Discussion Session 6

Sikun LIN
sikun@ucsb.edu

Today's topic: things you need for hw3 (I)

- Matrices
- Polygon clipping
- HLHSR

HW3 Requirements

- Implement your own graphics library:
- Object drawing in black \& white
- Animation
- Extra credit: viewpoint change
- No color/Lighting/shading/texture/shadow
- CAN'T use OpenGL or any other graphics libraries
- Save each frame as an image file (ex. JPG, PPM) (can use library for writing/saving image)
- What you should turn in
- All your code
- Makefile, which can generate a series of image files for all frames
- A video sequence or gif showing the final display result

■ you can use any software or free-use website to concatenate those frames

Rendering Pipeline

Matrix value (0/1)

Rendering Pipeline

You need to implement

- Scaling
- Translation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Rotation

You need to implement

- Scaling
- Translation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Rotation

You need to implement

- Scaling
- Translation
- Rotation

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
R=R_{z}\left(\theta_{z}\right) R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right)
$$

Rendering Pipeline

You need

- Viewing matrix
- Knowns: eye position \mathbf{e}, center \boldsymbol{c}, up vector \boldsymbol{u}

$$
\begin{aligned}
\boldsymbol{f} & =\boldsymbol{c}-\boldsymbol{e} \\
\boldsymbol{f}^{\prime} & =\frac{\boldsymbol{f}}{|\boldsymbol{f}|} \\
\boldsymbol{u}^{\prime} & =\frac{\boldsymbol{u}}{|\boldsymbol{u}|} \\
\boldsymbol{s} & =\boldsymbol{f}^{\prime} \times \boldsymbol{u}^{\prime} \\
\boldsymbol{u}^{\prime \prime} & =\frac{\boldsymbol{s}}{|\boldsymbol{s}|} \times \boldsymbol{f}^{\prime}
\end{aligned} \quad M=\left(\begin{array}{cccc}
s_{x} & s_{y} & s_{z} & 0 \\
u_{x}^{\prime \prime} & u_{y}^{\prime \prime} & u_{z}^{\prime \prime} & 0 \\
-f_{x}^{\prime} & -f_{y}^{\prime} & -f_{z}^{\prime} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Rendering Pipeline

You need ...

- Projection matrices (already transformed into canonical view volume)
- Perspective \& orthographic (6 parameters for both: left right top bottom near far)

$$
\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right] \quad\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{-2}{(f-n)} & -\frac{f+n}{(f-n)} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Canonical view volume

It can be computationally expensive to check if a point is inside a frustum

- Instead transform the frustum into a normalised canonical view volume
- Uses the same ideas a perspective projection
- Makes clipping and hidden surface calculation much easier

Transforming the view frustum

The frustum is defined by a set of parameters, I, r, b, t, n, f :
/ Left \times coordinate of near plane
r Right \times coordinate of near plane
b Bottom y coordinate of near plane
t Top y coordinate of near plane
n Minus z coordinate of near plane
f Minus z coordinate of far plane
With $0<n<f$.

$$
-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 1
$$

Viewing frustum
(near)

Canonical view volume

matrix.c

- Has all the matrix operations you need:
- Inverse
- Transpose
- Addition/subtraction/multiplication
- Inner/cross product
- Determinant

```
O ...
```


Rendering Pipeline

Clipping

- Perform clipping in the canonical view volume
- Polygons may intersect the canonical view volume, then we need to perform clipping:
- Sutherland-Hodgma

Sutherland-Hodgman algorithm

Traverse edges and divide into four types:

Sutherland-Hodgman algorithm

For each edge of the clipping rectangle:

- For each polygon edge between v_{i} and v_{i+1}

Example

Sutherland Hodgman Polygon Clipping

- What will happen here?

Sutherland Hodgman Polygon Clipping

- It is incorrect to consider a vertex as inside/outside of the clipping area
- Instead, for each vertex, tell whether it is in the inner or outer side of each edge of the clipping area

Sutherland Hodgman Polygon Clipping

- It is incorrect to consider a vertex as inside/outside of the clipping area
- Instead, for each vertex, tell whether it is in the inner or outer side of each edge of the clipping area
- It also works in 3D world, where the clipping area consists of 6 surfaces, instead of 4 edges.

Rendering Pipeline

HLHSR

- Target: generate the set of pixels that form the final image.

Algorithms (we'll cover 2 this time)

- Scan-line Algorithm
- z-buffer Algorithm (neat, simple and fast!)
- Depth-Sort Algorithm
- Binary Space Partition (BSP) Trees
- Area-subdivision Algorithm

Scan-line Algorithm

- Intersect scanline with polygon edges
- Fill between pairs of intersections
- Basic algorithm:

For $\mathrm{y}=\mathrm{ymin}$ to ymax

1) intersect scanline y with each edge
2) sort interesections by increasing x [p0,p1,p2,p3]
3) fill pairwise ($\mathrm{p} 0->\mathrm{p} 1, \mathrm{p} 2->\mathrm{p} 3, \ldots$.

Scan-line Algorithm: Special handling

- Intersection is an edge end point
- Intersection points: (p0, p1, p2) ???

-> (p0,p1,p1,p2) so we can still fill pairwise
-> In fact, if we compute the intersection of the scanline with edge e1 and e2 separately, we will get the intersection point p1 twice. Keep both of the p1.

Scan-line Algorithm: Special handling (cont.)

- Intersection is an edge end point

- However, in this case we don't want to count p1 twice (p0, p1, p1, p2, p3), otherwise we will fill pixels between p 1 and p 2 , which is wrong

Scan-line Algorithm: Special handling (cont.)

- Rule: If the intersection is the ymin of the edge's endpoint, count it. Otherwise, don't.

z-buffer (a.k.a. depth-buffer) algorithm

- Initialization (2 buffers)
z buffer (set to a value >1) z color buffer (set to BG color) c
- For each polygon

Scan convert
For each pixel in the polygon

$$
\begin{aligned}
&\text { if(z_poly }(x, y)<z(x, y)) \\
& z(x, y)=z _ \text {poly }(x, y) \\
& c(x, y)=\text { polygon_color }
\end{aligned}
$$

Obtain the Plain Equation from Polygon Vertices

z-buffer combined with scanline

- Calculating z_poly:
- Plane equation: $0=A x+B y+C z+D$

$$
\text { Solve for } z: z=(-A x-B y-D) / C
$$

- Moving along a scanline, so want z at next value of x

$$
\begin{aligned}
& Z^{\prime}=(-A(x+1)-b y-D) / C \\
& Z^{\prime}=z-A / C
\end{aligned}
$$

z-buffer combined with scanline

- For moving between scanlines, know x ' $=x+1 / m$
- The new left edge of the polygon is $(x+1 / m, y+1)$, giving $z^{\prime}=z-(A / m+B) / C$

$$
Q \& A
$$

