effect of user types on dialogue length and other factors
which lead to more successful and shorter conversations. VHUS produces more diverse
and more stochastic user responses which decreases the performance of SL policy and
increases the average number of turns. Although, RL policy can recover from these more

unpredictable situations, the average length of dialogues increase; more than 0.7 turns
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‘ Model ‘ Average Score (Standard Deviation) ‘
Agenda-based 4.56 (0.859)
HUS+dialogue length 4.86 (0.545)
VHUS 188 (0.472)
HUSReg 1.88 (0.452)
VHUSReg 1.83 (0.504)

Table 2.13: Comparison of user simulator models using real user evaluation.

per dialogue. Penalizing the user responses at each turn based on their divergence from
the initial user goal generates more successful dialogues that are also shorter and more
goal oriented. One reason for the increase in EM and PM is that goal regularization tends
to generate the shortest conversations possible and effectively alleviates the shortcomings
of policies such as infinite loops. When we augment HUSReg with the variational step,
the performance of RL policy is not affected but the task completion rate of SL increases.
We also observe that average dialogue length does not increase which is attributed to the

inverse effect of goal regularization to produce shorter conversations.

Response Diversity Results

Using the same set of simulated dialogues, in Table[2.12] we present our results related
to response diversity metrics. Note that entropy and perplexity measures are computed
at the level of dialogue acts to measure the ability of each approach in producing diverse
responses, and the measures are expected to increase significantly when acts are converted
to natural language utterances.

Evaluating Dialogue Policies RL policy produces slightly higher entropy and per-
plexity scores and generates richer dialogues over all user simulations except variational
simulations. We reason that inducing diversity into user responses is positively correlated
with average dialogue length; hence RL policy will try to reduce very high uncertainty

in user responses by balancing the number of turns and the total reward. We also ob-
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serve that the diversity of user responses drops when SL policy interacts with VHUSReg
instead of VHUS while it is very similar in RL policy. This similarity in RL policy per-
formance can be associated to our reasoning above; RL policy tries to balance dialogue
length and total reward which bounds the maximum diversity of user responses.
Evaluating User Simulators VHUS and VHUSReg produces higher diversity scores
over all metrics and system policies which confirms our hypothesis that introducing a
variational step increases user response diversity. The diversity scores on VHUSReg is
smaller than VHUS in SL policy which is the result of the proposed goal regularization
loss that controls the divergence of user responses from the initial goal. HUSReg also
generates dialogues that are more succinct with the smallest diversity scores and the
smallest dialogue lengths compared to other user simulators. When we incorporate di-
alogue length into HUS, we observe no change in diversity scores while improving task

completion and dialogue length performances.

Evaluating with Real Users

We presented 100 dialogue subset of each dataset to crowdworkers for human evalu-
ation. All turns of these dialogues were transformed into natural language by template
based generation and annotated by 3 crowdworkers in a scale from 1 to 5 in terms of the
clarity and appropriateness of that turn in the context of the conversation. Table
shows the turn-based average scores. We observe that all user simulation models generate
highly successful turns. We also compare our user simulation models to a hand-crafted
agenda-based user simulation model [86]. Our models have higher average user scores
with less standard deviation compared to agenda-based user simulation. One particu-
lar explanation for this difference is that agenda-based simulation can generate out of

context turns deviating from the dialogue history.
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Learning from Unstructured Data

In the previous chapter, we described our non-interactive and interactive deep neural
models that can map natural language utterances to structured query representations
while having multi-turn dialogues with users. Final queries are executed against the
corresponding database and the answer is presented to users. In general, these structured
databases are updated via collaborative human efforts where new entries are harvested
from many sources including online text documents and user submitted contributions,
and validated by individual users. Compared to structured databases, unstructured
databases such as Wikipedia documents offer a richer set of information which is more
dynamically updated.

In this chapter, we propose supervised and semi-supervised models for reading com-
prehension on long Wikipedia documents. Typically, RNNs suffer from modeling long-
term dependencies when the documents are substantially longer. We alleviate this prob-
lem by chunking a long document into multiple overlapping windows and soft-selecting
the window that gives the desired answer. When the size of the labeled dataset is
small, the models are prone to overfitting and suffer from generalization to new ques-
tions and documents. We propose the first unsupervised Wikipedia encoding approach
where chunked windows are collectively encoded and reconstructed using Recurrent Vari-

ational Auto-Encoders (RVAE). These unsupervised models are effectively utilized in
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downstream supervised tasks such as reading comprehension using a novel progressive
reviewer model which learn task-specific architectures without altering the pretrained

unsupervised models.

3.1 Reading Comprehension on Wikipedia

Reading comprehension and question answering tasks over documents [102] [43], [79] re-
quire extracting precise information from documents conditioned on a given query. While
a basic sequence to sequence (seq2seq) model [96] can perform these tasks by encoding
a question and document sequence and decoding an answer sequence [45], it has some
disadvantages. The answer may be encountered early in the text and need to be stored
across all the further recurrent steps, leading to forgetting or corruption; Attention can be
added to the decoder to solve this problem [43]. Even with attention, approaches based
on Recurrent Neural Networks (RNNs) require a number of sequential steps proportional
to the document length to encode each document position. Hierarchical reading models
address this problem by breaking the document into sentences [19]. To mitigate these
problems, we introduce a simpler hierarchical model that achieves state-of-the-art perfor-
mance on our benchmark task without this linguistic structure, and use it as framework
to explore semi-supervised learning for reading comprehension.

In the following, we describe our supervised and semi-supervised models for read-
ing comprehension on Wikipedia. We first develop a hierarchical reader called Sliding-
Window Encoder Attentive Reader (SWEAR) that circumvents the aforementioned bot-
tlenecks of existing readers. SWEAR, illustrated in Figure[3.1] first encodes each question
into a vector space representation. It then chunks each document into overlapping, fixed-
length windows and, conditioned on the question representation, encodes each window in

parallel. Inspired by recent attention mechanisms such as Hermann et al. [43], SWEAR
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attends over the window representations and reduces them into a single vector for each
document. Finally, the answer is decoded from this document vector. Our results show
that SWEAR outperforms the previous state-of-the-art on the supervised WikiReading
task [45], improving Mean F1 to 76.8 from the previous 75.6 [19].

While WikiReading is a large dataset with millions of labeled examples, many applica-
tions of machine reading have a much smaller number of labeled examples among a large
set of unlabeled documents. To model this situation, we constructed a semi-supervised
version of WikiReading by downsampling the labeled corpus into a variety of smaller
subsets, while preserving the full unlabeled corpus (i.e., Wikipedia). To take advantage
of the unlabeled data, we evaluated multiple methods of reusing unsupervised recurrent
autoencoders in semi-supervised versions of SWEAR. Importantly, in these models we
are able to reuse all the autoencoder parameters without fine-tuning, meaning the super-
vised phase only has to learn to condition the answer on the document and query. This
allows for more efficient training and online operation: Documents can be encoded in a
single pass offline and these encodings reused by all models, both during training and
when answering queries. Our semi-supervised learning models achieve significantly better
performance than supervised SWEAR on several subsets with different characteristics.
The best-performing model reaches 66.5 with 1% of the WikiReading dataset, compared

to the 2016 state of the art of 71.8 (with 100% of the dataset).

3.2 Problem Description

Following the recent progress on end-to-end supervised question answering [43], [79],
we consider the general problem of predicting an answer A given a query-document pair
(Q, D). We do not make the assumption that the answer should be present verbatim in

the document.
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3.2.1 Supervised Version

Given a document D = {di,ds,--- ,dn,} and a query Q = {q1,¢2, - ,qn,} as
sequences of words, our task is to generate a new sequence of words that matches the
correct answer A = {ay,aq,- -+ ,an, }. Because we do not assume that A is a subsequence
of D, the answer may require blending information from multiple parts of the document,
or may be precisely copied from a single location. Our proposed architecture supports
both of these use cases.

The WikiReading dataset [45], which includes a mix of categorization and extrac-
tion tasks, is the largest dataset matching this problem description. In WikiReading,
documents are Wikipedia articles, while queries and answers are Wikidata properties
and values, respectively. Example Wikidata property-value pairs are (place of birth,
Paris), (genre, Science Fiction). The dataset contains 18.58M instances divided
into training, validation, and test with an 85/10/5 split. The answer is present verbatim
in the document only 47.1% of the time, severely limiting models that label document

spans, such as those developed for the popular SQUAD dataset [79).

3.2.2 Semi-Supervised Version

We also consider a semi-supervised version of the task, where an additional corpus of
documents without labeled (@, A) pairs is available. Taking advantage of the large size of
the WikiReading dataset, we created a series of increasingly challenging semi-supervised

problems with the following structure:

e Unsupervised: The entire document corpus (about 4M Wikipedia articles), with

queries and answers removed.

e Supervised: Five smaller training sets created by sampling a random (1%, 0.5%,

0.1%) of the WikiReading training set, and taking (200, 100) random samples from
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each property in the original training set.

3.3 Supervised Model Architecture

We now present our model, called Sliding-Window Encoder Attentive Reader (SWEAR),
shown in Figure [3.1) and describe its operation in a fully supervised setting. Given a
(@, D) pair, the model encodes ) into a vector space representation with a Recurrent
Neural Network (RNN). The first layer of the model chunks the document D into overlap-
ping, fixed-length windows and encodes all windows in parallel with an RNN conditioned
on the question representation. The second layer attends over the window representa-
tions, reducing them into a single vector representing the latent answer. Finally, the

answer sequence A is decoded from this vector using an RNN sequence decoder.

3.3.1 Preliminaries and Notation

Each word w comes from a vocabulary V and is associated with a vector e, which

D e? and e? the vector

constitutes the rows of an embedding matrix £. We denote by e
sequences corresponding to the document, question, and answer sequences, respectively.
More specifically, we aim at obtaining vector representations for documents and ques-
tions, then generating the words of the answer sequence.

Our model makes extensive use of RNN encoders to transform sequences into fixed

length vectors. For our purposes, an RNN encoder consists of GRU units [16] defined as
ht = f(xt, htfl; 9) (31)

where h; is hidden state at time ¢. f is a nonlinear function operating on input vector

x; and previous state, h;_; with 6 being its parameter vector. Given an input sequence,
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Figure 3.1: SWEAR model: Boxes are RNN cells, colors indicate parameter sharing.

the encoder runs over the sequence of words producing the hidden vectors at each step.

We refer to the last hidden state of an RNN encoder as the encoding of a sequence.

3.3.2 Sliding Window Recurrent Encoder

The core of the model is a sequence encoder that operates over sliding windows in a
manner analogous to a traditional convolution. Before encoding the document, we slide
a window of length [ with a step size s over the document and produce n = LNDT_ZJ
document windows. This yields a sequence of sub-documents (Dy, Do, --- , D,), where
each D; contains a subsequence of [ words from the original document D. Intuitively, a
precise answer may be present verbatim in one or more windows, or many windows may
contain evidence suggestive of a more categorical answer.

Next, the model encodes each window conditioned on a question encoding. We first
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encode the question sequence once using a RNN (Enc) as
h1 = Enc(e¥;0p) (3.2)

where h? is the last hidden state and 6 represents the parameters of the question encoder.
Initialized with this question encoding, we employ another RNN to encode each document

window as

w o _ Lq
io=nh

hY = Enc(e®; 0w ) (3.3)

where A}, is the initial hidden state, 1} is the last hidden state, and 60y represents the
parameters of the window encoder. 6y, is shared for every window and is decoupled
from 6g. As the windows are significantly smaller than the documents, encodings of
windows will reflect the effect of question encodings better, mitigating any long-distance

dependency problems.

