
Discussion Session 6
Sikun LIN

sikun@ucsb.edu

Today’s topic: things you need for hw3 (I)
● Matrices

● Polygon clipping

● HLHSR

HW3 Requirements
● Implement your own graphics library:

○ Object drawing in black & white
○ Animation
○ Extra credit: viewpoint change
○ No color/Lighting/shading/texture/shadow
○ CAN’T use OpenGL or any other graphics libraries
○ Save each frame as an image file (ex. JPG, PPM) (can use library for writing/saving image)

● What you should turn in
○ All your code
○ Makefile, which can generate a series of image files for all frames
○ A video sequence or gif showing the final display result

■ you can use any software or free-use website to concatenate those frames

Rendering Pipeline

Bitmap /
Color Buffer

Modeling
Transform

View
Transform

Projection
(Normalization)

ClippingDepth Test

Graphics
Primitives

Matrix value (0/1)

Rendering Pipeline

Bitmap /
Color Buffer

Modeling
Transform

View
Transform

Projection
(Normalization)

ClippingDepth Test

Graphics
Primitives

You need to implement
● Scaling

● Translation

● Rotation

You need to implement
● Scaling

● Translation

● Rotation

You need to implement
● Scaling

● Translation

● Rotation

𝑅 = 𝑅𝑧(𝜃𝑧)𝑅𝑦(𝜃𝑦)𝑅𝑥(𝜃𝑥)

Rendering Pipeline

Bitmap /
Color Buffer

Modeling
Transform

View
Transform

Projection
(Normalization)

ClippingDepth Test

Graphics
Primitives

You need …
● Viewing matrix

● Knowns: eye position e, center c, up vector u

𝒇 = 𝒄	 − 𝒆				

𝒇′ =
𝒇
𝒇

𝒖0 =
𝒖
𝒖

𝒔 = 𝒇′×𝒖′
𝒖00 =

𝒔
𝒔 ×𝒇′

Rendering Pipeline

Bitmap /
Color Buffer

Modeling
Transform

View
Transform

Projection
(Normalization)

ClippingDepth Test

Graphics
Primitives

You need …
● Projection matrices (already transformed into canonical view volume)

● Perspective & orthographic (6 parameters for both: left right top bottom near far)

matrix.c

● Has all the matrix operations you need:

○ Inverse

○ Transpose

○ Addition/subtraction/multiplication

○ Inner/cross product

○ Determinant

○ …

Rendering Pipeline

Bitmap /
Color Buffer

Modeling
Transform

View
Transform

Projection
(Normalization)

ClippingDepth Test

Graphics
Primitives

Clipping
● Perform clipping in the canonical view volume

● Polygons may intersect the canonical view volume, then we need to perform
clipping:

● Sutherland-Hodgman polygon clipping algorithm

Sutherland Hodgman Polygon Clipping
● What will happen here?

Sutherland Hodgman Polygon Clipping
● It is incorrect to consider a vertex as inside/outside of the

clipping area

● Instead, for each vertex, tell whether it is in the inner or
outer side of each edge of the clipping area

Sutherland Hodgman Polygon Clipping
● It is incorrect to consider a vertex as inside/outside of the

clipping area

● Instead, for each vertex, tell whether it is in the inner or
outer side of each edge of the clipping area

● It also works in 3D world, where the clipping area
consists of 6 surfaces, instead of 4 edges.

Rendering Pipeline

Bitmap /
Color Buffer

Modeling
Transform

View
Transform

Projection
(Normalization)

ClippingDepth Test

Graphics
Primitives

HLHSR
● Target: generate the set of pixels that form the final image.

Algorithms (we’ll cover 2 this time)

● Scan-line Algorithm

● z-buffer Algorithm (neat, simple and fast!)

● Depth-Sort Algorithm

● Binary Space Partition (BSP) Trees

● Area-subdivision Algorithm

Scan-line Algorithm
● Intersect scanline with polygon edges

● Fill between pairs of intersections

● Basic algorithm:

Scan-line Algorithm: Special handling
● Intersection is an edge end point

● Intersection points: (p0, p1, p2) ???

−> (p0,p1,p1,p2) so we can still fill pairwise

−> In fact, if we compute the intersection of the scanline with edge e1 and e2
separately, we will get the intersection point p1 twice. Keep both of the p1.

Scan-line Algorithm: Special handling (cont.)
● Intersection is an edge end point

● However, in this case we don’t want to count p1 twice (p0,p1,p1,p2,p3),
otherwise we will fill pixels between p1 and p2, which is wrong

Scan-line Algorithm: Special handling (cont.)
● Rule: If the intersection is the ymin of the edge’s endpoint, count it. Otherwise,
don’t.

z-buffer (a.k.a. depth-buffer) algorithm
● Initialization (2 buffers)

z buffer (set to a value > 1) z
color buffer (set to BG color) c

● For each polygon
Scan convert
For each pixel in the polygon

if(z_poly(x,y)<z(x,y))
z(x,y) = z_poly(x,y)
c(x,y) = polygon_color

Obtain the Plain Equation from Polygon Vertices

A

B

C

D

z-buffer combined with scanline
● Calculating z_poly:

● Plane equation: 0 = A x + B y + C z + D

Solve for z: z = (-A x – B y – D) / C

● Moving along a scanline, so want z at next value of x

 Z’ = (-A (x+1) – b y – D) / C

 Z’ = z – A/C

z-buffer combined with scanline
● For moving between scanlines , know x' = x + 1 / m

● The new left edge of the polygon is (x+1/m, y+1), giving z' = z - (A/m + B)/C

Q & A

