
HW4 Ray-Tracing
sikun@ucsb.edu

Requirements
● Implement a simple ray tracer:

○ Parse a scene description file and draw the scene using ray tracing

○ Only one ray needs to be traversed per pixel
○ One shadow ray is traced per light source

○ One reflective ray is traced for each ray-object intersection
○ No refractive ray

● Deadline: 11:59pm, December 8th (Friday)
● Source code & Makefile

○ ./raytracer scene_description_file output_image

Scene Description File Format
● Consists of three sections:

○ Camera

○ Object
■ sphere

■ plane

○ Light

● Only one camera but may have multiple objects and lights.

Sample scene file

Camera
● perspective view
● Eye is located at the global origin.

● The camera axes line up with the global axes.
● The image plane is located at z = -1 and of a size 1x1 centered on the z-axis.

● The only parameter the camera has is its spatial resolution. Hence, a line like
camera 1000

● Aspect ratio is always 1:1

Object
● sphere & plane
● Common attributes

○ Center location

○ Dimension

○ Color

○ Reflectivity

○ Texture

Object - sphere

sphere
dimension 5
center 10 10 -10
color 1.0 0 0
reflectivity 0.5
texture wood.ppm

0 360

-90

+90

Object - plane

plane
dimension 5 10
center 10 -5 -10
color 1.0 0 1.0
normal 0 0 1
headup 1 1 0
reflectivity 0.7
texture wood.ppm

Light
● Point light sources
● Each light has two sets of parameters:

○ location(x, y, z)
○ color(r, g, b) 0<= r,g,b <=1

light
location 20 -5 -10
color 1.0 1.0 1.0

Forward Ray Tracing
● Rays as paths of photons in world space

● Forward ray tracing: follow photon from light sources to viewer

● Problem: many rays will not contribute to image!

Backward Ray Tracing
● Ray-casting: one ray from center of projection through each pixel in image plane

● Illumination
1. Phong (local as before)
2. Shadow rays
3. Reflection
4. Refraction
● 3 and 4 are recursive

Construct a Ray
● p(t) = e + t (s-e) = ts

● e: eye (camera) position (known)

s: pixel position (known after knowing the resolution)

● Pixel position: usually pick the center of a pixel (half)

Ray-Sphere Intersection

Ray-Sphere Intersection

Ray-Sphere Intersection

Calculating Normal

Ray-plane intersection
● Given plane normal (a,b,c) and one point on the plane (center):

plug in the point coordinate to get the plane equation

ax+by+cz+d=0

● Calculate the intersection point: plug in the ray equation

a(ex+tdx) + b(ey+tdy) + c(ez+tdz) + d = 0 è get t è get point e+td

Casting shadows: hit-point to each light source

Reflections
● Recursive (stop when hitting a non-reflective object, return its color)

● What if the lights go back and forth between two mirrors?

Reflective direction

v is normalized –u
n is normalized normal

Illumination model
● Phong

- ka: const. e.g. ka = 0.1 è contribute ka*Ia (Ia is outgoing radiance: color_obj)

- If not in shadow è light source Ii (incoming radiance) has a contribution:

Determined by the cosine law.
N, L are unit vectors
kd varies for different materials
(you can simply choose that to be color_obj)

Contribution of reflection
● += Final color * reflectivity

● You can try different things like …

(Final color)^n * reflectivity (larger n, smaller range of reflection)

● Illumination model and parameters are not fixed, you can play with them and
choose what you like the best

Program Skeleton
for (each scan line) {

for (each pixel in scan line) {
compute ray direction from eye to pixel
for (each object in scene) {

if (intersection and closest so far) {
record object and intersection point

}
accumulate pixel colors
- shadow ray color
- reflected ray color (recursion)

}
}

}

Demo

Q & A