3.3.3 Combining Window Encodings

SWEAR attends over the window encoder states using the question encoding to

produce a single vector h? for the document, given by

pi < exp(ug tanh(Wg[h?, h1))) (3.4)

=" piht (3.5)

where [.] is vector concatenation, and p; is the probability window i is relevant to an-

swering the question. Wx and ug are parameters of the attention model.
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Model | Mean F1
Placeholder seq2seq (HE16) 71.8
SoftAttend (CH17) 71.6
Reinforce (CH17) 74.5
Placeholder seq2seq (CH17) 75.6
SWEAR (w/ zeros) 76.4
SWEAR 76.8

Table 3.1: Results for SWEAR compared to top published results on the WikiReading

test set.

3.3.4 Answer Decoding

Given the document encoding %, an RNN decoder (Dec) generates the answer word

sequence:

hi = h?
hi = Dec(hi_1;wa) (3.6)
P(a; = w;) exp(e;F(VVAh;z +b4)) (3.7)
a; = argmax;(P(a; = w;)) (3.8)
where h{ is the initial hidden state and h{ is the hidden vector at time ¢. A* =
{ai,a3,--- ,ay,} is the sequence of answer words generated. Wy, ba, and wy are the

parameters of the answer decoder. The training objective is to minimize the average

cross-entropy error between the candidate sequence A* and the correct answer sequence

A.

3.3.5 Supervised Results

Before exploring unsupervised pre-training, we present summary results for SWEAR

in a fully supervised setting, for comparison to previous work on the WikiReading task,
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HE16 Best | SWEAR
Categorical 88.6 88.6
Relational 56.5 63.4
Date 73.8 82.5

Table 3.2: Mean F1 for SWEAR on each type of property compared with the best
results for each type reported in Hewlett et al. (2016), which come from different
models. Other publications did not report these sub-scores.

Doc length | pct | seq2seq | SWEAR | imp

14.0 64.8 65.9 1.7

[0,200) | 446 | 79.7 80.7 | 1.2
200,400) | 19.5 | 76.7 778 | 15
[400,600) | 11.0 | 74.5 763 | 2.3
[600,800) | 6.6 | 728 743 | 2.1

[800,1000) | 4.3 | 715 728 | 1.8
)

[1000, max

Table 3.3: Comparison of Mean F1 for SWEAR and a baseline seq2seq model on

the WikiReading test set across different document length ranges. pct indicates the

percentage of the dataset falling in the given document length range. imp is the

percentage improvement of SWEAR over baseline.
namely that of Hewlett et al. [45] and Choi et al. [19], which we refer to as HE16 and
CH17 in tables. For further experiments, results, and discussion see Section [3.5.2] Table
[3.1] shows that SWEAR outperforms the best results for various models reported in
both publications, including the hierarchical models Soft Attend and Reinforce presented
by Choi et al. Choi et al. [I9][] Interestingly, SoftAttend computes an attention over
sentence encodings, analogous to SWEAR’s attention over overlapping window encodings,
but it does so on the basis of less powerful encoders (BoW or convolution vs RNN),
suggesting that the extra computation spent by the RNN provides a meaningful boost
to performance.

To quantify the effect of initializing the window encoder with the question state, we

report results for two variants of SWEAR: In SWFEAR the window encoder is initialized

with the question encoding, while in SWEAR w/ zeros, the window encoder is initialized

'Document lengths differ between publications: We truncate documents to the first 600 words, while
Choi et al. truncate to 1000 words or 35 sentences and Hewlett et al. truncate to 300 words.
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with zeros. In both cases the question encoding is used for attention over the window
encodings. For SWEAR w/ zeros it is additionally concatenated with the document
encoding and passed through a 2-layer fully connected neural network before the decoding
step. Conditioning on the question increases Mean F1 by 0.4.

Hewlett et al. [45] grouped properties by answer distribution: Categorical properties
have a small list of possible answers, such as countries, Relational properties have an
open set of answers, such as spouses or places of birth, and Date properties (a subset
of relational properties) have date answers, such as date of birth. We reproduce this
grouping in Table to show that SWEAR improves performance for Relational and
Date properties, demonstrating that it is better able to extract precise information from
documents.

Finally, we observe that SWEAR outperforms a baseline seq2seq model on longer
documents, as shown in Table [3.3] The baseline model is roughly equivalent to the best
previously-published result, Placeholder seq2seq (CH17) in Table , reaching a Mean
F1 of 75.5 on the WikiReading testset. SWEAR improves over the baseline in every

length category, but the differences are larger for longer documents.

3.4 Semi-Supervised Model Architecture

We now describe semi-supervised versions of the SWEAR model, to address the semi-
supervised problem setting described in Section A wide variety of approaches have
been developed for semi-supervised learning with Neural Networks, with a typical scheme
consisting of training an unsupervised model first, and then reusing the weights of that
network as part of a supervised model. We consider each of these problems in turn,
describing two types of unsupervised autoencoder models for sequences in Section [3.4.1]

before turning to a series of strategies for incorporating the autoencoder weights into a
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final supervised model in Section[3.4.3] All of these models reuse the autoencoder weights
without modification, meaning a document can be encoded once by an offline process,
and the resulting encodings can be used both during training and to answer multiple

queries online in a more efficient manner.

3.4.1 Recurrent Autoencoders for Unsupervised Pre-training

Autoencoders are models that reconstruct their input, typically by encoding it into a
latent space and then decoding it back again. Autoencoders have recently proved useful
for semi-supervised learning [22] 25]. We now describe two autoencoder models from
the recent literature that we use for unsupervised learning. The Recurrent Autoencoder
(RAE) is the natural application of the seq2seq framework [06] to autoencoding docu-
ments [22]: In seq2seq, an encoder RNN already produces a latent representation hy,
which is used to initialize a decoder RNN. In RAE, the output sequence is replaced with
the input sequence, so learning minimizes the cross-entropy between the reconstructed
input sequence and the original input sequence. Encoder and decoder cells share param-

eters 0.

Variational Recurrent Autoencoder

The Variational Recurrent Autoencoder (VRAE), introduced by Fabius et al. Fabius
and van Amersfoort [25], is a RAE with a variational Bayesian inference step where
an unobserved latent random variable generates the sequential data. The encoder and
decoder are exactly the same as RAE, but the latent state hy is not directly passed to
the decoder. Instead, it is used to estimate the parameters of a Gaussian distribution
with a diagonal covariance matrix: The mean is given by p, = W,hxy + b, and the

covariance by X, = Wxhy + by, where W,, Wy, b,, and by are new variational step
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parameters. The decoder is initialized with a single vector sampled from this distribution,
2e ~ N (z|pte, 2z). For VRAE, the Kullback-Leibler divergence between trained Normal
distribution and standard normal distribution, i.e., K L(N (i, ¥2)|N(0,1)), is added to

the loss.

Window Autoencoders

We take advantage of the SWEAR architecture by training autoencoders for text win-
dows, as opposed to the standard document autoencoders. These autoencoders operate
on the same sliding window subsequences as the supervised SWEAR model, autoencod-
ing all subsequences independently and in parallel. This makes them easier to train as
they only have to compress short sequences of text into a fixed-length representation. As
the task of autoencoding is independent from our supervised problem, we refer to the

generated encodings as global encodings.

3.4.2 Baseline: Initialization with Autoencoder Embeddings

Our baseline approach to reusing an unsupervised autoencoder in SWEAR is to ini-
tialize all embeddings with the pre-trained parameters and fix them. We call this model
SWEAR-SS (for semi-supervised). The embedding matrix is fixed to the autoencoder
embeddings. All other parameters are initialized randomly and trained as in the fully su-
pervised version. We found that initializing the encoders and decoder with autoencoder

weights hurts performance.

3.4.3 Reviewer Models

Unfortunately, this baseline approach to semi-supervised learning has significant dis-

advantages in our problem setting. Pre-trained RNN parameters are not fully exploited
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since we observed catastrophic forgetting when initializing and fine-tuning SWEAR with
pre-trained weights. This includes fixing window encoder parameters with autoencoders
and only fine-tuning question encoders. Second, conditioning the window encoders on
the question eliminates the possibility to train window representations offline and utilize
them later which causes a significant overhead during testing.

Inspired by recent trends in deep learning models such as Progressive Neural Networks
[84] and Reviewer Models [114], we propose multiple solutions to these problems. All
of the proposed models process text input first through a fixed autoencoder layer: fixed
pre-trained embeddings and fixed RNN encoder parameters, both initialized from the
autoencoder weights. Above this autoencoder layer, we build layers of abstraction that

learn to adapt the pre-trained models to the QA task.

Multi-Layer Reviewer (SWEAR-MLR)

The most straightforward extension to the baseline model is to fix the pretrained
autoencoder RNN as the first layer and introduce a second, trainable reviewer layer.
To make this approach more suitable for question answering, reviewer layers utilize cor-
responding global encodings as well as hidden states of the pre-trained autoencoders as
input (Figure . The aim is to review both pre-trained question and window encodings
to compose a single vector representing the window conditioned on the question.

Encoding questions: The question is first encoded by the autoencoder layer,
ht = Enc(e?;0y) where both word embeddings (E and e?) and encoder (6y) are fixed
and initialized with pretrained parameters. A second, learnable RNN layer then takes
the output of the autoencoder layer and corresponding input embeddings as input and
produces the final question encoding, h? = Enc(FC([e?, he, ilt]); ) where F'C is a fully
connected layer with ReLU activation function, and h, is the output of the autoencoder

layer at time step t. Figure illustrates a single time-step of the question encoder.
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Figure 3.2: Multi-layer reviewer model (SWEAR-MLR), shown operating over a single
window: Black boxes are RNN cells with fixed weights copied from the autoencoder,
diamonds indicate vector concatenation with adapter and FC layers. For simplicity,
only the cells in dashed boxes are fully illustrated (detailed in Figure , but the
same structure is repeated for each cell.

Encoding windows: Similarly, windows are encoded first by the fixed autoencoder
layer and then by a reviewer layer, b = Enc(eP'; 0y) and h¥ = Enc(FC([ePs, h¥, h¥, h1]); Oy)
where ﬁ;” is the output of the autoencoder layer at time step t. Unlike supervised
SWEAR, in SWEAR-MLR the window encoder is not initialized with the question en-
coder state. Instead, the question encoder state is an additional input to each unit in the
reviewer layer (illustrated as the dashed line in Figure|3.3)). Intuitively, the reviewer layer

should reuse the global window and question information and encode only information

relevant to the current question.
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GRU

concatenation

Figure 3.3: Detailed illustration of the dashed box in SWEAR-MLR question encoder.
Black boxes are fixed parameters and encodings. The window encoder is similar,
except that the output of the question reviewer layer is also added to the concatenated
input (dashed line).

Progressive Reviewer (SWEAR-PR)

Although the reviewer layer in SWEAR-MLR has global window and question en-
codings as input, it requires a number of sequential steps equal to the window size, plus
any additional reviewer steps. The reviewer layer also has to re-encode windows for each
question, which is not ideal for online use. To address these issues, we now present a Pro-
gressive Reviewer model (SWEAR-PR) that reviews the outputs of the encoders using a
separate RNN that is decoupled from the window size (Figure .

Encoding questions and windows: Similar to SWEAR-MLR, SWEAR-PR first

encodes the questions and windows independently using autoencoder layers, hi = Enc(e?;0y)

)
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Figure 3.4: Progressive reviewer model (SWEAR-PR), shown operating over a single
window: Black boxes are RNN cells with fixed weights copied from the autoencoder,
diamonds indicate vector concatenation with adapter and FC layers. Dashed boxes
contain reviewer layers. Cells within reviewer layers are decoupled as indicated by
different colors.

and iL}” = FEnc(eP;0y). To decouple the question and window encoders, however,
SWEAR-PR does not have a second layer as a reviewer.

Reviewing questions and windows: SWEAR-PR employs two other RNNs to re-
view the question and window encodings and to compose a single window representation
conditioned on the question. Question reviewer takes the same pre-trained question en-
coding at each time step and attends over the hidden states and input embeddings of the
pre-trained question encoder, h? = AttnEnc(FC(h9); FC([hi,e?]);0q) where AttnEnc
is an RNN with an attention cell which is illustrated in Figure 3.5l Outputs of the fixed
autoencoder layer and fixed word embeddings, [ﬁ? ,e@], are the attendable states. Win-

dow reviewer on the other hand takes the pre-trained window encoding and reviewed
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Figure 3.5: Illustration of attention cell: GRU state is used to attend over attendable

states, then final state is computed by concatenating GRU state with context vector

and passing through a fully connected neural network.
question encoding at each time step and attends over the hidden states of pre-trained
window encoder, b = AttnEnc(FC([h¥, h1)); FC([h¥, e”]); Oy) where outputs of the
fixed autoencoder layer and fixed word embeddings, [h%, ei], are the attendable states.
As length of the windows is smaller than length of the reviewers, SWEAR-PR has sig-

nificantly smaller overhead compared to other supervised and semi-supervised SWEAR

variants.

Shared Components

Reducing window encodings and decoding: As in the supervised case de-
scribed in[3.4] both reviewer models attend over the window encodings using the question
encoding and reduce them into a single document encoding. Identical to answer decoding
described in [3.6], the answer is decoded using another RNN taking the document state
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as the initial state. The parameters of this answer decoder are initialized randomly.
Adapter layer: As the distribution and scale of parameters may differ significantly
between the autoencoder layer and the reviewer layer, we use an adapter layer similar to

the adapters in Progressive Neural Networks [84] to normalize the pre-trained parameters:

Wous = a * tanh(b x W,) (3.9)

where a and b are scalar variables to be learnt and W, is a pre-trained input parameter.
We put adapter layers after every pre-trained parameter connecting to a finetuned pa-
rameter such as on the connections from pre-trained embeddings to reviewer layer. We

use dropout [92] regularization on both inputs and outputs of the reviewer cells.

3.5 Experimental Evaluation

As described in Section [3.2] we evaluate our models on the WikiReading task. In
Section we presented results for the supervised SWEAR on the full WikiReading
dataset, establishing it as the highest-scoring method so far developed for WikiRead-
ing. We now compare our semi-supervised models SWEAR-MLR and SWEAR-PR over

various subsets of the WikiReading dataset, using SWEAR as a baseline.

3.5.1 Experimental Setup

Following Hewlett et al. [45], we use the Mean F1 metric for WikiReading, which
assigns partial credit when there are multiple valid answers. We ran hyperparameter
tuning for all models and report the result for the configuration with the highest Mean
F1 on the validation set.

The supervised SWEAR model was trained on both the full training (results reported
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Model 1% | 0.5% | 0.1%
SWEAR 63.5 | 57.6 39.5
SWEAR-SS (RAE) | 647 | 628 | 553
SWEAR-SS (VRAE) 65.7 | 64.0 | 60.7

Table 3.4: Mean F1 results for SWEAR (fully supervised) and SWEAR-SS (semi-su-
pervised) trained on 1%, 0.5%, and 0.1% subsets, respectively. Variants of SWEAR-SS
indicate different sources of fixed encoder weights. ]
in Section and on each subset of training data (results reported below). Unsuper-
vised autoencoders were trained on all documents in the WikiReading training set. We
selected the autoencoder with the lowest reconstruction error for use in semi-supervised
experiments. After initialization with weights from the best autoencoder, learnable pa-
rameters in the semi-supervised models were trained exactly as in the supervised model.

Training Details

We implemented all models in a shared framework in TensorFlow [I]. We used the
Adam optimizer [51] for all training, periodically halving the learning rate according to
a hyperparameter. Models were trained for a maximum of 4 epochs.

Table [3.7] shows which hyperparameters were tuned for each type of model, and the
range of values for each hyperparameter. The parameters in the second group of the
table are tuned for supervised SWEAR and the best setting (shown in bold) was used
for other models where applicable. We fixed the batch size to 8 for autoencoders and 64
for semi-supervised models. We used a truncated normal distribution with a standard

deviation of 0.01 for VRAE.

3.5.2 Results and Discussion

Table [3.4] and show the results of SWEAR and semi-supervised models with

pretrained and fixed embeddings. Results show that SWEAR-SS always improves over

2Initialization with Word2Vec [70] embeddings on 1% subset gives 64.0 Mean F1 score.
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Model 100 | 200
SWEAR 25.0 | 33.0
SWEAR-SS (VRAE) | 39.0 | 45.0

Table 3.5: Results for SWEAR and the best SWEAR-SS initialization (VRAE) trained
on 100- and 200- per-property subsets, respectively.

Model Mean F1

SWEAR-PR 66.5
dropout on input only 65.4
no dropout 64.6
shared reviewer cells 63.8

SWEAR-MLR 63.0
w/o skip connections 60.0

Table 3.6: Results for semi-supervised reviewer models trained on the 1% subset of

WikiReading.
SWEAR at small data sizes, with the difference become dramatic as the dataset becomes
very small. VRAE pretraining yields the best performance. As training and testing
datasets have different distributions in per-property subsets, Mean F1 for supervised and
semi-supervised models drops compared to uniform sampling. However, initialization
with pretrained VRAE model leads to a substantial improvement on both subsamples.
We further experimented by initializing the decoder (vs. only the encoder) with pre-
trained autoencoder weights but this resulted in a lower Mean F1.

Table [3.6/ shows the results of semi-supervised reviewer models. When trained on 1%
of the training data, SWEAR-MLR and the supervised SWEAR model perform similarly.
Without using skip connections between embedding and hidden layers, the performance
drops. The SWEAR-PR model further improves Mean F1 and outperforms the strongest
SWEAR-SS model, even without fine-tuning the weights initialized from the autoencoder.

The success of SWEAR-PR rests on multiple design elements working together, as
shown by the reduced performance caused by altering or disabling them. Using dropout

only on the inputs, or not using any dropout on reviewer cells, causes a substantial
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’ Parameter Space
All Models
Learning Rate [0.0001; 0.005]
Learning Rate Decay Steps {25k, 50k}
Gradient Clip [0.01; 1.0]

Supervised & Semi-Supervised

Embedding Size

{128, 256, 512}

RNN State Size {256, 512}
Window Size {10, 20, 30}
Batch Size {64, 128}
Dropout {0.3, 0.5, 0.8}

Autoencoders Only

Embedding Sharing

{Input, All}

KL-weight [0.0001;0.01]
Semi-Supervised Only

Finetune Pretrained Parameters {YES, NO}
Dropout {0.7, 0.8, 0.9}
Reviewer State Size {256, 512}
Question Reviewer Steps {0, 2, 3}
Window Reviewer Steps {2, 3, 5, 8}

Table 3.7: Hyperparameter search spaces for each model type. We use {. .. } to denote
a set of discrete values and [...] to denote a continuous range. Following Hewlett
et al. [45], we ran a random search over the possible configurations.

decrease in Mean F1 score (by 1.1 and 1.9, respectively). Configuring the model with
many more review steps (15) but with a smaller hidden vector size (128) reduced Mean

F1 to 62.5. Increasing the number of review steps for the question to 5 caused a decrease

in Mean F1 of 2.1.
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Chapter 4

Learning from Web Interfaces

In the previous chapters, we detailed our models for learning from structured and unstruc-
tured databases using hierarchical neural networks that also work well in low labeled data
regimes. These databases are accessible by our models and arbitrary number of queries
can be executed to collect rich set of examples to train models. While this setup is
important for developing accurate models for specific domains, their generalizability is
limited to well manufactured and scarcely available set of Web APIs and the accessibility
of the underlying database. On the other hand, the Web offers a rich source of tasks
with human-readable web interfaces that can expand the capabilities of current systems.

In this chapter, we introduce a range of guided deep reinforcement learning (RL)
approaches that can navigate designated web pages by following natural language in-
structions. We face several challenges when training RL agents through trial-and-error
— large state and action spaces with large number of vocabulary tokens, and sparse and
delayed rewards which are only non-zero at the end of an episode. In Section [4.3] we first
explain reinforcement learning formulation of our problem with state and action repre-
sentations. We detail our baseline deep Q network and curriculum learning approaches
to alleviate the aforementioned problems in Section 4.4l In Section .5 we develop a new
meta-learning framework where a generative model is trained to generate new web nav-

igation tasks and this model is used to guide a navigation agent towards more valuable
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states. The proposed meta-learning framework generates new user instructions from goal

states that are discovered by following arbitrary navigation policies.

4.1 Learning to Navigate Web Pages

We study the problem of training reinforcement learning agents to navigate the Web
(navigator agent) by following certain instructions, such as book a flight ticket or interact
with a social media web site, that require learning through large state and action spaces
with sparse and delayed rewards. In a typical web environment, an agent might need
to carefully navigate through a large number of web elements to follow highly dynamic
instructions formulated from large vocabularies. For example, in the case of an instruction
"Book a flight from WTK to LON on 21-Oct-2016", the agent needs to fill out the origin
and destination drop downs with the correct airport codes, select a date, hit submit
button, and select the cheapest flight among all the options. Note the difficulty of the
task: The agent can fill-out the first three fields in any order. The options for selection
are numerous, among all possible airport / date combination only one is correct. The
form can only be submitted once all the three fields are filled in. At that point the
web environment / web page changes, and flight selection becomes possible. Then the
agent can select and book a flight. Reaching the true objective in these tasks through
trial-and-error is cumbersome, and reinforcement learning with the sparse reward results
in the majority of the episodes generating no signal at all. The problem is exacerbated
when learning from large set of instructions where visiting each option could be infeasible.
As an example, in the flight-booking environment the number of possible instructions /
tasks can grow to more than 14 millions, with more than 1700 vocabulary words and
approximately 100 web elements at each episode.

A common remedy for these problems is guiding the exploration towards more valu-
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Instruction: { from: WTK, to: LON, date: 10/21/2016 }

Book Your One-Way Flight

r=—— === ) A ———
h Noatak, AK (WTK) | Noatak, AK (WTK) | Noatak, AK (WTK)
__________ Ruemia el AL N
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Figure 4.1: Curriculum learning. Final state is used as the initial state for training
the navigator agent. The navigator is assigned only with the easier sub-instruction
{to: "LON”}. We detail this process in Section

able states by learning from human demonstrations and using pretrained word embed-
dings. Previous work ([64], 90]) has shown that the success rate of an agent on Web
navigation tasks (Miniwob ([90])) can be improved via human demonstrations and pre-
trained word embeddings; however, they indeed use separate demonstrations for each
environment and as the complexity of an environment increases, these methods fail to
generate any successful episode (such as flight booking and social media interaction envi-
ronments). But in environments with large state and action spaces, gathering the human
demonstrations does not scale, as the training needs large number of human demonstra-
tions for each environment.

In this section, we present two methods for reinforcement learning in large state and
action spaces with sparse rewards for the web navigation. First, when expert demonstra-
tions or an instruction-following policy (ORACLE) are available, we develop curriculum-
DQ@N, a curriculum learning that guides the exploration by starting with an easier in-
struction following task and gradually increasing the difficulty over a number of training
steps. Curriculum-DQN decomposes an instruction into multiple sub-instructions and

assigns the web navigation agent (navigator) with an easier task of solving only a subset
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of these sub-instructions (Figure . An expert instruction-following policy (ORACLE)
places the agent and goal closer to each other.

Second, when demonstrations and ORACLE policies are not available, we present
a novel meta-learning framework that trains a generative model for expert instruction-
following demonstrations using an arbitrary web navigation policy without instructions.
The key insight here is that we can treat an arbitrary navigation policy (e. g. random
policy) as if it was an expert instruction-following policy for some hidden instruction. If
we recover the underlying instruction, we can autonomously generate new expert demon-
strations, and use them to improve the training of the navigator. Intuitively, generating
an instruction from a policy is easier than following an instruction, as the navigator does
not need to interact with a dynamic web page and take complicated actions. Motivated
by these observations, we develop an instructor agent, a meta-trainer, that trains the
navigator by generating new expert demonstrations.

In addition to the two trainers, curriculum-DQN and instructor meta-trainer, the
paper introduces two novel neural network architectures for encoding web navigation
Q-value functions, QWeb and INET, combining self-attention, LSTMs, and shallow en-
coding. QWeb serves as Q-value function for the learned instruction-following policy,
trained with either curriculum-D@QN or instructor agent. The INET is Q-value function
for the instructor agent. We test the performance of our approaches on a set of Miniwob
and Miniwob++ tasks ([64]). We show that both approaches improve upon a strong
baseline and outperform previous state-of-the-art.

While we focus on the Web navigation, the methods presented here, automated cur-
riculum generation with attention-equipped DQN, might be of interest to the larger task
planning community working to solve goal-oriented tasks in large discrete state and action

Markov Decision Processes.
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4.2 Related Work

Our work is closely related to previous works on training reinforcement learning poli-
cies for navigation tasks. [90] and [64] both work on web navigation tasks and aim to
leverage human demonstrations to guide the exploration towards more valuable states
where the focus of our work is investigating the potential of curriculum learning ap-
proaches and building a novel framework for meta-training of our deep Q networks.
Compared to our biLSTM encoder for encoding the Document Object Model (DOM)
trees, a hierarchy of web elements in a web page, [64] encodes them by extracting spatial
and hierarchical features. Diagonal to using pretrained word embeddings as in ([64]),
we used shallow encodings to enhance learning semantic relationships between DOM
elements and instructions. [89] also utilizes an attention-based DQN for navigating in
home environments with visual inputs. They jointly encode visual representation of the
environment and natural language instruction using attention mechanisms and generate
Q values for a set of atomic actions for navigating in a 3D environment.

Modifying the reward function ([73,2]) is one practice that encourages the agent to get
more dense reward signals using potentials which also motivated our augmented rewards
for Web navigation tasks. Curriculum learning methods ([8,121],35]) are studied to divide
a complex task into multiple small sub-tasks that are easier to solve. Our curriculum
learning is closely related to ([27]) where a robot is placed closer to a goal state in a 3D
environment and the start state is updated based on robot’s performance.

Meta-learning is used to exploit past experiences to continuously learn on new tasks
([4, 24, [101]). [28] introduced a meta-learning approach where task-specific policies are
trained in a multi-task setup and a set of primitives are shared between tasks. Our meta-
learning framework differs from previous works where we generate instruction and goal

pairs to set the environment and provide dense rewards for a low level navigator agent
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to effectively train.

4.3 Setup

We train a RL agent using DQN ([72]) that learns a value function Q(s, a) which maps
a state s to values over the possible set of actions a. At each time step, the agent observes
a state s;, takes an action a;, and observes a new state s, 1 and a reward r, = (441, az).
DQN aims to maximize the sum of discounted rewards ), v'r; by rolling out episodes
as suggested by Q(s, a) and accumulating the reward. We particularly focus on the case
where the reward is sparse and only available at the end of an episode. More specifically,
for only a small fraction of episodes that are successful, the reward is +1; in other cases
it is —1. This setup combined with large state and action spaces make it difficult to train
a QQ learning model that can successfully navigate in a Web environment.

In this section, we further make the follow-
ing assumption where we are given an instruc-
tion, I = [F = (K,V)], as a list of fields F
where each field is represented as a key-value
pair (K,V) (ex. {from: ”San Francisco”, to:
"LA”, date: 712/04/2018”}). At each time
step, the state of the environment s; consists

of the instruction I and a representation of the

Figure 4.2: Action dependency graph for
b tree D; of DOM el ts (DOM
web page as a tree I, of DOM elements ( hierarchical Q learning. D denotes picking

tree). Each DOM element is represented as & DOM element, C denotes a click or type
action, and T denotes generating a type
a list of named attributes such as tag, value, sequence.

name, text, id, class. We also assume that the

reward of the environment is computed by comparing the final state of an episode (Dy)
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with the final goal state G(I). Following [64], we constrain the action space to Click(e)
and Type(e, y) actions where e is a leaf DOM element in the DOM tree and y is a
value of a field from the instruction. Both of these composite actions are mostly identi-
fied by the DOM element (e), e.g., a text box is typed with a sequence whereas a date
picker is clicked. This motivates us to represent composite actions using a hierarchy of
atomic actions defined by the dependency graph in Figure [4.2] Following this layout, we
define our composite ) value function by modeling each node in this graph considering

its dependencies :

Q(s,a) = Q(s,ap) + Q(s,aclap) + Q(s, arlap, [ac == "type”]) (4.1)

where a = (ap,ac,ar) is the composite action, ap denotes selecting a DOM element,
ac|ap denotes a ”click” or "type” action on the given DOM element, and ar|ap, [ac ==
"type”] denotes "typing a sequence from instruction” on the given DOM element. When
executing the policy (during exploration or during testing), the agent first picks a DOM
element with the highest Q(s,ap); then decides to Type or Click on the chosen DOM
element based on Q(s,ac|ap); and for a type action, the agent selects a value from the

instruction using Q(s, ar|ap, [ac == "type”]).

4.4 Guided Q Learning for Web Navigation

We now describe our proposed models for handling large state and action spaces with
sparse rewards. We first describe our deep Q network, called QWeb, for generating Q
values for a given observation (s; = (I, D;)) and for each atomic action ap, ac, ar. Next,
we explain how we extend this network with shallow DOM and instruction encoding

layers to mitigate the problem of learning a large number of input vocabulary. Finally,

88



Learning from Web Interfaces Chapter 4

Q Values Q Values Q Values
Type Mouse DOM
Y Q Values
Attribute
R R U R T i ;
v T 1 [ ]
1shallow instruction;  cliElewdai [ 1
“.__encoding___ NELeecinol Q Values
DOM
é i dom-instruction | |
11 intersection i '
encoding J ' y DS 1 Instruction key !
P :\ encoding ,: '\__?_"_cf’_d_"fg_,/' encoding _/
(a) QWeb network (b) INET network

Figure 4.3: Network architectures a) QWeb and b) INET with attribute pointing.
Boxes indicate fully connected layers (FC) with ReLU (for instruction encoding) or
tanh (for shallow encoding) activation. (K, V) indicates embeddings of key and value
pairs on the instruction; <Flem> shows the leaf DOM element embeddings. SA
denotes a self-attention mechanism that generates a distribution over the instruction
fields. Black circles indicate the gating mechanism to join Q values generated by
shallow and deep encodings.

we delve into our reward augmentation and curriculum learning approaches to solve the

aforementioned problems.

4.4.1 Deep Q Network for Web Navigation (QWeb)

QWeb is composed of three different layers linked in a hierarchical structure where
each layer encodes a different component of a given state (Figure : (i) Encoding
user instruction, (ii) Encoding the overlapping words between attributes of the DOM
elements and instruction, and (iii) Encoding DOM tree.

Given an instruction [ = [F' = (K, V)], QWeb first encodes each field F' into a fixed
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length vector by learning an embedding for each K and V. The sequence of overlapping
words between DOM element attributes and instruction fields is encoded into a single
vector to condition each element on contextually similar fields. Finally, the DOM tree
is encoded by linearizing the tree structure ([100]) and running a bidirectional LSTM
(biLSTM) network on top of the DOM elements sequence. Output of the LSTM network
and encoding of the instruction fields are used to generate ) values for each atomic
action.

Encoding User Instructions We represent an instruction with a list of vectors
where each vector corresponds to a different instruction field. A field is encoded by
encoding its corresponding key and value and transforming the combined encodings via
a fully connected layer (F'C') with ReLU activation. Let E{((z’,j) (E‘];(’L,j)) denote the
embedding of the j-th word in the key (value) of i-th field. We represent a key or
value as the average of these embeddings over the corresponding words, i.e., E};(z) =
IF_}i)\ > i E{((z, j) represents the encoding of a key. Encoding of a field is then computed

as follows : E/(i) = FC([Ek(i), Ev(i)]) where [.] denotes vector concatenation.
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Algorithm 1 Curriculum-DQN.
Input: ORACLE policy

Input: Sampling probability p and decay rate d
Web Environment, ENVy,
for number of training steps do
(I,D,G) < Sample instruction, initial, and goal states from environment.
//Warm-starting the episode.
for each DOM element e in D do
D + Get new state from ORACLE(!, e) with probability p.
end for
// Collect experience and train QWeb starting from the final state D.
Run Algorithm (QWeb, I, D, ENVy)
Decrease p by a factor of d

end for

Encoding DOM-Instruction Intersection For each field in the instruction and
each attribute of a DOM element, we generate the sequence of overlapping words. By
encoding these sequences in parallel, we generate instruction-aware DOM element en-
codings. We average the word embeddings over each sequence and each attribute to
compute the embedding of a DOM element conditioned on each instruction field. Using
a self-attention mechanism, we compute a probability distribution over instruction fields
and reduce this instruction-aware embedding into a single DOM element encoding. Let
E(f,Dy(7)) denote the embedding of a DOM element conditioned on a field f where
Dy (i) is the i-th DOM element. Conditional embedding of D;(i) is the weighted average
of these embeddings, i.e., Ec = ) prx E (f, Di(7)) where self-attention probabilities are

computed as p; = softmaz;(u+ E') with u being a trainable vector.
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Encoding DOM Trees We represent each attribute by averaging its word embed-
dings. Each DOM element is encoded as the average of its attribute embeddings. Given
conditional DOM element encodings, we concatenate these with DOM element embed-
dings to generate a single vector for each DOM element. We run a bidirectional LSTM
(biLSTM) network on top of the list of DOM element embeddings to encode the DOM
tree. Each output vector of the biLSTM is then transformed through a FC layer with

tanh to generate DOM element representations.
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Algorithm 2 One-step DQN training.
Input: DQN

Input: Goal state, G
Input: Set of initial states, S
Input: Environment, ENV
//Run DQN policy to collect experience.
for S € S do
S; +— S
while environment is not terminated do
0 < DQN(G, S;) to get logits over actions.
a <—Sample from a categorical distribution Cat(o).
(Si+1, R;) < Run action a in the environment and collect new state and reward.
Add (S;, a, si41, R;) to replay buffer.
Si + Sit
end while
end for
// Update DQN parameters.
for number of updates per episode do
Sample experience batch from replay buffer.
Update DQN parameters by running a single step of gradient descent.

end for

Generating Q Values Given encodings for each field in the instruction and each
DOM element in the DOM tree, we compute the pairwise similarities between each field
and each DOM element to generate a context matrix M. Rows and columns of M show

the posterior values for each field and each DOM element in the current state, respectively.
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By transforming through a FC layer and summing over the rows of M, we generate Q
values for each DOM element, i.e., Q(s;,a”). We use the rows of M as the Q values for
typing a field from the instruction to a DOM element, i.e., Q(s;,al’) = M. Finally, Q
values for click or type actions on a DOM element are generated by transforming the
rows of M into 2 dimensional vectors using another FC layer, i.e., Q(s;,al). Final Q
value for a composite action a; is then computed by summing these Q values : Q(s;, a;) =
Q(st,al) + Q(sr, af ) + Q(sy, af).

Incorporating Shallow Encodings In a scenario where the reward is sparse and
input vocabulary is large, such as in flight-booking environments with hundreds of air-
ports, it is difficult to learn a good semantic similarity using only word embeddings. We
augment our deep Q network with shallow instruction and DOM tree encodings to allevi-
ate this problem. A joint shallow encoding matrix of fields and elements is generated by
computing word-based similarities (such as jaccard similarity, binary indicators such as
subset or superset) between each instruction field and each DOM element attribute. We
also append shallow encodings of siblings of each DOM element to explicitly incorporate

DOM hieararchy.
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Algorithm 3 Meta-learning for training QWeb.
instruction generation environment, NV,

// Training instructor agent INET.
for number of training steps do
(G, Ky, I) «Sample goal (a DOM tree), initial state, and instruction from ENV;.
Run Algorithm 2| (INET, I, (Ko, G), ENV})
end for
Fix the parameters of INET.
// QWeb meta-training via task generation.
for number of training steps do
// Generate new instruction following task.
(G, P) < Run RRND() and get goal state and sequence of state, GG, action pairs,
P.
Using P get a dense reward R.
I < Run INET(G) and get instruction I.
Set up the ENVpg with new task (I, G) and dense rewards.
Dy < Sample an initial state from the web environment.
// Collect experience and train QWeb in environment with dense rewards ENVpg.
Run Algorithm 2| (QWeb, I, Dy, ENVpg)

end for

We sum over columns and rows of the shallow encoding matrix to generate a shallow
input vector for DOM elements and instruction fields, respectively. These vectors are
transformed using a FC layer with tanh and scaled via a trainable variable to generate a
single value for a DOM element and a single value for an instruction field. Using a gating

mechanism between deep QQ values and shallow Q values, we compute final ) values as
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follows:

Q(57 a) = Qdeep(stv atD)(l - U(“)) + Qshallow<57 a?)(a<u)) (4'2>

Q(Sv a) = Qdeep<3t> a?)(l - U(U)) + QshallO’LU(Sv atT)(U(U>> (4‘3>

where u and v are scalar variables learned during training.

4.4.2 Reward Augmentation

Following [73], we use potential based rewards for augmenting the environment reward
function. Since the environment reward is computed by evaluating if the final state is
exactly equal to the goal state, we define a potential function (Potential(s, g)) that counts
the number of matching DOM elements between a given state (s) and the goal state (g);
normalized by the number of DOM elements in the goal state. Potential based reward
is then computed as the scaled difference between two potentials for the next state and

current state:
Ryotentiar = Y(Potential(si11, g) — Potential(st, g)) (4.4)

where ¢ is the goal state. For example, in the flight-booking environment, there are 3
DOM elements that the reward is computed from. Let’s assume that at current time
step the agent correctly enters the date. In this case, the potential for the current state
will increase by 1/3 compared to the potential of the previous state and the agent will
receive a positive reward. Keep in mind that not all actions generate a non-zero potential
difference. In our example, if the action of the agent is to click on the date picker but

not to choose a specific date, the potential will remain unchanged.
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4.4.3 Curriculum Learning

We perform curriculum learning by decomposing an instruction into multiple sub-
instructions and assigning the agent with an easier task of solving only a subset of
these sub-instructions. We practiced two different curriculum learning strategies to train
QWeb: (i) Warm-starting an episode and (ii) Simulating sub-goals.

Warm-Start. We warm-start an episode by placing the agent closer to the goal state
where the agent only needs to learn to perform a small number of sub-instructions to
successfully finish the episode (illustrated in Algorithm . We independently visit each
DOM element with a certain probability p and probe an ORACLE policy to perform
a correct action on the selected element. The environment for the QWeb is initialized
with the final state of the Warm-Start process and the original goal of the environment
is kept the same. This process is also illustrated in Figure for the flight-booking
environment. In this example scenario, QWeb starts from the partially filled web form
(origin and departure dates are already entered) and only tasked with learning to correctly
enter the destination airport. At the beginning of the training, we start p with a large
number (such as 0.85) and gradually decay towards 0.0 over a predefined number of steps.
After this limit, the initial state of the environment will revert to the original state of
plain DOM tree with full instruction.

Goal Simulation. We simulate simpler but related sub-goals for the agent by con-
straining an episode to a subset of the elements in the environment where only the cor-
responding sub-instructions are needed to successfully finish an episode. We randomly
pick a subset of elements of size K and probe the ORACLE to perform correct set of
actions on this subset to generate a sub-goal. The goal of the environment for QWeb will
be assigned with the final state of this process and the initial state of the environment

will remain unchanged. QWeb will receive a positive reward if it can successfully reach to
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this sub-goal. At the beginning of the training, we start K with 1 and gradually increase
it towards the maximum number of elements in the DOM tree over a number of steps.
After this limit, the environment will revert to the original environment as in warm-start

approach.

4.5 Meta-Trainer for Training QWeb

To address situations when the human demonstrations and ORACLE policy are not
available, we combine the curriculum learning and reward augmentation under a more
general unified framework, and present a novel meta-training approach that works in
two phases. First, we learn to generate new instructions with a DQN agent, instructor.
Instructor learns to recover instructions implied by a non-expert policy (e.g. rule-based
or random). We detail the instructor agent, its training environment and neural network
architecture in Section [£.5.1] Second, once the instructor is trained, we fix it and use
it to provide demonstrations for the QWeb agent from a simple, non-expert, rule-based
policy. This process, including the rule-based policy is described in Section [£.5.2] The

whole training process is outlined in Algorithm [3]

4.5.1 Learning Instructions from Goal States

Instruction Generation Environment We define an instruction state by the sam-
pled goal and a single key (K ) sampled without replacement from the set of possible
keys predefined for each environment. Instruction actions are composite actions: select
a DOM element as in web navigation environments (aP) and generate a value that cor-
responds to the current key (K ), (af). For example, in flight-booking environment, the
list of possible keys are defined by the set {from, to, date}. Let’s assume that the current

key is from and the agent selected the departure DOM element. A value can be generated
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by copying one of the attributes of the departure element, e.g., text : "LA”. After each
action, agent receives a positive reward (+1) if the generated value of the corresponding
key is correct; otherwise a negative reward (-1). To train the instructor, we use the
same sampling procedure used in the curriculum learning (Algorithm [2| to sample new
pairs, but states, actions, and rewards in instruction generation environments are set up
differently).

Deep Q Network for Instruction Generation (INET) We design a deep Q
network, called INET and depicted in Figure [£.3D] to learn a Q value function approx-
imation for the instruction generation environment. Borrowing the DOM tree encoder
from QWeb, INET generates a vector representation for each DOM element in the DOM
tree using a biLSTM encoder. Key in the environment state is encoded similarly to in-
struction encoding in QWeb where only the key is the input to the encoding layer. Q
value for selecting a DOM element is then computed by learning a similarity between the
key and DOM elements, i.e., Q!(s;,a’) where Qf denotes the Q values for the instruc-
tor agent. Next, we generate a probability distribution over DOM elements by using
the same similarity between the key and DOM elements; and reduce their encodings
into a single DOM tree encoding. (@ values for each possible attribute is generated by
transforming a context vector, concatenation of DOM tree encoding and key encoding,
into scores over the possible set of DOM attributes, i.e., Q'(s;,al*). Final Q values are

computed by combining the two Q values : Q' (s;, a;) = Q' (ss,aP) + Q! (s, alk).

4.5.2 Meta-Training of the QWeb (MetaQWeb)

We design a simple rule-based randomized policy (RRND) that iteratively visits each
DOM element in the current state and takes an action. If the action is Click(e),

the agent on click on the element, and the process continues. If the DOM element is
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part of a group, that their values depend on the state of other elements in the group
(such as radio buttons), RRND clicks on one of them randomly and ignores the others.
However, if the action is Type(e, t), the type sequence is randomly selected from a
given knowledge source (KS). Consider the flight-booking environment as an example, if
the visited element is a text box, RRND randomly picks an airport from a list of available
airports and types it into the text box. RRND stops after each DOM element is visited
and final DOM tree (D) is generated. Using pretrained INET model, we generate an
instruction / from D and set up the web navigation environment using (/, D) pair. After
QWeb takes an action and observes a new state in the web navigation environment, new
state is sent to the meta-trainer to collect a meta-reward (R1). Final reward is computed
by adding R1 to the environment reward, i.e., R = R1 + R2.

Discussion. Even though we use a simple rule-based policy to collect episodes,
depending on the nature of an environment, a different kind of policy could be designed
to collect desired final states. Also, note that the generated goal states (D) need not be a
valid goal state. MetaQWeb can still train QWeb by leveraging those incomplete episodes
as well as the instruction and goal pairs that the web navigation environment assigns.
There are numerous other possibilities to utilize MetaQQWeb to provide various signals
such as generating supervised episodes and performing behavioral cloning, scheduling a
curriculum from the episodes generated by meta-trainer, using MetaQQWeb as a behavior
policy for off-policy learning, etc. We practiced using potential-based dense rewards (R1)

and leave the other cases as future work.

4.6 Experimental Results

We evaluate our approaches on a number of environments from Miniwob ([90]) and

Miniwob++ ([64]) benchmark tasks. We use a set of tasks that require various com-
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binations of clicking and typing to set a baseline for the QWeb including a difficult
environment, social-media-all, where previous approaches fail to generate any successful
episodes. We then conduct extensive experiments on a more difficult environment, book-
flight-form (a clone of the original book-flight environment with only the initial web form
is used), that require learning through a large number of states and actions. Each task
consists of a structured instruction (also presented in natural language) and a 160px x
210px environment represented as a DOM tree. We cap the number of DOM elements at
100 and the number of fields is 3 for book-flight-form environment. Hence, the number of
possible actions and number of variables in the state can reach up to 300 and 600, respec-
tively. However, these numbers only reflect a sketch and do not reflect a realization of
DOM elements or instruction fields. With more than 700 airports, these numbers greatly
increase and generate even larger spaces. Social-media-all environment has more than
7000 different possible values in instructions and DOM elements and the task length is
12 which are both considerably higher than other environments. All the environments
return a sparse reward at the end of an episode with (41) for successful and (-1) for
failure episodes, respectively. We also use a small step penalty (-0.1) to encourage QWeb
to find successful episodes using as small number of actions as possible.

As evaluation metric, we follow previous work and report success rate which is the
percentage of successful episodes that end with a +1 reward. For instruction generation
tasks, success rate is 41 if all the values in the instruction is correctly generated.

Previous Approaches: We compare the performance of QWeb to previous state-of-
the-art approaches. First, SHI17 ([90]) pre-trains with behavioral cloning using approx-
imately 200 demonstrations for each environment and fine-tunes using RL.They mainly
use raw pixels with several features to represent states. Second, LIU18 ([64]) uses an
alternating training approach where a program-policy and a neural-policy are trained

iteratively. Program-policy is trained to generate a high level workflow from human
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Figure 4.4: Performance of QWeb on a subset of Miniwob and Miniwob++ envi-
ronments compared to previous state-of-the-art approaches. AR denotes augmented
reward.

demonstrations. Neural-policy is trained using an actor-critic network by exploring states

suggested by program-policy.

4.6.1 Performance on Miniwob Environments

We evaluate the performance of QWeb on a set of simple and difficult Miniwob en-
vironments based on the size of state and action spaces and the input vocabulary. On
the simple Miniwob environments (first 11 environments in Figure , we show the per-
formance of QWeb without any shallow encoding, reward augmentation or curriculum
learning. Figurel4.4]presents the performance of QWeb compared to previous approaches.
We observe that, QWeb can match the performance of previous state-of-the-art on ev-
ery simple environment; setting a strong baseline for evaluating our improvements on
more difficult environments. We can also loosely confirm the effectiveness of using a bil-
STM encoder instead of extracting features for encoding DOM hierarchy where biLSTM
encoding gives consistently competitive results on each environment.

Using shallow encoding and augmented rewards, we also evaluate on more difficult

environments (click-pie and social-media-all). On click-pie environment, the episode
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lengths are small (1) but the agent needs to learn a relatively large vocabulary (all
the letters and digits in English language) to correctly deduce the semantic similarities
between instruction and DOM elements. The main reasons that QWeb is not able to per-
form well on social-media-all environment is that the size of the vocabulary is more than
7000 and task length is 12 which are both considerably larger compared to other envi-
ronments. Another reason is that the QWeb can not learn the correct action by focusing
on a single node; it needs to incorporate siblings of a node in the DOM tree to generate
the correct action. In both of these environments, QWeb-+SE successfully solves the task
and outperforms the previous approaches without using any human demonstration. Our
empirical results suggest that it is critical to use both shallow encoding and augmented
rewards in social-media-all environment where without these improvements, we weren'’t
able to train a successful agent purely from trial-and-error. Without augmented reward,
the QWeb overfits very quickly and gets trapped in a bad minima; in majority of these
cases the policy converges to terminating the episode as early as possible to get the least
step penalty.

We analyze the number of training steps needed to reach the top performance on sev-
eral easy (login-user, click-dialog, enter-password) and difficult (click-pie) environments
to understand the sample efficiency of learning from demonstrations (as in LIU18 ([64])).
We observe that using demonstrations can lead to faster learning where on average it
takes less than 1000 steps for LIU18 and more than 3000 steps for QWeb (96k steps
for login-user environment) however with a drop in performance on the more difficult
click-pie environment: LIU18 reaches 52% success rate at 13k steps while QWeb reaches

the same performance at 31k steps and 100% success at 175k steps.
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Figure 4.5: Performance of variants of QWeb and MetaQWeb on the book-flight-form
environment. SE, CI, CG, and AR denote shallow encoding, curriculum with warm-s-
tart, curriculum with simulated sub-goals, and augmented reward, respectively.

4.6.2 Performance on Book Flight Environment

In Figure 4.5 we present the effectiveness of each of our improvements on book-
flight-form environment. Without using any of the improvements or using only a single
improvement, QWeb is not able to generate any successful episodes. The main reason is
that without shallow encoding, QWeb is not able to learn a good semantic matching even
with a dense reward; with only shallow encoding vast majority of episodes still produce
-1 reward that prevents QWeb from learning. When we analyze the cause of the second
case, we observe that as the training continues QWeb starts clicking submit button at
first time step to get the least negative reward. When we remove the step penalty or give
no reward for an unsuccessful episode, QWeb converges to one of the modes: clicking
submit button at first time step or generating random sequence of actions to reach step
limit where no reward is given. Using shallow encoding, both curriculum approaches
offer very large improvements reaching above 90% success rate. When the reward can
easily be augmented with a potential-based dense reward, we get the most benefit and
completely solve the task.

Before we examine the performance of MetaQQWeb, we first evaluate the performance

of INET on generating successful instructions to understand the effect of the noise that
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MetaQWeb introduces into training QWeb. We observe that INET gets 96% success rate
on fully generating an instruction. When we analyze the errors, we see that the majority
of them comes from incorrect DOM element prediction (75%). Furthermore, most of
the errors are on date field (75%) where the value is mostly copied from an incorrect
DOM element. After we train QWeb using meta-training, we evaluate its performance
in two different cases : (i) We meta-test QWeb using the instruction and goal pairs
generated by MetaQWeb to analyze the robustness of QWeb to noisy instructions and
(ii) We test using the original environment. Figure suggests that in both of the
cases, Meta(QWeb generates very strong results reaching very close to solving the task.
When we examine the error cases for meta-test use case, we observe that 75% of the
errors come from incorrect instruction generations where more than 75% of those errors
are from incorrect date field. When evaluated using the original setup, the performance
reaches up to 99% success rate showing the effectiveness of our meta-training framework
for training a successful QWeb agent.

The main reason of the performance difference between the QWeb+SE+AR and the
MetaQWeb can be explained by the difference between the generated experience that
these models learn from. In training QWeb+SE+AR, we use the original and clean
instructions that the environment sets at the beginning of an episode. MetaQQWeb, how-
ever, is trained with the instructions that instructor agent generates. These instructions
are sometimes incorrect (as indicated by the error rate of INET : 4%) and might not
reflect the goal accurately. These noisy experiences hurt the performance of MetaQWeb

slightly and causes the 1% drop in performance.
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Chapter 5

Understanding Neural Network
Predictions

In the previous chapters, we proposed neural approaches that can learn from various
natural language interfaces with structured and unstructured databases. We designed
deep neural architectures that captures hierarchical features within the data and can
generalize well to unseen tasks. Other recent advances of neural model have also delivered
promising results for a variety of NLP tasks such as question answering [119], machine
comprehension [107], and machine translation [105]. However, the success of these models
has been largely driven by their ability to perform well on a held-out data using models
of increasingly higher complexity [42], at the cost of transparency and interpretability.
Take, as example, our reading comprehension model in Chapter [3] There are three
components that are connected in a hierarchy: (i) Encoding user questions, (ii) Encoding
document windows in parallel, and (iii) Decoding answers from soft-selected windows. In
this setting, it is unclear how question and document windows are related, which word
and phrase level features are important when selecting a window, and how categorical
and span-level answers are generated from the window representations. This hurdles
progressive model development and limits the application of these models in areas like

medicine and health care, where model understanding is critical.
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Question
What movie did James Frey = write?
0.11 0.37 0.05 0.06 0.03 0.38

Correct Knowledge-base Path
film.writer.film

Figure 5.1: An example of the identified neural indicators in a question and its correct
knowledge base path. When perturbing the word embedding of “movie” and “write”,
the prediction of the neural network will change significantly, indicating that the
model’s prediction heavily depends on these words.

In this chapter, we propose several models that can extract salient input features,
called neural indicators, that shows which word and phrase level components are critical
while learning and making predictions. In Section [5.3], we formalize the definition of neu-
ral indicators and give baseline deep neural models for question answering and sentiment
analysis tasks. We describe how these indicators can be identified using bayesian un-
certainty and forward and backward propagation in Section 5.4 By regularizing models

based on the confidence of indicator selection scores, we propose new objective formula-

tions in Section (.5l

5.1 Understanding and Regularizing Neural Models
via Prediction Uncertainty

In this section, we propose a general framework to understand neural predictions by
perturbing inputs of a model and analyzing the caused variation on the output. Through
this analysis, we can identify important features, called neural indicators, for which a
small perturbation will generate a significant variation on the output distribution. Take
knowledge base question answering [11] as an example, where the main task is to predict

the correct knowledge-base path that can answer a natural language question (Figure
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. In this case, our framework will assign a probability distribution over input words,
which indicates the sensitivity (or uncertainty) of the neural network predictions with
respect to each input word.

We define two perspectives of uncertainty to identify neural indicators: forward and
backward view. Forward view uncertainty estimates the variation on the prediction
distribution by applying a small perturbation to one input feature such as a word vector
while keeping other word vectors fixed. Backward view uncertainty, on the other hand,
examines the variation in the gradients backpropagated to each input word vector when
prediction distribution perturbed. In Figure [5.1] the words “movie” and “write” cause
the highest uncertainty on the final prediction, and we call them neural indicators.

In addition to identifying neural indicators, predictive uncertainty provides a natural
way to measure the confidence of neural network predictions. A highly peaked prediction
distribution on an input example shows that a neural network is very confident on its
prediction, which may imply a high risk of overfitting. Based on this observation, we
develop regularization techniques for neural networks to discourage predictions that are
too confident. Our method does not have any assumption on the type of applicable
neural networks and does not need additional annotated data.

We present quantitative and qualitative results on two example tasks: factoid ques-
tion answering (QA) and sentiment classification (SC). Qualitatively, we show that the
neural indicators identified by our method are semantically related to the corresponding
knowledge-base path of a question. Quantitatively, we show that the proposed regular-
ization methods can improve the accuracy of a baseline model on the QA task and the

SC task by more than 2% and 1.5%), respectively.
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5.2 Related Work

Recent studies for understanding neural networks include visualizing state activations
[44], 48| 58], 60], generating short and descriptive texts [55], and learning sparse word
vectors with interpretability [26]. Lei et al. [55] learn a model to generate short texts using
a multi-encoder approach. Salient features are extracted using first-order derivatives
assuming decision score is a linear combination of input features [58]. Li et al. [60]
searches a minimal set of input words that causes the prediction to change. Our work
differs from these studies in both the definition of neural indicators and how they are
applied. We define indicators using FVU as the input words that lead to an uncertainty
on the output prediction. In BVU, we examine the gradients using backpropagation
when the prediction distribution varies.

Attention models provide another meaning of understanding by focusing on parts of
neural networks [6, 15, 14, 69, 108, 115, 66, ©4] [7T]. Recently, they have been applied
to different NLP tasks such as textual entailment [82], abstractive summarization [83],
and machine comprehension [43], [45]. Our neural indicator model can be applied to
attention-based models too, and can be used to generate indicators where attention is
not well suited.

Our work is also related to regularization techniques such as dropout [92, 52]. Szegedy
et al. [07] and Xie et al. [I06] penalize confident predictions using a label smoothing
method on prediction distributions. Kingma et al. [52] introduces variational dropout
where dropout weights from gaussian distribution are learnt during training. Recently,
dropouts are shown in a Bayesian setting [31] and uncertainty of an example is computed
using variation ratios [29] [30]. In our work, we described the uncertainty of a prediction
distributions w.r.t. a single input feature rather than all the features in an instance. We

also presented an empirical connection between uncertainty of prediction distribution
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and overfitting. We showed two different ways of incorporating this feedback mechanism

to learn better models.

5.3 Neural Indicators

Gaining insights into how neural networks make predictions and mining the possible
reasons that cause an error is critical for understanding neural networks. Consider a typ-
ical deep learning task of building a classifier using a vector representation of words in a
corpus. Quantifying the importance of words that are essential for model’s prediction can
provide significant insights on neural networks. To this end, we introduce and formalize
the task of identifying neural indicators as pinpointing word vectors that lead into high
uncertainty in the prediction distribution. We hypothesize that if a small perturbation of
an input vector causes high uncertainty on the output, then there is a strong dependency
between model’s prediction and the input vector. Dropout [92] is one way of perturbing
word vectors, but various ways of perturbation can be used to estimate uncertainty.

As a motivating example, we define the single path factoid question answering task,
where a question x and a set of candidate paths Y = {y1, 42, - ,yn} from a knowledge
base are given, and the task is to find the correct path y* that can answer the question.
An example question with the corresponding one-hop path is shown in Figure Each
question and path is represented as a sequence of word vectors, i.e., x = (z1, 29, , Tp,)
and y; = (Yi1, Y2, - ,Yir). The goal of a neural network is to map the sequences into a
vector space such that x is closer to the correct path y* than the others in this space.
We call this mapping an encoder (Enc) and the corresponding vector an encoding of

the sequence, h = Enc(x). Recurrent Neural Networks (RNN) provide a natural way to
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implement this mapping. For our purpose, we define an RNN encoder as

hi = f(xy, hi—1;0) (5.1)

where h; is the output, and z; is the input vector at time t. f is a nonlinear function
operating on x; and h; with 6 being its parameter vector. The input vectors are obtained
from an embedding matrix £ where each row corresponds to a word in the vocabulary V.
Given an input sequence, a RNN runs over the word sequence and produces the output
vectors at each step. We get the encoding h of a sequence using average pooling over the
output vectors of RNN.

We define a multi-encoder QA model that employs two different RNNs to encode
questions and knowledge base paths seperately. Let h, and h; denote the encoding of the
question x and the i-th path by the multi-encoder model. Given a question x, we define
the prediction distribution as the candidate path probabilities: s(x,v;) o exp(hlh;).
Our objective is to minimize the cross-entropy error between the prediction distribution
s(x,y) = [s(z,y1), -+, s(x,y,)] and the correct path distribution.

Although RNNs are very effective at encoding sequences, their complex structure
makes it difficult to assess the underlying reasons for their predictions. Considering our
QA task, one natural question among many others is, which words in the question that
make the RNN favor a path than another? We formulate the concept of uncertainty as a
measure of the importance of each input word to the final prediction. Next we introduce

two ways to estimate uncertainty.
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5.4 Identifying Neural Indicators

We argue that identifying neural indicators is an unsupervised task and can be ex-
tended to other neural networks. In order to identify neural indicators, we introduce two
different approaches to estimate uncertainty: forward and backward view. Forward view
uncertainty (FVU) first applies a small perturbation to a word vector, then runs a for-
ward propagation in the network, and calculates variation on the prediction distribution.
Backward view uncertainty (BVU), on the other hand, first applies a small perturbation
to the prediction distribution, then runs a backward propagation in the network, and

calculates variation on gradients w.r.t. each word vector in the network.

5.4.1 Forward View Uncertainty

Let’s assume that 1) is a vector sampled from a distribution such as Bernoulli distri-
bution and having the same dimensionality as x;. We denote & = [y, -+ x4, -+ | Ty
as a sequence of word vectors where x; is randomly perturbed with 1 using elementwise
multiplication. We first estimate the prediction distribution by running a forward prop-
agation in the network with Z as input. Using an appropriate uncertainty function, such
as entropy, we estimate the predictive uncertainty. We repeat the same process for T
iterations by sampling a new 1) each time we run forward propagation. The forward view
uncertainty of x; is then estimated as a sample statistics over these uncertainty values.

Take the running example in Figure[5.1] In order to estimate the FVU of “movie” (2),
we first pick a sample vector ¢/, e.g., ¢’ = [1,0,--- ,0] where the first dimension is one
and others are zero. We perturb the embedding by multiplying with v’ which will keep
the first dimension of x5 and zero the rest. We run the RNN model described in Section
5.3 and estimate the probabilities over the candidate paths. Predictive uncertainty is

then estimated over these probabilities.
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Let’s assume that sgx(Z,y) is the prediction distribution at iteration k. We now
describe how to estimate uncertainty on si(#,y) and combine these values to estimate
FVU w.r.t. x.

Variation Ratios (VR): Variation ratios (VR) [29] uses mode of the prediction
distribution to estimate uncertainty in bayesian neural networks. Traditional definition
of V R incorporates all input features by perturbing every feature randomly. Here we
apply VR to RNNs and focus on only a single feature where we perturb a single word

vector and keep others fixed:

T
1 X
VR =1-— T ,;1 maz;(sg(Z,y;)) (5.2)

V' R gives a measure of the variation of prediction distribution around its mode when
only a single word embedding of the network is perturbed.

Entropy (Ent): Mode statistics is a relatively local measure of uncertainty which
does not capture some distributional characteristics such as uniformity. To mitigate this
effect, we also define an uncertainty measure using entropy. Similar to V R, we focus on

only a single word:

T
1 .
Enty = 13" Hisy(2.3) (5:3)
k=1
where H(z) = —z%log(z). Here, we measure a weighted variation incorporating all

probabilities in the prediction distribution.

The above uncertainty estimators aggregate the effect of each individual dimension.
Consider a case where only a small set of dimensions causes high uncertainty on the neural
prediction. In this case, mean estimators (Eq. and Eq. are mostly determined

by the less important dimensions and this will result in small uncertainty on the output.
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To mitigate this problem, we propose to use standard-deviation instead of mean:

VRStdy = STD({1 — maz;(sk(z,v:)) }x) (5.4)

and

EntStd, = STD({H (si(2,y:) }x) (5.5)

where {.}, represents a set of values indexed by k. When the mean uncertainty of a
word is small, the std-estimators (VV RStd and EntStd) can determine whether a subset

of dimensions are important for the prediction.

5.4.2 Backward View Uncertainty

FVU looks at how the inference of a neural network changes when the input features
such as word vectors are perturbed. Alternatively, changes in the training of a neural
network can also give an estimation on uncertainty. We give a new definition of uncer-
tainty by measuring the changes in the gradients w.r.t. input word vectors when the
prediction distribution is perturbed. Let’s denote & = [y % )1, -+ 2y % Uy, -+ Ty * Uy
where we perturb each word vector simultaneously using different random samples from
the same distribution. We first estimate the prediction distribution by running a forward
propagation in the network with Z as input. Next, we estimate H(s(Z,y)) and run a
backward propagation to compute gradients w.r.t. x;. We repeat the same process T'
iterations where at each iteration we perturb prediction distribution by sampling a new
1; for each word vector. The backward view uncertainty of z; is then estimated as a
sample statistics over these gradients.

Let’s assume that si(Z,y) is the prediction distribution at iteration k. We define

grx = V(H(s,(Z,y)), z:) as the gradient of entropy w.r.t. x; at iteration k. We estimate
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VR | Ent | BVU | VR-Std | Ent-Std | BVU-Std
VR 0.49 0.46
Ent 0.49 0.47
BVU
VR-Std 0.68
Ent-Std 0.68
BVU-Std

Table 5.1: Pearson-correlation statistics between different uncertainty estimators on
the WebQSP dataset. Darker color values correspond to higher correlations.

BVU of x; using expected gradient length:

1
BVU = 7> llgesl (5.6)
k

Similar to FVU, we also define a std-estimator for BVU:

BVUStd, = % zk: STD({gex}x) (5.7)

Here, we estimate the standard-deviation over each gradient estimation rather than over
the length of gradients to incorporate the effect of individual dimensions on the uncer-

tainty.

5.4.3 Identifying Neural Indicators

We use FVU and BVU to quantify the importance of each word and to identify neural
indicators probabilistically. Given an uncertainty measure unc; for x;, we define the

following uncertainty distribution as the probability of a word being a neural indicator:
unc(zy) = U unc(wy) (5.8)
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where U is the normalization factor over uncertainty estimations. As we are interested in
indicators that cause a large variation, we also define a word as a discriminative neural

indicator if:

unc(zy) > pu + oy (5.9)

where y; and o, are the mean and standard deviation of the uncertainty distribution for

input x;.

5.4.4 Experimental Results for Neural Indicators

Before exploring predictive uncertainty to regularize neural networks, we present re-
sults for identifying neural indicators in our QA task. For the experimental setup and
more experimental results, see Section [5.6]

In Table we report the average Pearson correlation coefficient over uncertainty
distributions between each pair of estimators. We observe that FVU and BVU models
are more similar within their respective groups but more different across groups. VR-
Std and Ent-Std give the highest correlation suggesting that they provide a very similar
uncertainty distribution. Also, BVU has more similarity to FVU std-estimators, than
VR and Ent.

Table [5.2] illustrates several example question and path pairs where our neural net-
work model makes incorrect path prediction. Both FVU and BVU models generate
indicator words that describe the corresponding paths well, even though the predictions
are incorrect. This suggests that neural predictions might depend on words that are
descriptive of the true path but they suffer from poor generalization during training
which motivates us to utilize predictive uncertainty to learn better models (Section [5.5).

BVUs, frequently identify question words such as “where” that describe a constraint
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(in this case location) on the path prediction. Consider the question “What did Alvin
Smith died from?” the VR-Std model produces a single indicator died with a very high
probability. In another example question “Where did Jerome David Salinger died?” the
VR-Std model produces died and where as neural indicators. In comparison with the
first example where the correct path is people.deceases_person.

cause_of_death, the model also identifies “where” as an additional indicator to discriminate

from the first example.

5.5 Regularizing Neural Predictions

In the previous section, we showed that FVU and BVU might identify words that are
descriptive of the correct path even though the neural network model makes incorrect
predictions. Motivated by this observation, we study several methods to learn better
representations by regularizing neural networks using predictive uncertainty. To motivate
our new objective further, we first give an intuitive explanation for the relationship
between predictive uncertainty and overfitting, then we explain how FVU and BVU can

be used to learn better representations.

5.5.1 Predictive Uncertainty and Overfitting

Consider the following scenario where we make several simplifying assumptions to
illustrate our intuition. We assume two independent regions in the encoding space for
each question x. A sampling region S is defined such that each forward propagation
using random perturbations (such as dropout) of input word vectors generates encodings
within S. C' denotes a confidence region where only encodings within C' produces high
confidence predictions. Figure illustrates a sample setting with associated prediction

distributions and regions. x’ has more probability of overfitting, as samples from S’ are
117



Understanding Neural Network Predictions Chapter 5

-

-
-
e N
\
/
\
1
\
l I
\ I
\ /
N /
\‘\.._ ‘_f,

1

Figure 5.2: Two examples with their confidence (solid) and sampling (dotted) regions,
and their prediction distributions. The example on the left has more uncertainty (less
confidence) than the example on the right.

less likely to be outside of C” which produces more confident predictions. On the other
hand, = incurs more error on its prediction, as samples from S are more likely to generate
different prediction probabilities which produces more uncertainty on its output.

Let’s assume that confidence regions are fixed for each example. Generating a larger
sampling region for confident predictions will reduce the probability of overfitting. On
the other hand, a smaller sampling region for examples with uncertainty will improve the
prediction accuracy. An ideal objective would be searching for the best of both worlds

using the uncertainty of an example to generate better regions.

5.5.2 Regularization via Uncertainty

We propose to regularize neural networks using predictive uncertainty to alleviate the
overfitting problem motivated in Section 4.1.
Regularization using FVU

Traditional dropout notion [92] is widely used to regularize neural network parame-

ters. We note that increasing the dropout weight in the case of small uncertainty can
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yield to a better regularization of confident predictions. Inspired by this, we propose to
introduce a new penalty using a dropout guided by FVU.

Given FVU of the model using VR, we generate a new dropout weight as follows:

(1+8)7  VR(x) =¥

Ny =
(1+8)"'np VR(x) <6

where n is the global dropout weight and 0 < 3,6 < 1 are hyperparameters. Here,

we define 1 — 1 as the probability of randomly removing a dimension. Early in the
training, the uncertainty of the predictions will be large and new dropout weight will be
small; later in the training, the uncertainty of the predictions will be small hence the
model will be penalized more. It is important to note that, we perturb each word vector
simultaneously which corresponds to x rather than z.

To incur a penalty using the new dropout, we modify the loss function by

L*(z) = L(2) 4+ aLyey(2) (5.10)

where L,.4 is the loss of the model with new dropout 1, while L is the original loss of the
model using global dropout 7. « is a hyperparameter balancing the effect regularization.
Similar to L, we estimate L,., by applying a forward propagation with the new dropout
1. To estimate the new loss, we first apply a forward propagation and estimate new
dropout weight 7,. Next, we estimate the new dropout weight for the question using V' R.
We then apply another forward propagation with the new dropout weight and estimate
Lyeg.
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Regularization using BVU

Entropy of a prediction distribution yields a natural uncertainty measure. Hence,
adding a penalty term using the entropy can inherently regularize confident prediction
distributions. Here, we establish a connection between such a regularizer and our pro-
posed BVU: as the gradients of an entropy term w.r.t. input word embeddings reveal
important words, updating the word embeddings using these gradients will enable the

network to focus more on important words. Formally, we define a new loss
L*(z) = L(z) — aH(s(x,y)) (5.11)

that integrates this entropy based regularizer term. « is again a positive hyperparameter.

5.6 Experimental Evaluation

We evaluate the proposed model on two tasks, single path factoid question answering
and sentiment classification. Our aim is to show that by gaining insights into neural pre-
dictions using predictive uncertainty, better objectives can be designed without altering

the underlying model architectures.

5.6.1 Single Path Factoid Question Answering

Dataset We use the WebQSP factoid question answering dataset [120]. The dataset
contains 4,737 questions generated through Google Suggest API. Each question is anno-
tated with a set of logical forms from Freebase. Logical forms have two components: (i)
a core inferential path and (ii) a set of constraints. Core inferential path is a Freebase
path capturing the core relation in the question. Constraints such as type and gender

capture the auxiliary information in the question.
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We assume that the topic entity in a question is already linked to Freebase. Our QA
task is to predict the 1-hop core inferential path of a given question. We generate 1-hop
candidate paths for each topic entity from the Freebase graph. As the WebQSP dataset
may have multiple correct core inferential paths for some questions, we cast our problem
as multi-label classification. We report the mean accuracy over all the questions.

We reserve 10% of the training dataset as the validation set and train the multi-
encoder QA model from Section on the remaining. We use LSTM [46] units in
the RNN encoders. We set the size of the input and hidden vectors as 150 and 100,
respectively, and search the dropout parameter weight from a range of values, {0.5,0.6},
using the validation set. We utilize Adam [51] optimizer with a batch size of 16 training
examples, a learning rate of 0.001, and 0.1 for the uniform distribution scale (i.e., [-0.1,
0.1]). We use 7" = 100 for identifying neural indicators. We use v = 0.5 and o = 1.0 for
regularization using FVU and BVU, respectively. We take g = 0.25 and # = 0.5 by hand
tuning. We implement our models in Tensorflow [I].

Attentive-Encoder LSTM In addition to the multi-encoder approach that we de-
scribed in Section [5.3] we also implemented a variant of the Attentive Reader [43]. In-
stead of taking the average of output vectors of the question encoder, we take a weighted
average of outputs using the path encoder. We estimate a weight for each output vector

of question encoder as follows:

w, = A exp(v tanh(Khy + Lh;)) (5.12)

where v, K, and L are attention parameters to learn, and A is the normalization factor

over weights w;. We then estimate the new output vector of the question encoder as
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follows:

h=> wh (5.13)
t

We use dropout regularization on inputs and ouputs of the LSTM cells for both multi-
encoder and attentive-encoder models.

Classification Results In Table [5.3, we give a comparison between the performance
of multi-encoder LSTM models and their corresponding variants using the proposed
regularization methods. We show that all of our uncertainty regularization approaches
outperform both LSTM and LSTM-Att models that use fixed dropout weights. This
demonstrates that uncertainty values are not only useful for identifying neural indicators

but can also be used to improve the performance of neural networks via regularization.

5.6.2 Sentiment Analysis

Dataset We use Stanford Large Movie Dataset for the sentiment classification task
[67]. The dataset contains 25,000 training and 25,000 testing reviews collected from
the IMDB database. Each review contains multiple sentences that describe the overall
impression of a movie. Additionally, each review is associated with a rating (on a scale
from 0 to 9) that indicates the overall sentiment of the reviewer. We use the ratings as
the labels for our classification task.

We reserve 5% of the training dataset as the validation dataset and the remaining as
the training dataset. We clip each review to the first 200 words. We use a single RNN
encoder on the reviews and build a logistic regression classifier on the output vector A
to minimize the cross-entropy error between sentiment predictions and correct labels.
We set the size of the input and hidden vectors as 128. We search the dropout weight
from {0.6,0.7,0.8} using the validation set. We utilize Adam [51] optimizer with a batch

size of 32 examples, a learning rate of 0.001, and 0.1 for the uniform distribution scale
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(i.e., [-0.1, 0.1]). We use a = 0.5 for both regularization using FVU and BVU. We
take § = 0.25 and 6§ = 0.5 by hand tuning. We report both fine-grained accuracy over
all 10 labels and a coarse-grained binary accuracy by mapping fine-grained sentiment
predictions from [0, 4] and [5,9] to 0 and 1, respectively.

Classification Results In Table we present a comparison between the accuracy of
the standard (LSTM) and regularization (LSTM-Reg) models. We observe that LSTM-
Reg outperforms the standard LSTM model on both fine-grained and coarse-grained
accuracy measures. LSTM-Reg (FVU) and LST-Reg (BVU) give comparable results
with LSTM-Reg (FVU) slightly better.
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Questions

What did  Alvin Smith died from
Where was Ted Kennedy  buried

ez | Where did Pavlova originate

~ | What city did Esther live in
What  kind of government is China
Where did Jerome David Salinger died
What did  Alvin Smith from

~ | Where was Ted Kennedy

&% | Where did Pavlova

g What city  did Esther live in
What kind of government is China
Where did Jerome David Salinger died
What did  Alvin Smith died from
Where was Ted Kennedy = buried

E Where did Pavlova originate

M| What city did Esther live in
What kind of government is China
Where did Jerome David Salinger died
What did  Alvin Smith died from

2| Where was Ted Kennedy | buried

9| Where did Pavlova originate

E What = city did Esther live in

| What kind of government is China
Where did Jerome David Salinger died

Corresponding True Paths

1 people.deceased_person.cause_of_death

2 people.deceased_person.place_of_burial

3 food.dish.cuisine

4 people.person.place_of _birth

) location.country.form_of_government

6 people.person.place_of_death

Table 5.2:

Here, we show several example question and path pairs where the multi-en-
coder RNN model makes incorrect predictions. Neural indicators are identified using
VR and BVU. Higher color values correspond to higher uncertainty probabilities.
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Model Accuracy
£ | LST™ 75.6
5
A | LSTM-Att 75.6
% | LSTM-Reg (FVU) 76.6
~
£| LSTM-Att-Reg (FVU) 76.5
3
% | LSTM-Reg (BVU) 77.6
Q
]
= | LSTM-Att-Reg (BVU) | 77.3

Table 5.3: Comparison of the LSTM encoders with different regularization approaches
on the WebQSP dataset. Here, LSTM and LSTM-Att denote multi-encoder and
attentive-encoder models. The suffix on each model denotes the type of regularization
or using an attentive-encoder model.

Fine-grained | Coarse-grained

Model Accuracy Accuracy
LSTM 32.2 80.5
LSTM-Reg (FVU) 33.8 81.5
LSTM-Reg (BVU) 33.8 81.3

Table 5.4: Comparison of the LSTM and the proposed regularization models on the
IMDB Sentiment Analysis dataset.
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Conclusions

In this dissertation, we have introduced neural models for learning natural language inter-
faces over different data sources. We focused on structured and unstructured data with
interactive and non-interactive learning methods. We also studied learning from con-
strained interfaces where the underlying database is only accessible via a user interface,
such as web pages. We concluded with understanding neural predictions by investigating
correlations between neural predictions and inputs.

In Chapter [2| we described our neural models for learning from structured data such
as knowledge bases and relational databases. In Section [2.1 we introduced a ranking
model which is shown to be effective at end-to-end ranking of logical forms. By encoding
structured logical forms using a hierarchical neural network, similarity between logical
forms and user utterances are measured. In Section [2.2] we proposed a novel approach
for learning natural language interfaces on structured tables where the labeled data is
insufficient to generalize well. The proposed system improves its own performance by
collecting more data via having multi-turn conversations with users. In Section we
discussed the shortcomings of rule-based users simulators and developed end-to-end mod-
els that can generate diverse and goal-oriented user responses by injecting hierarchical
latent variables.

In Chapter [3, we introduced supervised and semi-supervised models for learning from
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long unstructured data such as Wikipedia documents. We developed a supervised hierar-
chical encoder model which chunks a long document into pieces and composes a document
representation via attention. The corresponding answer is decoded from this final rep-
resentation using sequence decoder models. Next, we study reading comprehension in a
low labeled data regime where all Wikipedia is available as an unlabeled data source. Us-
ing variational recurrent encoder-decoder architectures, we built unsupervised document
representations over Wikipedia. We proposed neural progressive reviewer models that
augments fixed document representations with trainable architectures which are tailed
to the supervised task. We show that our semi-supervised models with only a handful of
labeled data reach the performance of previous state-of-the-art models that use all the
available labeled dataset.

In Chapter [4] we studied the problem of learning from constrained interfaces, such as
web pages. We first investigated the challenges of learning from web interfaces such as
large action spaces and sparse rewards. Next, we proposed curriculum learning methods
that solve an easier problem by placing the agent and the goal state closer to each other
and iteratively converging to the original problem setup. We introduced two curriculum
learning methods — warm-start, where agent is placed closer to the goal by partially
navigating the page at the start of the episode, and goal-simulation, where the goal is
placed closer to the agent by randomly filtering out elements in the web page. When gold
experience is not available in curriculum learning, we developed a novel meta-training
approach. In meta-training, we first trained a model to predict the instruction given the
final state; next, an arbitrary policy randomly navigates the web page and generates a
final state; instruction is predicted from this final state and trajectory, instruction, and
final state triples are used to pretrain a policy.

Finally, in Chapter [5, we develop models for understanding neural predictions. We

use statistical uncertainty to measure the sensitivity of outputs of a neural network to its

127



inputs. By using variational dropout, we perturb inputs of a neural model and measure
the change in the output predictions. We compute mode, standard deviation, and entropy
uncertainty measures for extracting neural indicators which are input tokens that affect
the neural prediction the most. On a question answering over knowledge base task, we
show that these neural indicators are surface forms for entities and relations in a question.
We also incorporate these measures to regularize confident neural predictions which are
shown to cause overfitting of neural networks.

The research in learning neural interfaces has grown immensely in the past few years
and we are excited to make contributions to the field. Nonetheless, there is still a large
body of problems that we need to solve to achieve high performing interfaces. One key
problem that remains to be solved is learning transferable models. As an example, web
interfaces are greatly diverse where the visible user interface as well as the underlying
structure of the elements vary between web pages. In the future, we need to jointly
understand the semantics of the web pages and user utterances to generalize better over
web interfaces.

With this thesis, we aim to inspire researchers towards studying and improving dif-
ferent types of natural language interfaces. We believe it will lead us towards better user

experiences and hope to see these ideas to be adopted in industry and academia.
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